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Abstract: In this study, the effect of different concentrations of carbon nanotubes (Taunit-M; 0.5–6.5 g L−1)
on the efficiency of anaerobic digestion of chicken manure is investigated. The highest positive effect
on the specific production of methane is obtained when 5.0 g L−1 of carbon nanotubes are added
to the anaerobic reactors. In addition, carbon nanotubes at these concentrations stimulate the
biodegradation of volatile fatty acids, mainly acetate, butyrate, and finally propionate. The maximum
production rate of methane increases by 15–16% in the presence of carbon nanotubes (5.0–6.5 g L−1).
Also, addition of carbon nanotubes at certain concentrations increases total methane production.
Finally, the addition of carbon nanotubes to the anaerobic reactors is found to the favor consumption
of volatile fatty acids and improve the methane production kinetics and productivity during the
anaerobic digestion of chicken manure.

Keywords: anaerobic digestion; chicken wastes; biochemical methane potential; methane; volatile
fatty acids; carbon nanotubes Taunit-M

1. Introduction

Intensive development of farms is necessary to provide the growing population
with livestock products. Therefore, we are currently faced with a tremendous amount
of biowaste that requires proper recycling and the development of new sustainable tech-
nologies for waste disposal. Anaerobic digestion of animal wastes effectively avoids the
direct discharge of fresh manure into soil and water systems [1]. In addition, nutrients from
digestate can be used to produce algal biomass for various biotechnologies [2,3].

Chicken manure contains significant amounts of biodegradable components and can
cause unpleasant environmental problems if not properly processed. Improper application
of manure with high nitrogen and phosphorus content to fields can lead to contamination
of the soil and groundwater and the eutrophication of surface water resources. Various
technologies are used to process poultry manure. One of the options is anaerobic digestion
since, during this process, different organic substances in raw materials are decomposed to
form energy-rich biomethane [4–6].

Anaerobic digestion is a complex microbial process that includes several stages: hy-
drolysis, acidogenesis, acetogenesis (performed by bacteria), and finally methanogenesis
(performed by methanogenic archaea), and many factors affect process efficiency [6,7]. One
strategy for increasing the productivity of biogas reactors is the addition of different organic
or inorganic materials. Organic additives include green biomass, microbial cultures, and dif-
ferent carbon-based supplements. Various mineral elements (macroelements and microele-
ments) and minerals (e.g., magnetite, zeolites) are also used as inorganic additives [8–12].

Carbon nanotubes are becoming increasingly popular in various fields of human
activity. Researchers have shown that the addition of different nanoparticles can improve
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biogas production [13]. Carbon-based nanostructures have small dimensions, high mechan-
ical and thermal strength, and high electrical and thermal conductivity [14]. The use of
carbon nanomaterials for anaerobic digestion of organic substrates can positively affect the
efficiency of the process, which is also explained by the property of conductivity [15–17]. In
addition to electrical conductivity, carbon nanotubes have adsorption properties, actively
binding to different inorganic compounds. This is because the extent of the adsorption
process increases with an increase in the specific surface area of the particles. Besides, the
structures of carbon nanotubes allow strong interactions with organic compounds [18].

It was recently shown that the addition of conductive materials stimulates direct inter-
species electron transfer (DIET) in microbial communities, which is essential for syntrophic
cultures of microorganisms in anaerobic systems [19,20]. The introduction of a conduc-
tive material as a channel can replace microbial pili or c-type cytochromes for electron
transport. It is possible to increase the efficiency of DIET by adding granular activated
carbon, carbon cloth, graphite, biochar, and magnetite (Fe3O4) nanoparticles [21–23]. It
was previously found that different carbon nanotubes stimulate the anaerobic digestion
process at mesophilic temperatures through the DIET mechanism among bacteria and
methanogenic archaea [24,25]. However, it should also be noted that carbon nanotubes can
improve anaerobic digestion performances due to non-DIET mechanisms, as reported by
Salvador et al. [17].

In recent years, the number of relevant and promising studies for practice on the
effect of carbon materials and other conductive materials on anaerobic microorganisms has
increased. However, in most studies, the direct effect of conductive materials exclusively
on pure cultures of microorganisms was noted, while the effect under the conditions of
formed microbial communities as well as the interaction between bacteria and archaea in
the presence of these materials are still insufficiently studied. Therefore, in the present
study, carbon-based nanostructures are chosen as representative conductive materials
to explore their role in real anaerobic microbial communities involved in the anaerobic
digestion of complex substrates.

The aim of this study is to increase the rate of the anaerobic process and its effi-
ciency during the anaerobic digestion of chicken manure. Industrial multi-walled carbon
nanotubes called “Taunit”, which are quasi-one-dimensional, filamentous polycrystalline
graphite cylindrical formations with internal channels, are used in this study.

2. Materials and Methods
2.1. Experimental Setup

Chicken manure with total solids (TS) of 60.5 ± 0.8% and volatile solids (VS) of
49.7 ± 0.6% (for the first batch tests) and chicken manure with TS of 59.5 ± 0.4% and VS of
40.5 ± 0.5% (for the second batch tests) were collected from a local poultry farm (Kazan, Re-
public of Tatarstan, Russia). In the experiment, hydrophilic (“soluble” in water (up to 0.2%))
carbon nanotubes (CNTs) in the form of powder were used as additives. Multi-walled
carbon nanotubes of the “Taunit” series, which are quasi-one-dimensional, nanoscale, fila-
mentous polycrystalline graphite cylindrical formations with internal channels in the form
of a black powder, namely, its modification “Taunit-M”, were used. They had a hollow
cylindrical structure, at least 2 µm long, with an external diameter of 10–30 nm and an inter-
nal diameter of 5–15 nm. “Taunit” was produced by chemical vapor deposition; its purity
is above 95% (Available online: http://eng.nanotc.ru/; accessed on 10 November 2022).

2.2. Biochemical Methane Potential Experiments

The biochemical methane potential (BMP) of chicken manure was estimated by using
Automatic Methane Potential Test Systems (AMPTS II Light, Bioprocess Control, Lund,
Sweden). During the experiments, all batch anaerobic reactors were started using an inocu-
lum (digested cattle manure) and chicken manure as a substrate. Inoculum to substrate
ratios (ISR) were 37.8/45.3 g of VS (TS concentration of 6.4%) and 33.7/47.2 g of VS (TS
concentration of 7.0%) for the first and second batch tests, respectively. The 2 L bottles with
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a working volume of 1.6 L were then incubated at 38 ◦C for 32 days. CNTs at concentrations
of 0.5–6.5 g L−1 were selected and separately added to experimental reactors. Control
reactors were operated without the addition of CNTs. Blank reactors contained only the
inoculum (to compensate for the biomethane level produced by the inoculum itself). The
biogas was first passed through a solution of 3 M NaOH to remove CO2 and H2S, and
the CH4 yield was estimated by using a gas flow meter system. The AMPTS II Light
instruments agitated the digestion medium at 60 rpm for 1 min with a 3 min rest interval.
Each batch test was carried out in duplicate.

2.3. Analytical Methods and Statistical Analysis

Methane values were obtained automatically from the AMPTS II instruments and
normalized to 1.0 standard atmospheric pressure, 0 ◦C, and zero moisture content. Specific
methane production (SMP; mL g−1

VS), methane flow rate (MFR; mL day−1), and maximum
methane production rate (mL g−1

VS day–1) were further calculated. Digestates were
periodically taken from all batch reactors for various analyses, including volatile organic
acids (VOA) and total ammonia nitrogen (TAN) concentrations. These analyses were
performed as detailed by Ziganshina et al. [26]. In addition, individual organic acids (acetic,
propionic, and n-butyric) were analyzed by an UltiMate 3000 HPLC system (Thermo Fisher
Scientific, Hamburg, Germany) equipped with a Rezex™ ROA-Organic Acid H+ (8%)
column (Phenomenex, Torrance, CA, USA). All these analyses were measured in triplicate,
and the mean values are presented together with standard deviations.

The Tukey method and 95% confidence were used to compare differences (Minitab
software version 20.2.0, State College, PA, USA).

3. Results and Discussion

The efficiency of anaerobic digestion of chicken manure in mesophilic anaerobic batch
reactors was estimated by volatile solids degradation with the production of methane.

3.1. Process Stability and Methane Production (First Batch of Chicken Manure)

During the first batch of experiments, the anaerobic biogas reactors functioned under
mesophilic conditions for 32 days. To increase the efficiency of anaerobic digestion of
chicken manure, CNTs were introduced into anaerobic reactors at three different concentra-
tions: 0.5 g L−1, 2.0 g L−1, and 5.0 g L−1.

Chicken manure was used as a substrate and added equally to all reactors except blank
reactors (to compensate for the CH4 level produced by the inoculum itself). The purpose of
the anaerobic digestion test was to determine the effect of adding nanostructured carbon
materials on the production of CH4 from chicken manure. Figure 1 shows the specific
methane production and methane flow rate from chicken manure-added treatments in the
absence and presence of CNTs.

Thus, CH4 production was relatively stable, which makes the substrate suitable for
biomethane production. The period from the loading of the anaerobic reactors to the onset
of methane formation was short. The active production of methane lasted for 32 days.
After one day of incubation, similar methane yields were obtained for all treatments, and
the average data ranged from 142 mL to 152 mL. But already, after two days of anaerobic
digestion, reactors supplied with CNTs produced more methane compared to control
treatments (Figure 1).

The addition of CNTs at a concentration of 5.0 g L−1 significantly increased the specific
methane production throughout the experiment. The final SMP levels (at day 32) for
the reactors R_0, R_0.5, R_2.0, and R_5.0 were 153 ± 3.1 mL g−1

VS, 153 ± 2.5 mL g−1
VS,

161 ± 2.2 mL g−1
VS, and 167 ± 2.8 mL g−1

VS, respectively (Figure 1a). The highest average
values in MFR were obtained on days 2 and 4 for the reactors supplied with 5.0 g L−1 of
CNTs (591 mL and 605 mL, respectively), while for the reactors operated without CNTs
these peaks fell on days 4 and 8 (397 mL and 523 mL, respectively) (Figure 1b). All other
concentrations did not have such a large impact, but the productivity of R_2.0 was slightly
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higher than the productivity of R_0 and R_0.5. The obtained data indicate that the addition
of CNTs (mainly 5.0 g L−1) improved the performance of these reactors. The maximum
production rate of methane increased by 16% in the presence of CNTs (5.0 g L−1).
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5.0 g L−1) were added to the reactors (R_0.5, R_2.0, and R_5.0, respectively). R_0 operated without 
the addition of CNTs. Values at day 32 (SMP) were statistically compared; a,b arithmetic means (av-
erages) that do not share a letter are statistically significantly different from each other according to 
the Tukey method and 95% confidence. 

Concentrations of the produced organic acids were high due to the large amount of 
organic matter in chicken manure (Figure 2a). If the VOA levels in all experiments with 
the introduction of CNTs regularly decreased during the entire anaerobic digestion pro-
cess, then in the experiments performed in the absence of CNTs, a lower level of their 
utilization was observed. Thus, CNTs at a concentration of 5.0 g L−1 stimulated the rapid 
utilization of VOA. It should also be noted that some of the organic acids were derived 
from the inoculum. TAN levels did not vary substantially in all treatments and were in 
the range of 1.6–1.8 g L−1, though a lower level of TAN was observed in R_5.0 (Figure 2b). 

Figure 1. Impact of CNT addition on SMP (a) and MFR (b) during the anaerobic digestion of chicken
manure (first batch of chicken manure). Different concentrations of CNTs (0.5 g L−1, 2.0 g L−1, and
5.0 g L−1) were added to the reactors (R_0.5, R_2.0, and R_5.0, respectively). R_0 operated without
the addition of CNTs. Values at day 32 (SMP) were statistically compared; a,b arithmetic means
(averages) that do not share a letter are statistically significantly different from each other according
to the Tukey method and 95% confidence.

Concentrations of the produced organic acids were high due to the large amount of
organic matter in chicken manure (Figure 2a). If the VOA levels in all experiments with the
introduction of CNTs regularly decreased during the entire anaerobic digestion process,
then in the experiments performed in the absence of CNTs, a lower level of their utilization
was observed. Thus, CNTs at a concentration of 5.0 g L−1 stimulated the rapid utilization
of VOA. It should also be noted that some of the organic acids were derived from the
inoculum. TAN levels did not vary substantially in all treatments and were in the range of
1.6–1.8 g L−1, though a lower level of TAN was observed in R_5.0 (Figure 2b).
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Figure 2. Impact of CNT addition on VOA concentrations (a) and TAN concentrations (b) during the
anaerobic digestion of chicken manure. Different concentrations of CNTs (0.5 g L−1, 2.0 g L−1, and
5.0 g L−1) were added to the reactors (R_0.5, R_2.0, and R_5.0, respectively). R_0 operated without
the addition of CNTs.

The efficiency and stability of the anaerobic digestion process are entirely dependent
on the coordinated and syntrophic activity of the involved microorganisms [26–28]. Cattle
manure was used as an inoculum, which is well suited for running anaerobic digesters as
it contains a diverse microbial community that can quickly adapt to changing operating
conditions [29]. Notably, the rumen microbiota includes methanogens, which use acetate,
H2, and CO2 to produce methane and decrease acetate and hydrogen accumulation during
the anaerobic process [30].

The average methane yield during the anaerobic digestion of chicken manure is
70–140 m3 t−1, while the average methane yield from cattle slurry and cattle dung is com-
paratively lower: 11–19 m3 t−1 and 33–36 m3 t−1, respectively [31]. Chicken manure is the
mixture of feces and urine excreted, which contains varying amounts of undigested feeding
stuff, desquamated intestinal epithelium, residues of secretion, microorganisms from the
intestinal flora, metabolites excreted with the urine, as well as other components, e.g.,
feathers, egg leftovers, bedding material, grid material, and soil [32]. So, chicken manure
has a diverse material composition, and regular testing of raw materials is recommended
before anaerobic digestion on large scales.
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3.2. Process Stability and Methane Production (Second Batch of Chicken Manure)

During the second batch of experiments, five different conditions were monitored:
control reactors and reactors supplemented with different concentrations of CNTs (2.0 g L−1,
3.5 g L−1, 5.0 g L−1, and 6.5 g L−1). The operation of the anaerobic reactors lasted for 32 days,
and during this period, six samples were taken from them to analyze the composition of
the digestate. Figure 3 illustrates the SMP and MFR, whereas Figures 4 and 5 demonstrate
the concentrations of the individual main volatile fatty acids (such as acetic acid, propionic
acid, and butyric acid) and the total ammonia nitrogen level during the whole anaerobic
digestion process.
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Figure 3. Impact of CNT addition on SMP (a) and MFR (b) during the anaerobic digestion of
chicken manure (second batch of chicken manure). Different concentrations of CNTs (2.0 g L−1,
3.5 g L−1, 5.0 g L−1, and 6.5 g L−1) were added to the reactors (R_2.0, R_3.5, R_5.0, and R_6.5, respec-
tively). R_0 operated without addition of CNTs. Values at day 32 (SMP) were statistically compared;
a,b arithmetic means (averages) that do not share a letter are statistically significantly different from
each other according to the Tukey method and 95% confidence.

As can be observed, methane was produced efficiently in all cases. The second batch
of chicken manure generated a higher level of methane compared with the first batch of
chicken manure.
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Figure 4. Impact of CNT addition on acetate (a), propionate (b), and butyrate (c) during the anaerobic
digestion of chicken manure. Different concentrations of CNTs (2.0 g L−1, 3.5 g L−1, 5.0 g L−1, and
6.5 g L−1) were added to the reactors (R_2.0, R_3.5, R_5.0, and R_6.5, respectively). R_0 operated
without the addition of CNTs.
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Figure 5. Impact of CNT addition on TAN accumulation during the anaerobic digestion of chicken
manure. Different concentrations of CNTs (2.0 g L−1, 3.5 g L−1, 5.0 g L−1, and 6.5 g L−1) were added
to the reactors (R_2.0, R_3.5, R_5.0, and R_6.5, respectively). R_0 operated without the addition
of CNTs.

The reactors started to produce methane immediately after the addition of the substrate.
The highest average peaks in MFR were received on days 5 and 8 for reactors supplied
with 6.5 g L−1 of CNTs (640 mL and 677 mL, respectively), but only on day 8 for reactors
operated in the absence of CNTs (595 mL). The introduction of CNTs into the anaerobic
reactors in the range of 2.0–6.5 g L−1 improved the rate of methane formation throughout
the experiment, while the greatest positive effect was observed when CNTs were used in
amounts of 5.0–6.5 g L−1.

The other two concentrations tested were also positive but less effective. The received
data indicate that the introduction of CNTs into the reactors improved their performance.
The maximum production rate of methane increased by 15% in the presence of carbon
nanotubes (6.5 g L−1). The final SMP levels (at day 32) for the reactors R_0, R_2.0, R_3.5,
R_5.0, and R_6.5 were 196 ± 1.2 mL g−1

VS, 200 ± 1.5 mL g−1
VS, 203 ± 2.1 mL g−1

VS,
205 ± 1.8 mL g−1

VS, and 196 ± 2.4 mL g−1
VS, respectively (Figure 3).

In the reactors R_5.0 and R_6.5, acetate accumulated for up to 2 days, and in the reac-
tors R_0, R_2.0, and R_3.5, its maximum concentration was reached after 4 days (Figure 4).
In the case of butyrate and propionate, their accumulation in all systems occurred until
days 4 and 10, respectively. The addition of CNTs promoted earlier consumption of acetate
and butyrate, and the highest concentration of CNTs stimulated more efficient consumption
of these volatile fatty acids. As already noted, the biodegradation of propionate occurred
after day 10 with an increase in the level of acetate in some reactors and the appearance of
the last peak of methane generation. This indicates that propionate degrading microorgan-
isms were activated after a decrease in the level of acetate and almost complete utilization
of butyrate, and CNTs stimulated their activity. Finally, this suggests that the addition of
CNTs promoted the uptake of the produced volatile fatty acids (Figure 4). It should be
noted that some concentrations of organic acids were obtained from the inoculum.

In these experiments, TAN levels were higher than the values obtained in the first
experiments and were in the range of 2.2–2.5 g L−1 (day 32; Figure 5). Interestingly,
higher levels of CNTs resulted in a lower level of TAN. Carbon nanotubes have adsorbing
properties, actively binding to other molecules [18,33]. Therefore, ammonia and/or other
nitrogen-containing compounds (from which ammonium was formed) could bind to
carbon nanotubes. Moreover, the higher microbial activity in the reactors with CNTs could
stimulate the increased assimilation of ammonia by the cells. However, these assumptions
require further research.
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3.3. CNTs as Promising Agents in Anaerobic Digestion

Carbon nanotubes are among the most promising nanomaterials for diverse applica-
tions due to their attractive physicochemical properties, such as their large surface area,
mechanical and thermal strength, and electrochemical activity [34].

Many scientific groups consider different carbonaceous materials promising agents
for improving the performance of anaerobic digesters, including those operating under
stressful conditions for microorganisms [35–38]. For example, the results of the work of
Yan et al. [36] showed that the presence of carbon nanotubes in anaerobic systems can
mitigate the inhibition of the process by ammonia. The authors noted a positive correlation
between the concentration of carbon nanotubes and the polysaccharide, which creates
the physical structure to protect the cell membrane of microorganisms. In another study,
Shen et al. [38] evaluated the effect of carbon nanotubes on methane generation through
syntrophic acetate oxidation (SAO) in extreme environments (at high acetate concentration
and high temperature). The authors noted the acceleration of methane production via
decreasing the lag phase and increasing maximum methane production rates with the
addition of electroconductive carbon nanotubes. They reported the DIET pathway in SAO
consortiums, which made it possible to accelerate methane production [38].

The experimental results from another work also showed an increase in methane pro-
duction rate in reactors with carbon nanotube hollow-fiber media, and the authors attribute
this to a shift in the microbiome and stimulation of syntrophic microbial metabolism asso-
ciated with DIET [39]. The authors also attributed the improvement in anaerobic process
performance to the lower concentration of organic acids in experimental systems, which
made syntrophic metabolism thermodynamically exergonic. There are other works that
showed that CNTs can establish DIET between syntrophic partners due to their conductive
properties, which stimulate the anaerobic digestion process [24,36]. Li et al. [24] showed
that the introduction of carbon nanotubes into the anaerobic process intensified the anaer-
obic wastewater treatment. The authors noted that carbon nanotubes at concentrations
up to 1.0 g L−1 induced much faster substrate utilization and methane production rate by
anaerobic microorganisms. In addition, carbon nanotubes as materials with high conduc-
tive properties increased the electrical conductivity of the sludge, which could promote
the DIET between anaerobic fermentative bacteria and methanogens during the anaerobic
digestion process.

It should be added that carbon nanotubes can improve anaerobic digestion perfor-
mance due to non-DIET mechanisms. Thus, the study performed by Salvador et al. [17]
confirmed that with an increase in the carbon nanotube dosage in systems, a more negative
redox potential occurred, which is beneficial for methanogenesis. Carbon nanotubes can
also have a cytotoxic effect on microorganisms [37,40], which emphasizes the importance
of selecting an adequate dosage.

Finally, the scientific results have encouraged researchers in this field to note the
effectiveness of introducing nanotubes into the processes of anaerobic conversion of
various substrates. They additionally demonstrated the promising potential of their
full-scale application.

4. Conclusions

The highest positive effect on the specific production of methane from chicken manure
was obtained when 5.0 g L−1 of carbon nanotubes was added to the anaerobic reactors. In
addition, carbon nanotubes enhanced the biodegradation of volatile fatty acids, mainly
acetate, butyrate, and finally propionate. The maximum production rate of methane
increased by 15–16% in the presence of carbon nanotubes (5.0–6.5 g L−1). This indicates
that carbon nanotubes, when used correctly, stimulate the production of methane during
the anaerobic digestion of chicken manure. The results of this study encourage the use
of carbon nanotubes in individual modifications in biogas plants to improve methane
production efficiency.
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