
����������
�������

Citation: Nayak, S.K.; Nayak, S.C.;

Das, S. Modeling and Forecasting

Cryptocurrency Closing Prices with

Rao Algorithm-Based Artificial

Neural Networks: A Machine

Learning Approach. FinTech 2022, 1,

47–62. https://doi.org/10.3390/

fintech1010004

Academic Editor: David Roubaud

Received: 20 September 2021

Accepted: 10 November 2021

Published: 30 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Modeling and Forecasting Cryptocurrency Closing Prices with
Rao Algorithm-Based Artificial Neural Networks: A Machine
Learning Approach
Sanjib Kumar Nayak 1, Sarat Chandra Nayak 2,* and Subhranginee Das 3

1 Department of Computer Application, VSS University of Technology, Burla, Sambalpur 768018, India;
sknayak_ca@vssut.ac.in

2 Department of Artificial Intelligence and Machine Learning, CMR College of Engineering & Technology,
Hyderabad 501401, India

3 Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation (KL University),
Hyderabad 500075, India; subhranginee.das@klh.edu.in

* Correspondence: saratnayak234@gmail.com

Abstract: Artificial neural networks (ANNs) are suitable procedures for predicting financial time
series (FTS). Cryptocurrencies are good investment assets; therefore, the effective prediction of
cryptocurrencies has become a trending area of research. Capturing inherent uncertainties associated
with cryptocurrency FTS with conventional methods is difficult. Though ANNs are the better
alternative, fixing the optimal parameters of ANNs is a tedious job. This article develops a hybrid
ANN through Rao algorithm (RA + ANN) for the effective prediction of six popular cryptocurrencies
such as Bitcoin, Litecoin, Ethereum, CMC 200, Tether, and Ripple. Six comparative models such as
GA + ANN, PSO + ANN, MLP, SVM, LSE, and ARIMA are developed and trained in a similar way.
All these models are evaluated through the mean absolute percentage of error (MAPE) and average
relative variance (ARV) metrics. It is found that the proposed RA + ANN generated the lowest MAPE
and ARV values, statistically different as compared with existing methods mentioned above, and
hence can be recommended as a potential financial instrument for predicting cryptocurrencies.

Keywords: cryptocurrency; Bitcoin; artificial neural network; financial forecasting; Rao algorithm;
multilayer perceptron; cryptocurrency prediction

1. Introduction

Cryptocurrency is a virtual or digital currency that is meant to be a means of exchange
for online transactions to purchase goods and services. An online ledger is used with
strong cryptography for securing online transactions. Cryptos evince a lot of interest
today because they are traded for-profit and because of the rich and growing valuations
in relatively shorter periods of time. While these currencies are unregulated, many of the
international governments and countries, after an early period of denial, are now showing
signs of the adoption of some of the other forms of cryptocurrencies for transactions.
Without any bank or any central authority, these cryptos are built on a decentralized or
distributed peer-to-peer network. Cryptocurrencies have certain special characteristics [1].
They use decentralized control, so central authority is not required.

To avoid dispute, it ensures pseudo-anonymity. Since the reproduction of digital
currency is easy, double-spending attack protection is ensured.

While Bitcoin was the earliest and most popular one [2], there are also many oth-
ers, which are continuing to grow in user base, popularity, and market share, such as
Ethereum, Tether, CMC 200, Ripple, Polkadot, XRP, Cardano, Chainlink, Litecoin, Bit-
coin Cash, Binance Coin, etc. As the cryptocurrency market prices are growing fast and
behave similarly to stock market price movement, investors, as well as researchers, are
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concerned about the proper prediction of cryptocurrencies market values. The princi-
ple of cryptography is the basis of the decentralized digital currency having an open
source. The relevance of cryptocurrencies as an emerging market in the financial world
is escalating significantly. Nowadays, more and more financial organizations are getting
concerned about cryptocurrency trading. The trading opportunities and profitability in
the cryptocurrency market are studied in [3]. A survey on systems of cryptocurrency is
elaborated in [4]. The characteristics of this market, such as the high availability of market
data, high volatility, smaller capitalization, and decentralized control, are studied in the
literature [5]. Despite the fact that this market acts similarly to other stock markets in terms
of intrinsic volatility, investor confidence has been reflected in it [6–8]. The feasibility of
this market in relation to other financial markets is documented in the literature [9,10].
Similarly, to another stock market, cryptocurrency market prices behaved arbitrarily and
with high nonlinearity and dynamics. Though few computational intelligence models
are available for the prediction of cryptocurrencies, sophisticated methods with accurate
prediction abilities are still missing and need to be searched. From the literature, it is
observed that different stock market predictions have been made successively by different
ANN techniques [11–16]. Motivated by such works in the last few years, different soft
computing methods are suggested in the literature to predict cryptocurrencies indices. Soft
computing techniques, such as Long short-term memory neural networks and MLP [17],
Random walk theory [18], Support vector machines [19], etc., are already used to forecast
cryptocurrencies. The recurrent neural network was also used for entrapping threats in
cryptocurrency [20]. Few machine learning and statistical methodologies are found in the
literature for the prediction of Bitcoin [21–25]. Several data-driven and machine learning
approaches are developed in the literature for industrial and agricultural applications. A
data-driven prognosis approach for the prediction of run-to-failure low-speed slew bear-
ing vibration data is proposed in [26]. A machine learning-based method is proposed
in [27] for clay prediction technology. A hybrid architecture is proposed in [28] for the
minimization of energy consumption and elapsed time for IoT workloads. The forecasting
accuracy of a neural model is greatly subjective to the network magnitude and learning
method. Gradient descent learning is a common method for neural network training. The
typical downsides of this technique are that it has a slow convergence rate, imperfect
learning, and is prone to local minima. It adds computational overhead to the model.
Therefore, evolutionary optimization techniques are used to train the ANN and claim
superior to [29,30]. The improper selection of algorithm-specific parameters of evolutionary
optimization methods may land them at local optima or inaccurate solutions. To eradicate
this, a good number of swarm and evolutionary optimization techniques are groomed up
and heavily used for ANN training. These techniques are broadly termed nature-inspired
optimization algorithms because they mimic natural processes. Certain algorithms, such as
genetic algorithms, differential evolution, and evolution strategy, are based on the theory
of natural evolution. Few algorithms simulate the behavior of swarms, insects, etc., such as
particle swarm optimization, ant colony optimization, artificial bee colony optimization,
bacterial foraging optimization, monarch butterfly optimization, and so on. Some other
techniques are bio-geography optimization, gravitational search algorithm, multi-verse
optimization [31], fireworks algorithm [32,33], chemical reaction optimization [34,35], etc.
Though such nature-inspired optimization techniques have been used for solving several
complex problems, their efficiency is determined by well-adjustable learning parameters.
In the quest to search for the optimal global solution, the selection of appropriate learning
parameters makes the technique difficult to use. Choosing optimal learning parameters
for any particular problem requires a number of trial-and-error methods. The improper
selection of algorithm-specific parameters may land the search operation at local optima or
inaccurate solutions. As a result, an optimization technique with higher approximation
capability but fewer learning parameters will be of relevance for better forecasting accuracy.
Recently, few methods have been developed for constrained and unconstrained optimiza-
tion problems, which are claimed to be simple as well as parameter-free algorithms, such
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as teaching learning-based optimization [36] and Jaya algorithm [37]. With the objective
of developing simple and effective optimization techniques, Rao proposed metaphor-less
algorithms called Rao algorithms [25], where algorithm-specific learning parameters are
not required, i.e., these algorithms are free from learning parameters. Only the initialization
of population size is enough. The algorithms keep on finding the best and the worst
solution from the selected population and initiate random interaction among the candidate
solutions. Very soon, these algorithms are applied to mechanical system components to
obtain the design optimization [14,38,39], estimation of photovoltaic cell [40,41], optimal
coordination of overcurrent relays [42], etc. However, Rao algorithms are not explored for
the optimization of ANN parameters. This article attempts to test out the appropriateness
of Rao algorithms on finding the optimal parameters of ANNs and applying the resultant
method for stock closing price prediction.

The objectives of this article are highlighted as follows:

1. We are designing an efficient ANN forecast for the nearly precise prediction of cryp-
tocurrencies such as Bitcoin, Litecoin, Ethereum, CMC 200, Tether, and Ripple.

2. Suitable tuning of ANN parameters (i.e., weight and bias) by RA, thus forming a hybrid
model (i.e., RA + ANN) to overcome the limitations of derivative-based optimization
techniques.

3. We are evaluating the performance of the RA + ANN forecast through two perfor-
mance metrics, MAPE and ARV.

The flow of the article is as follows. A concise description of ANNs is presented in
Section 2. The proposed RA + ANN is described in Section 3. The experimental data are
presented in Section 4. Section 5 contains the summarized results from the experimentation
and analysis of outcomes, followed by concluding remarks.

2. Artificial Neural Network

An ANN simulates the way the human brain works, making it different from conven-
tional digital computers [43]. ANNs are also capable of complex data processing having
neurons as computational units. ANNs have the capabilities of getting good approximation
solutions to intractable problems, and they can also solve a very complex problem by de-
composing it into smaller tasks, which makes them different from conventional computing.

The neural networks gain training by detecting the patterns in the data. As the human
brain consists of billions of neurons, fully interconnected by synapses, similarly ANNs
consist of hundreds of processing units as artificial neurons, which are fully connected
through neural links. The Schematic block diagram (Figure 1) represents the basic ANN
architecture with some hidden layers of neurons and one output layer neuron.
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Figure 1. Basic Architecture of ANN. (Source: Authors).

Supervised learning is used for error correction in this case, i.e., the expected response
for the given inputs is submitted at the output neuron to calculate the error. In the time-
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series data to speculate one-day-ahead index, a single output unit model is used. A linear
transfer function is used in the input layer. The hidden and output layer neurons contain
nonlinear activation functions. Here, we have taken nonlinear activation as sigmoidal
function in (1), i.e.,:

yout =
1

1 + e−λyin
(1)

where yout and yin represent the output and input of the neuron y, respectively, and λ acts
as the sigmoidal gain. In the input layer, let there be n neurons. The input layer stands for
the input variable of the problem. Each input variable input layer contains one-one node.
The hidden layers are helpful in capturing the nonlinearity among variables. In the hidden
layer output yj is computed using (2) for each neuron j,

yj = f

(
bj +

n

∑
i=1

wij∗xi

)
(2)

where f stands for a nonlinear activation function, bj is the bias value, xi represents the ith

component of the input vector, wij is the synaptic weight connecting ith input neuron and
jth hidden neuron.

Suppose there are m numbers of neurons present in this hidden layer, then for the
next hidden layer these m outputs become the input. Then (3) for each neuron j of the next
hidden layer can be represented as,

yj = f

(
bj +

m

∑
i=1

wij∗yi

)
(3)

This signal flows in the forward direction through each hidden layer until it reaches
the node of the output layer.

For a single output neuron (4) is used to calculate the output yesst

yesst = f

(
bo +

m

∑
j=1

vj∗yj

)
(4)

where bo is the bias for output node, the weighted sum calculated as in (2) is yj, vj represents

the synaptic weight between jth hidden neuron and output neuron.
Given a set of training samples S = {xi, yi}

N
i=1 to train the ANN, let yi be the output

of ith input sample, and yesst is the computed output of the same ith input, then using (5)
the error is calculated as,

Errori = yi − yesst (5)

The error value that is produced by nth training sample at the output of neuron i is
defined by (6) as,

Errori(n) = yi(n)− yesst(n) (6)

Then the instantaneous error at neuron i is defined by (7) as,

εi(n) =
1
2

Errori
2(n) (7)

Hence the total instantaneous error of the whole network, ε(n) can be defined by the
following (8) as,

ε(n) = ∑
iεC
εi(n) (8)
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Here C represents the set containing all the output layer neurons. In this paper, we
have considered one neuron in the output layer. Therefore, here we can represent the
network error in the neural network model as in (9),

ε(n) = εi(n) (9)

The average error over the whole training sample in the neural network model can be
defined by (10) as,

εav(N) =
N

∑
n=1

ε(n) (10)

The optimal weight vector is computed by the weight update algorithm using error
signal Errori. In the training phase, the training set input vectors are repeatedly presented
to the neural network model to update the weights and the biases by training algorithm. If
the error is small enough per epoch, then no further training is required. Unfortunately, this
criterion may lead to local minimum. Therefore, the performance of the network is tested
for generalization performance after each iteration of training. Once the generalization
performance is sufficient or adequate, the learning process is stopped. Therefore, the intent
is to reduce the total error of Equation (5) with an optimized set of weight and bias vector
of the ANN.

3. Proposed RA + ANN Based Forecasting

Rao algorithms are newly developed population-based optimization algorithms. Un-
like other nature-inspired optimization techniques, these are not mimicking the behavior
of swarms, animals, birds, or any physical or chemical phenomenon. Therefore, they are
claimed as metaphor-less optimization techniques by the inventor [25]. Any algorithm-
specific parameters are not required by these algorithms. Only specifying the number of
candidate solutions, design variables, and termination criteria is sufficient to automate
the search process. The techniques are simple, do not necessitate human intervention,
and provide effective solutions to complicated problems. The algorithms are presented
as follows.

Let f (w) be an objective function that needs to be optimized (i.e., the error function
to be minimized here). Let the population (search space of ANN model) have n number
of candidate solutions (weight and bias vector), each of which has m number of design
variables (weight values). Each candidate solution has a fitness value (i.e., error value),
and the lower the error signal, the better is the solution. At any iteration i, let the best
and worst solution of the population be f (w)best and f (w)worst respectively. The current
value of a candidate solution (weight vector) at ith iteration is updated as per the following
Equations (11)–(13) as,

W ′j,k,i = Wj,k,i + rand1,j,i ∗
(

Wj,best,i −Wj,worst,i

)
(11)

W ′j,k,i = Wj,k,i + rand1,j,i ∗
(

Wj,best,i −Wj,worst,i

)
+ rand2,j,i ∗

(∣∣∣Wj,k,i or Wj,l,i

∣∣∣− ∣∣∣Wj,l,i or Wj,k,i

∣∣∣) (12)

W ′j,k,i = Wj,k,i + rand1,j,i ∗
(

Wj,best,i −
∣∣Wj,worst,i

∣∣)+ rand2,j,i ∗
(∣∣∣Wj,k,i or Wj,l,i

∣∣∣−Wj,l,i or Wj,k,i

)
(13)

where:

Wj,k,i = the value of jth variable of kth solution (k = 1, 2, 3, · · · , n) at ith iteration.
W ′j,k,i = the modified value of jth variable of kth solution (k = 1, 2, 3, · · · , n) at ith iteration.

Wj,best,i = jth variable value of the best solution in ith iteration.
Wj,worst,i = jth variable value of the worst solution ith iteration.
rand1,j,i and rand2,j,i are two random values in [0,1].

The terms “Wj,k,i or Wj,l,i” in (11)–(13) represent the fitness comparison of kth candidate
solution with that of lth solution, which is randomly drawn from the population. An
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information exchange occurs based on their fitness values. This ensures the communication
among the candidate solutions. Based on the concept discussed, the RA + ANN-based
forecasting can be explained by Algorithm 1. The pictorial description is given below
(Figure 2).

Algorithm 1: RA + ANN-based forecasting.

1. Set population size (n), No. of design variables (m), and Termination criteria.
2. Initialization of population.
3. Set training and test data using sliding window.
4. Normalization of training and test data.
/* Model Training */
5. While (! = termination criteria)
For each candidate solution (W) in the population.
Supply train data and W to ANN.
Compute ANN output.
Error = expected output–estimated output
Fitness = accumulated error.
End
Identify best and worst solution.
Update population using any Equations (8)–(10).
6. End
/* Model Testing */
7. Feed test data and best solution to ANN.
Calculate the model output error value.
8. Reiterate Steps 2–6 for all training and test patterns and preserve total error.
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The RA + ANN forecasting model works as follows: the cryptocurrency’s historical
closing prices are collected. Approximately 60% of the total input data are pre-owned for
training the neural net, and after the network is trained, the remaining 40% of the data is
used for testing the correctness of the proposed model. The closing price data are collected
and stored as time-series data. We have used the sliding window approach to generate the
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training and testing data sets. The input for the network is normalized in the range [0,1].
The normalized input is fed into the network to obtain an output. The difference between
the computed output (estimated) and expected output (actual) gives an error. The Rao
algorithm is used to update the weights to obtain the minimum error. The performance
of the network is tested for generalization performance after each iteration of training.
Here, Rao algorithms work on identifying the best and worst solution and interaction
between contestants in the search space, i.e., the population. The lack of algorithm-specific
parameters eliminates any human interventions. In Algorithm 1, the size of the population,
design variables, and stopping criteria are needed to be fixed at the beginning. The size of
the sliding window used to form training and test patterns is a matter of experimentation.

4. Cryptocurrency Data

The models are evaluated on experimenting with the cryptocurrency’s historical
closing prices collected from https://www.CryptoDataDownload.com (accessed on 26
March 2021). The currencies are Bitcoin, Litecoin, Ethereum, CMC 200, Tither, and Ripple.
The data are collected during the period from 1 January 2019 to 25 March 2021. A condensed
statistic of the six datasets is gathered in Table 1. The price series are plotted in Figure 3.
The raw data are normalized using the sigmoid data normalization method [44].

Table 1. Statistical summary of four cryptocurrencies.

Statistic Bitcoin Litecoin Ethereum Ripple CMC 200 Tether

Minimum 68.4300 1.1600 0.4348 0.0028 0.9742 0.9742

Mean 1.4826 × 103 20.4966 147.7843 0.0984 1.0029 1.0029

Median 482.8100 3.9100 12.0200 0.0079 1.0017 1.0017

Variance 8.7535 × 106 2.2240 × 103 6.9765 × 104 0.1028 2.5621 × 10−5 2.5621 × 10−5

Maximum 1.9497 × 104 358.3400 1.3964 × 103 3.3800 1.0536 1.0536

Standard deviation 2.9593 × 103 47.1594 264.1308 0.3206 0.0051 0.0051

Skewness 3.5394 4.1627 2.3844 5.8039 1.9417 1.9417

Kurtosis 15.9671 21.5925 8.5122 42.9469 19.3797 19.3797

Correlation coefficient 0.00130 0.00211 −0.0052 0.0027 0.0039 0.0035
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5. Experimental Results and Analysis

To evaluate the models, we used them to forecast the prices of four cryptocurrency
datasets separately. To access the capacity of the RA + ANN method, five other methods
such as ANN trained by genetic algorithm (GA + ANN), particle swarm optimization
trained ANN (PSO + ANN), MLP, SVM, ARIMA, and least squared estimator (LSE) are
developed in this study and a comparison is performed.

5.1. Model Input Selection and Normalization

A time series approach is used in this study. A rolling window method is used to
generate the train and test patterns from the dataset. The method is depicted in Figure 4.
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Figure 4. Rolling window method for input pattern generation.

Each sample in the dataset is considered as a data point on the time series. A window
of fixed size is rolled over the time series. On each movement, an old datapoint is dropped
and a new datapoint is included, as shown in Figure 4. The number of datapoints included
by the window at any instant of time is considered as one training sample for the model.
The width of the window is determined experimentally. For example, one train/test set is
formed by the rolling window of width three, as follows.

x(k) x(k + 1) x(k + 2)
x(k + 1) x(k + 2) x(k + 3)
x(k + 2) x(k + 3) x(k + 4)

...

...

...︸︷︷︸
Training data

x(k + 3)
x(k + 4)
x(k + 5)︸ ︷︷ ︸

Target

x(k + 3) x(k + 4) x(k + 5) ...︸ ︷︷ ︸
Test data

x(k + 6)︸ ︷︷ ︸
Target

Each input pattern is then normalized to scale the data into same range for each input
feature to diminish the bias [44,45]. The tanh normalization method as in Equation (14) is
used to standardize the input data. The mean and standard deviation of a training pattern
are represented as µ and σ respectively.

x̂ = 0.5 ∗
(

tanh
(

0.01 ∗ (x− µ)

σ

)
+ 1
)

(14)
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5.2. Performance Evaluation Metrics

The accuracy of all models is accessed through two mesures, i.e., Mean Absolute
Percentage of Errors (MAPE) and Average Relative Variance (ARV), as in (15) and (16).

MAPE =
1
N

N

∑
i=1

|xi − x̂i|
xi

× 100% (15)

ARV =
∑N

i=1(x̂i − xi)
2

∑N
i=1
(
x̂i − X

)2 (16)

5.3. Experimental Setting

The train and test patterns are generated as described in Section 5.1, and the same
patterns are fed to all seven models separately. To overcome the biases of the models, each
model is simulated twenty times, and the mean error value is recorded for comparisons.
An ANN with one hidden layer is used as the base network. The input layer size is
equal to the rolling window size, and the output layer has only one neuron, as there is
one target output. However, the numbers of neurons in the hidden layer are decided
experimentally. An inadequate number of hidden neurons may produce poor accuracy,
whereas the excess number of such neurons adds computational overhead. Therefore, the
size of the hidden layer impacts the model performance a lot and must be decided carefully.
During experimentation, different possible values for the model parameters were tested,
and the best values were recorded. The suitable parameter values obtained during the
simulation process are called simulated parameters. For the MLP model, the learning rate
(α) and momentum factor (µ) are set to 0.2 and 0.5, respectively. The number of iterations
was fixed to 400, and gradient descent-based backpropagation learning was adopted for
training. For SVM, we used the radial basis function as the kernel. For PSO + ANN, the
total number of the particle was set to 100, the number of iterations was 250, learning factors
were fixed to 3 each. Similarly, in the case of GA + ANN, the three critical parameters,
i.e., population size, crossover, and mutation probabilities, are considered as 80, 0.7, and
0.02, respectively. The stopping condition is the maximum number of generations, i.e., 200.
Binary encoding is used for individual encoding, and elitism is used as the selection method.
However, the RA + ANN used only 50 candidate solutions and 100 number iterations to
reach the global optima. All the experimentations are performed with a system of Intel core
i3 CPU, 2.27GHz and 8.0 GB memory, and a Matlab-2015 program writing environment.

5.4. Simulation Results and Discussion

The mean values from twenty simulations for each forecast are recorded and consid-
ered as the model performance. The MAPE and ARV values produced by seven models
from six FTS are encapsulated in Table 2. It may be seen that the RA + ANN has MAPE
values lower than others. For example, MAPE of RA + ANN is 0.0300 from Bitcoin, 0.0322
from Litecoin, 0.0397 from Ripple, and 0.0385 from Ethereum. It also achieved the lowest
ARV values for all six FTS datasets. The overall performance of RA + ANN is better than
others. Furthermore, to show the goodness of the proposed RA + ANN, the estimated
prices are plotted against the expected and depicted in (Figures 5–10), respectively. It
is apparent that the predicted prices are very close to the actual prices and follows the
tendency accurately. For the sake of clear visibility, we plotted the estimated prices against
actual prices for one financial year data (approximately 252 financial days).
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Table 2. MAPE and ARV from all models.

MODEL
BITCOIN RIPPLE EHTEREUM LITECOIN CMC200 TETHER

MAPE ARV MAPE ARV MAPE ARV MAPE ARV MAPE ARV MAPE ARV

RA + ANN 0.0300 0.0057 0.0397 0.0051 0.0385 0.0039 0.0322 0.0054 0.0275 0.0027 0.0065 0.0055

GA + ANN 0.0322 0.0075 0.0457 0.0143 0.0495 0.0057 0.0454 0.0058 0.0299 0.0053 0.0087 0.0173

PSO + ANN 0.0454 0.0061 0.0473 0.0053 0.0439 0.0063 0.0394 0.0079 0.0287 0.0164 0.0082 0.0094

SVM 0.0394 0.0065 0.0476 0.0068 0.0463 0.0059 0.0837 0.0060 0.0428 0.0342 0.0093 0.0107

MLP 0.0472 0.0077 0.0497 0.0174 0.0593 0.0467 0.1726 0.0246 0.0479 0.0277 0.0329 0.0637

ARIMA 0.0606 0.0083 0.0828 0.0163 0.0758 0.0193 0.0940 0.0095 0.1327 0.0336 0.0852 0.2953

LSE 0.0946 0.1005 0.0876 0.1373 0.2557 0.0736 0.2163 0.0266 0.5283 0.2734 0.1086 0.4066

We also conducted two well-known statistical significance tests, such as the Wilcoxon
signed test and the Diebold–Mariano test, to establish the difference between the RA +
ANN forecast and comparative methods statistically considering the MAPEs from all the
models. The test outcomes are summarized in Table 3. The h = 1 indicates the rejection
of the null hypothesis that the proposed and comparative forecasts are not statistically
different. In the case of the Diebold–Mariano test, if the statistic falls beyond the range of
−1.976 to +1.976, then the null hypothesis will be rejected and h = 1. These results are in
support of the rejection of the null hypothesis and prove that there is a significant difference
between RA + ANN and other methods.
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Table 3. Results from statistical significance test.

Proposed
Forecast

Comparative
Forecast

p and h Values from Wilcoxon Signed Test

NASDAQ BSE DJIA HSI NIKKEI

RA + ANN

GA + ANN 2.5034 × 10−5

(h = 1)
3.1432 × 10−4

(h = 1)
2.2441 × 10−3

(h = 1)
3.0134 × 10−5

(h = 1)
2.2763 × 10−4

(h = 1)

PSO + ANN 3.1362 × 10−3

(h = 1)
4.2634 × 10−5

(h = 1)
4.3004 × 10−3

(h = 1)
6.2515 × 10−3

(h = 1)
1.7253 × 10−2

(h = 1)

SVM 4.2418 × 10−4

(h = 1)
2.1505 × 10−3

(h = 1)
3.3410 × 10−2

(h = 1)
2.990152
(h = 0)

1.6728 × 10−1

(h = 1)

MLP 1.5728 × 10−3

(h = 1)
0.008524
(h = 0)

6.2803 × 10−2

(h = 1)
7.2095 × 10−2

(h = 1)
4.2021 × 10−3

(h = 1)

ARIMA 4.3007 × 10−4

(h = 1)
3.7726 × 10−2

(h = 1)
1.7362 × 10−5

(h = 1)
3.3282 × 10−3

(h = 1)
1.7062 × 10−4

(h = 1)

LSE 1.5338 × 10−3

(h = 1)
0.01821
(h = 0)

6.2033 × 10−2

(h = 1)
7.0025 × 10−2

(h = 1)
3.2521 × 10−3

(h = 1)

p and h values from Diebold–Mariano test

GA + ANN 2.09755
(h = 1)

2.34220
(h = 1)

2.0007
(h = 1)

1.9820
(h = 1)

2.2037
(h = 1)

PSO + ANN 2.22043
(h = 1)

2.36020
(h = 1)

1.9873
(h = 1)

1.9815
(h = 1)

−1.9900
(h = 1)

SVM 2.36105
(h = 1)

1.99247
(h = 1)

1.97695
(h = 1)

1.98577
(h = 1)

1.9792
(h = 1)

MLP 2.7329
(h = 1)

1.9800
(h = 1)

−3.05263
(h = 1)

−1.99265
(h = 1)

2.52655
(h = 1)

ARIMA 1.9909
(h = 1)

2.61227
(h = 1)

−3.40582
(h = 1)

1.96035
(h = 0)

2.45884
(h = 1)

LSE 2.0728 × 10−3

(h = 1)
2.88524
(h = 1)

3.2800 × 10−2

(h = 1)
5.1095 × 10−2

(h = 1)
4.32171 × 10−3

(h = 1)
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From the simulation studies, comparative analysis, and significance test results, the
following major points are drawn.

• The RA + ANN-based forecast was found quite capable in capturing the inherent
dynamism and uncertainties associated with cryptocurrency data.

• The hybridization of RA and ANN achieved improved forecasting accuracy compared
to others.

• The outcomes from the statistical test justified the significant difference between RA +
ANN and others.

6. Conclusions

A hybrid ANN through Rao algorithm-based optimization (RA + ANN) is developed
in this article using a single hidden layer ANN as the base neural architecture and RA
as the search technique for exploiting the optimal ANN parameters. The Rao algorithms
are recently proposed metaphor-less optimization techniques that are simple and do not
need an algorithm-specific parameter to be adjusted. This article explored the modality
of RA on training the ANN for forecasting cryptocurrency data such as Bitcoin, Litecoin,
Ethereum, CMC 200, Tether, and Ripple. The RA + ANN predictability is compared with
that of GA + ANN, PSO + ANN, MLP, SVM, ARIMA, and LSE in terms of MAPE and ARV.
The proposed RA + ANN model has a faster convergence rate and better generalization
ability compared to gradient descent learning. Furthermore, to ensure the effectiveness of
RA + ANN, the Wilcoxon signed test and Diebold–Mariano test are conducted. From the
comparative analysis of experimental results and outcomes of statistical significance tests,
it is concluded that the RA + ANN-based forecasting is good enough to follow the dynamic
trend of cryptocurrencies in comparison with the other forecasts under consideration. In the
future, more ANN structures and sophisticated learning approaches may be investigated.
Other factors such as the economic and technical determinants along with the closing
prices may be used for achieving better forecasting accuracy. The proposed RA + ANN
framework can also be applied for the efficient prediction of other existing FTS.
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