
Thomas Bintsis 1,*, and Photis Papademas 2

1 Laboratory of Safety and Quality of Milk and Dairy Products, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
2 Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 50329, Cyprus
* Correspondence: tbintsis@vet.auth.gr

Email Correction

In the original publication [1], author Thomas Bintsis wants to change the email to: tbintsis@vet.auth.gr.

Text Correction

There was an error in the original publication. “Recently, Alraddadi et al., 2023 studied the microbial communities of Kefir grains, and Kefir was evaluated over time using high-throughput amplicon sequencing. It was found that *Lb. kefiranofaciens* and *Lentilactobacillus kefiri* consistently dominated Kefir grains, whereas *Lc. lactis* dominated Kefir [193]. Many other bacteria and yeasts were detected that comprised the minor population of Kefir grains and Kefir. The community composition in the kefir was more variable than in the Kefir grains with the relative abundance of both *Lb. kefiranofaciens* and *Lc. lactis* changing over time. The fungal communities of Kefir grains were dominated by *Kazachstania turicensis* and *T. delbruekii*, although the ratio between the two varied significantly. These findings suggest that the microbial communities in Kefir grains change over time, highlighting the need for further studies investigating the effect these changes have on the production of flavor and aroma compounds in Kefir [193].”

A correction has been made to Section 4: Microbiology of Fermented Milk Products, Paragraph 3:

“Recently, Alraddadi et al. studied the microbiota of kefir grains and cow’s milk kefir, using high-throughput amplicon sequencing; greater diversity in the microbial composition in the kefir than in the kefir grains was found, and the relative abundance of the dominant species, that is *Lb. kefiranofaciens* and *Lc. lactis* and changes over time were observed [194].”

References Mis-Cited in the Text

There were some references mis-cited in the original publication. The corrections have been made to Section 3: The Expansion of Fermented Milk Products, Paragraphs 13, 14, 16, 17, and Section 4: Microbiology of Fermented Milk Products, Paragraphs 1, 2, 3:

“Probiotics are defined as “live microorganisms which when administered in adequate amounts confer a health benefit to the host” and fermented dairy products are probably the most important food probiotics category; probiotic fermented milks have been extensively studied [128–131,153–159]. Fermented dairy products are generally beneficial in the treatment and prevention of gastrointestinal disease, considering that different LAB strains show different efficacy across these diseases. Limdi et al. reviewed the therapeutic role of probiotics in gastroenterology and concluded that probiotics appear to have a potential role in the prevention and treatment of various gastrointestinal illnesses, such as irritable bowel syndrome, but it is likely that benefits are species and strains specific [160].”
“Several animal studies have shown that the administration of fermented milks is effective in lowering blood cholesterol levels, although studies in human subjects have shown conflicting results [161].”

“Although the mechanism for this protective effect is not clear, it has been shown that Lb. rhamnosus GG is able to bind to the mucosal surface of the intestine [155], possibly protecting against intestinal pathogens and associated infections through immunomodulation [163].”

“Ingestion of probiotic yogurt has been reported to stimulate cytokine production in blood cells and enhance the activities of macrophages [164]. Yakult is a Japanese commercial probiotic milk product that has several health-promoting benefits such as modulation of the immune system, maintenance of gut flora, regulation of bowel habits, alleviation of constipation, and curing of gastrointestinal infections [165,166]. The modulation of the gut microbiota by the administration of Lactobacillus kefiranofaciens has been studied in mice [167].”

“The most popular culture-independent technique being used in the isolation of microorganisms from fermented foods is a PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analysis to profile bacterial populations [176] and yeast populations in fermented foods [178–180]. Wolfe and Dutton reviewed the microbial communities of fermented foods and concluded that these communities offer a wide range of paradigms for community formation and provide opportunities to understand how to better design synthetic microbial communities for medicine, industry, and agriculture [181].”

“Liu et al., 2012 analyzed the bacterial composition of Kurut in Tibet using culture-independent methods, a bacterial 16S rRNA gene clone library containing 460 clones was constructed and the bacterial diversity in Kurut was systematically studied; the authors reported some novel sequences of unknown bacteria [62].”

“The use of culture-independent methodology has revealed the complex microbiota of kefir grains, which includes a mixture of bacteria such as Lc. lactis subsp. lactis, Lc. lactis subsp. lactis biovar. diacetylactis, and Lc. lactis subsp. cremoris, Lbc. kefiranofaciens, Lentilactobacillus kefiri, Lentilactobacillus parakefiri, Lb. helveticus, Lb. delbrueckii, Lcb. casei, Levilactobacillus brevis, Lacticaseibacillus paracasei, Lpc. plantarum and Leuc. mesenteroides, Lactobacillus helveticus, Leuconostoc citreum, Leuconostoc gelidum, Leuconostoc kimchi, Acetobacter pasteurianus, and Acetobacter lovaniensis [26,182–186], and yeasts such as Kl. marxianus, Saccharomyces cerevisiae, Torulaspora kefir, Torulaspora delbrueckii, Candida kefir, Saccharomyces unisporus, Pichia fermentans, Yarrowia lipolytica, Debaryomyces spp., Galactomyces spp., Issatchenka spp., Kazachstania spp., Kluyveromyces spp., Pichia spp., Saccharomyces spp., Wickerhamomyces spp. and Yarrowia spp. [26,187,188].”

“These methods were able to provide a broader view of the microbial composition and population dynamics of Kefir [107,192–194].”

Reference Correction

In the previous publication, the correct 17th reference was missing in the references section, resulting in an incorrect order of references thereafter. “17. Ibrahim, S.A.; Gyawali, R. Lactose Intolerance. In Milk and Dairy Products in Human Nutrition: Production, Composition and Health, Park, Y.W.; Haenlein, G.F.W., Eds., John Wiley & Sons, Inc.: Oxford, UK, 2013; pp. 246–260.” With this correction, the order of some references has been adjusted accordingly.

There is some wrong information in the previous reference 62, reference 73, reference 84, and reference 162.


The authors state that the scientific conclusions are unaffected. These corrections were approved by the Academic Editor. The original publication has also been updated.
Reference


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.