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Abstract: Rice is the most important cereal in Asia. However, it also results in the generation
of large quantities of rice-derived residues (i.e., rice straw and rice husk). Due to the residues
richness in lignocellulosic components, they potentially have considerable value in material and/or
energy production without illegal burning in open fields. This work focused on investigating the
thermochemical properties and inorganic/metal element contents of rice straw and rice husk. The
former included proximate analysis, calorific value, thermogravimetric analysis (TGA) and energy
dispersive X-ray spectroscopy (EDS). The latter covered the ten elements most relevant to their
slagging/fouling indices. The results showed that they are suitable for energy use as biomass fuels,
but rice husk was superior to rice straw because of the high silica content in the rice husk and the
significant contents of potassium, sulfur and phosphorus in the rice straw. Using several slagging and
fouling indices, the evaluation results were also consistent with their contents of inorganic elements
or oxides. To increase the fuel properties of rice-derived residues, they could be pretreated with
alkaline leaching, thus causing lower emissions of particulates and reduced slagging tendency when
co-firing them with coal in industrial boilers.

Keywords: rice straw; rice husk; thermochemical property; slagging evaluation

1. Introduction

It is well known that crop residue is a lignocellulosic biomass due to its richness
in natural constituents, such as cellulose, hemicellulose and lignin [1]. It is the most
important renewable feedstock (e.g., rice straw, rice husk), thus indicating considerably
cheap, clean and environment-friendly (carbon-neutral) features as compared to fossil fuels
such as coal [2]. As a result, there is increased interest in developing biomass-derived
fuels for direct energy use [3–7] or converting them into higher energy density biofuels via
thermochemical processes [8–11], including torrefaction [1,12,13], pyrolysis [1,14,15] and
gasification [1,16,17]. Although the contents of sulfur and ash in lignocellulosic biomass
are relatively lower than those of coal [1], the so-called slagging, fouling or agglomeration
often causes challenges during direct energy use (i.e., combustion) and/or co-firing with
coal in boilers and power plants [5–7].

Rice is the most abundant crop residue in Asia. It was estimated that the mass
ratios of rice straw and rice husk to rice production were approximately 100% and 20%,
respectively [10]. Due to its richness in lignocellulosic constituents and other nutrients, the
biomass is currently reused as a variety of by-products or application fields [4,7,8,10,18–21].
Their industrial/agricultural reuses include surface retention (as mulch), soil amendment,
poultry/livestock feed, composting, biofuel and so on. Undeniably, the open burning
of rice residues (especially in rice straw) in fields is a common practice in China and
India [22]. This traditional practice not only emits large amounts of greenhouse gases, such
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as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), but also generates other
air pollutants, such as particulates (e.g., soot), halides (e.g., hydrogen chloride) and air
toxics (e.g., dioxins/furans), thus causing deteriorating air quality [23]. Furthermore, the
fire incidents from open burning have been a concern for public security and occupational
safety [24]. In recent years, rice residues (especially in rice husk) for energy use (reused as
solid fuels or for electricity generation) and/or carbon material (e.g., biochar) production
have become more and more noted due to the fuel cost and climate change [25–29].

In Taiwan, the most abundant crop residues are rice straw and rice husk, accounting
for an annual average value of approximately two million metric tons [30]. To under-
stand their slagging tendencies for fuel use in boilers or gasifiers, this work aimed at
characterizing their thermochemical properties, including proximate analysis, calorific
value, thermogravimetric analysis (TGA), inorganic element content and scanning electron
microscopy—energy dispersive X-ray spectroscopy (SEM–EDS) analysis. In addition, sev-
eral commonly used indices were adopted to evaluate the slagging and fouling tendencies
based on the contents of inorganic elements [31–34].

2. Materials and Methods

In this work, rice residues (i.e., rice straw and rice husk) were obtained from a local
place rich in rice production (Puzi Township, Chiayi County, Taiwan), which is located in
Southern Taiwan. Prior to the thermochemical characterization, these biomass samples
were dried at approximately 100 ◦C for 24 h to achieve a stable weight on a dry basis within
0.5% of water loss. Figure 1 shows the different textures (a magnification of 500) on the
surface of rice straw and rice husk using scanning electron microscopy (SEM). It shows that
the morphological structure of the outer rice husk surface is well organized and corrugated
in some places. However, it can be observed from the SEM micrograph (×500) that many
small and round bodies are randomly distributed in the epidermis.
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The procedures, instruments and methods for determining the thermochemical prop-
erties of the rice straw and rice husk were identical to the previous studies [35,36]. In
this work, the thermochemical characterization covered proximate analysis, calorific value,
inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis for inorganic
elements (i.e., silicon, potassium, sodium, magnesium, calcium, titanium, iron, aluminum,
sulfur and phosphorus), TGA, and SEM–EDS. Herein, the determinations of inorganic
elements were obtained by using an ICP-OES instrument (Model: Agilent 725 ICP-OES;
Agilent Co., Santa Clara, CA, USA). The TGA instrument (Model: TGA-51; Shimadzu Co.,
Tokyo, Japan) was operated in the temperature range of 25 to 1000 ◦C at the heating rates
of 5, 10, 15 and 20 ◦C/min. The analyses with SEM (Model: S-3000N; Hitachi Co., Tokyo,
Japan) and EDS (Model: 7021-H; HORIBA Co., Osaka, Japan) were used to observe the
microstructural structures and elemental compositions on the surface of the samples.

3. Results
3.1. Thermochemical Property of Rice Residues

Concerning the thermochemical property of the rice residues, they are listed in
Tables 1–3, which are discussed in the following subsections.

Table 1. Proximate analysis and calorific values of rice straw (RS) and rice husk (RH).

Property RS RH

Proximate analysis a,c

Ash (wt%) 9.48 ± 0.4 12.11 ± 0.1
Volatile matter (wt%) 74.29 ± 0.4 71.35 ± 0.8
Fixed carbon b (wt%) 12.07 ± 0.2 8.13 ± 0.1

Calorific value (MJ/kg) a,c 16.94 ± 0.21 16.05 ± 0.46
a Mean ± standard deviation for three determinations. b By difference. c The values were determined with a dry
sample (approximately 0% water contained).

Table 2. Contents of relevant inorganic elements of rice straw (RS) and rice husk (RH).

Inorganic Element a RS RH Method Detection Limit
(ppm)

Silicon (Si) 0.265 wt% 4.987 wt% 0.70
Potassium (K) 0.486 wt% 0.582 wt% 0.90
Sodium (Na) ND b 73.56 ppm 0.10

Magnesium (Mg) 425.7 ppm 287.3 ppm 0.12
Calcium (Ca) 612.9 ppm 683.9 ppm 0.40
Titanium (Ti) ND 4.97 ppm 0.10

Iron (Fe) ND 96.42 ppm 0.10
Aluminum (Al) 36.63 ppm 66.60 ppm 0.20

Sulfur (S) 693.1 ppm 343.9 ppm 0.20
Phosphorus (P) 687.1 ppm 289.3 ppm 0.10

a On a dry basis. b Not detectable.

Table 3. Contents and percentages of mineral oxides in rice straw (RS) and rice husk (RH).

Mineral Material a RS RH

Potassium oxide (K2O) 0.585 wt% (35.54%) c 0.701 wt% (5.99%)
Silicon dioxide (SiO2) 0.567 wt% (34.45%) 10.668 wt% (91.17%)
Sulfur trioxide (SO3) 1731.5 ppm (10.52%) 859.1 ppm (0.73%)

Phosphorus pentoxide (P2O5) 1574.5 ppm (9.57%) 663.0 ppm (0.56%)
Calcium oxide (CaO) 857.6 ppm (5.21%) 956.9 ppm (0.82%)

Magnesium oxide (MgO) 706.0 ppm (4.29%) 476.5 ppm (0.41%)
Aluminum oxide (Al2O3) 69.2 ppm (0.42%) 125.8 ppm (0.11%)

Ferric oxide (Fe2O3) ND b (0.00%) 137.8 ppm (0.12%)
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Table 3. Cont.

Mineral Material a RS RH

Sodium oxide (Na2O) ND (0.00%) 99.2 ppm (0.08%)
Titanium dioxide (TiO2) ND (0.00%) 6.7 ppm (0.01%)

a On a dry basis. b Not detectable. c The values in parentheses denote the percentages of metal oxides in ash.

3.1.1. Proximate Analysis

The proximate analysis is often used to determine the constituent classes of a fuel sam-
ple. Obviously, the volatile matter contents of rice residues (i.e., 74.29 wt% and 71.35 wt%
for rice straw and rice husk, respectively, on a dry basis) were close to those of the re-
ports [37–41], indicating a significant release of the condensable and non-condensable
vapors from the lignocellulosic constituents of the biomass sample. Thus, its amount
depends on the temperature to which it is heated because the biomass samples may contain
appreciable amounts of volatile alkali materials with lower melting points. According to
the standard reference [42], it showed that the melting points of potassium oxide (K2O) and
phosphorus pentoxide (P2O5) are 350 ◦C (decomposition) and 340 ◦C, respectively. The ash
content represents the inorganic minerals left after the sample is completely burned under
the controlled combustion process. It was found that the ash content of rice straw is lower
than that of rice husk, thus resulting in the relatively higher contents of volatile matter and
fixed carbon in the former. In this work, the ash content of rice husk (i.e., 12.11 wt%) was
close to that (i.e., 14.93 wt%) reported in the previous study [43]. Concerning the slagging
or fouling in the industrial boilers or gasifiers, the contents of alkali metals (e.g., potassium)
in the ash may play a significant role in the energy use of rice residues, which will be further
addressed in the subsequent section.

3.1.2. Calorific Value

The calorific value (also called heating value) of biomass is a measure of the energy
released when it is completely combusted in an adequate oxygen atmosphere. Table 1 also
lists the calorific values of rice straw and rice husk, showing 16.94 MJ/kg and 16.05 MJ/kg,
respectively. It should be noted that the data in Table 1 refer to gross calorific value
(also called higher heating value) because they were determined with a so-called bomb
calorimeter. Compared to most crop residues and biomass fuels such as wood [1], they are
relatively low because rice residues have high ash contents. On the other hand, these rice
residues are mainly composed of lignocellulosic components with high oxygen content,
causing lower calorific values in comparison with most fossil fuels such as coal [33,44].

3.1.3. Inductively Coupled Plasma Analysis for Inorganic Elements

In this work, the contents of inorganic elements were obtained by using inductively
coupled plasma-optical emission spectrometry (ICP-OES) [35]. As listed in Table 2, the
primary inorganic elements in the ash are silicon (Si), potassium (K), magnesium (Mg),
calcium (Ca) and phosphorus (P). Less amounts of sodium (Na), titanium (Ti), iron (Fe)
and aluminum (Al) are also present in the rice residues. Table 3 further summarizes the
contents and percentages of inorganic elements as oxides in rice straw and rice husk using
the data in Table 2. With regards to the compositions (as oxides) in the ash derived from
the rice residues, the rice straw ash mainly contained SiO2 (34.45%), K2O (35.54%), SO3
(10.52%) and P2O5 (9.57%), but the rice husk ash consisted mostly of SiO2 (91.17%). In
the present study, the SiO2 content in the rice straw ash was significantly lower than that
of the reports [37–41], indicating a high variance in the chemical characterization of the
lignocellulosic biomass, even for the same crop species.

3.1.4. Elemental Analysis

In this study, the elemental contents on the surface of the rice residues were prelim-
inarily analyzed with energy dispersive X-ray spectroscopy (EDS) while observing the
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textural structure with scanning electron microscopy (SEM). The basic principle of EDS is
based on the generation of X-rays from a specimen through the electron beam associated
with the SEM analysis. The X-rays are generated according to the characteristic energy
and wavelength of the elements present in the sample. Therefore, the observation of peaks
in the spectrum can determine the elemental contents of the specimen. The dominant
elements (not shown here) were carbon (C) and oxygen (O) with small amounts of silicon
(Si) and potassium (K). The high oxygen and carbon contents were associated with the
lignocellulosic constituents. The chemical formula of cellulose and hemicellulose can be
represented by (C6H10O5)n and (C5H8O4)n, respectively [1]. Therefore, the theoretical
contents of carbon (C), oxygen (O) and hydrogen (H) in the lignocellulosic residues are
approximately 45 wt%, 49 wt% and 6 wt%, respectively. Due to the hydrogen content
not being obtained with EDS, it is better to determine the contents of organic elements
using an elemental analyzer (EA). In the EA instrument, a sample with a known weight is
fully combusted to decompose it into gases (i.e., H2O, CO2). These combustion products
are separated from each other and then analyzed to quantify the elemental contents by
comparison with the standards.

3.2. Thermogravimetric Analysis (TGA) of Rice Residues

The TGA curves of the rice residues at four heating rates (i.e., 5, 10, 15 and 20 ◦C/min)
up to a temperature of 900 ◦C under a nitrogen flow of 50 cm3/min are depicted in Figure 2.
The derivative of the resulting TGA (also abbreviated DTG) is indicative of the conversion
rate, thus showing several peaks corresponding to the different thermal decomposition
processes, which can be associated with the lignocellulosic constituents of the biomass.
Obviously, these TGA/DTG curves for the rice straw and rice husk showed similar patterns.
Below 200 ◦C, the initial drying and devolatilization of the biomass samples occurred. As
the temperature was raised, significant weight loss was observed in the temperature range
of 200–400 ◦C. There are two peaks, including a plateau (or shoulder) located at the lower
temperature region. This region represented the thermal decomposition of hemicellulose.
However, the second peak, located at the higher temperature region, often represented
that of cellulose. Above approximately 400 ◦C, most of the devolatilization should be
caused by the lignin decomposition. The order of thermal stability should be followed by
hemicellulose (low), cellulose and lignin (high) [45]. On the other hand, the higher the
heating rate from 5 to 20 ◦C/min, the more the curves were shifted to higher temperature
values. This is typical behavior for effects caused by heat transfer processes. This was
due to the non-conductive feature of the lignocellulosic biomass, causing the thermal
degradation delay as the heating rate increased. Depending on the biomass sample and
heating rate, the peaks of the rice straw (shown in Figure 2) showed major mass loss in the
temperature range of 336–379 ◦C (approximately) as compared to those of the rice husk in
the temperature range of 336–357 ◦C (approximately).

To specify the characteristics of the biomass sample from the TGA curve, three im-
portant temperatures can be identified from the DTG curve [46]. The ignition (onset
decomposition) temperature referred to the temperature at which the sample began to be
decomposed (or burnt). This temperature could be roughly determined by the intersection
of the two tangents. The first tangent was parallel to the abscissae axis of the TGA curve,
whereas the second tangent was determined at the point of the maximal weight loss rate.
The maximum peak temperature could be identified by using a DTG curve, presenting the
maximal weight loss rate of the biomass sample. The burnout temperature presented the
point at which the sample weight loss had finished by defining an approximate baseline
reached. Table 4 lists the data on the ignition temperature, the maximum peak temperature
and the burnout temperature, showing the shift toward higher temperatures with an in-
creasing heating rate. Similar observations have been reported in the previous works [35,36]
and other studies [47,48]. This shifted feature was attributed to the non-conductive charac-
teristics (i.e., low heat transfer coefficient) of the biomass sample, leading to the delay of
thermal degradation (not enough time to heat and further decompose the sample) at the
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higher heating rate. In this regard, these key points were shifted toward higher temperature
values as the heating rates increased from 5 to 20 ◦C/min.
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Table 4. Thermogravimetric analysis (TGA) characterization of rice straw (RS) and rice husk (RH).

Biomass/Heating Rate
(◦C/min) Ignition Temperature (◦C) Maximum Peak Temperature (◦C) Burnout Temperature

(◦C)

Rice straw (RS)
5 268 336 372
10 282 358 388
15 297 377 425
20 304 379 436

Rice husk (RH)
5 268 336 357
10 290 352 393
15 298 355 395
20 303 357 399
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4. Discussion

As mentioned above, rice straw and rice husk presented a relatively good thermo-
chemical characteristic, suggesting that they are suitable for energy use as biomass fuels.
However, the target rice residues contained main inorganic elements (including silicon,
potassium, magnesium, calcium, sulfur and phosphorus) and higher ash contents in com-
parison with other crop residues. These components could lead to serious slagging, fouling
and corrosion in industrial utilities such as a boiler [1,49,50]. According to the classi-
fication by Vassilev et al. [38], these inorganic compositions can be classified into the
following groups:

- Acidic ash elements with high melting points (e.g., Si, Al, Fe, Na, Ti).

For example, the melting points of silicon (Si) and silicon dioxide (SiO2) are approxi-
mately 1410 ◦C and 1710 ◦C, respectively.

- Base ash elements with less volatiles at high temperature (e.g., Ca, Mg).

In the case of calcium and calcium oxide, their melting points are as high as 842 ◦C
and 2572 ◦C, respectively.

- Base ash elements with more volatiles at high temperature (e.g., K, P, S).

For instance, the melting points of potassium (K) and potassium oxide (K2O) are
approximately 64 ◦C and 380 ◦C, respectively.

As shown in Table 3, it was found that the percentages of potassium (K), sulfur (S)
and phosphorus (P) or their oxides were significant in rice straw ash in comparison with
rice husk ash. Although the sulfur content was significantly lower than that of coal, it
could result in the installation of a flue gas desulfurization (FGD) system for the removals
of sulfur oxides (SOx) when reusing rice straw as a solid fuel. In addition, this biomass
residue could pose high slagging and corrosion tendencies due to these elements relevant
to more volatiles at high temperature. In contrast, an extremely high silica (SiO2) content
is a characteristic of rice husk ash with a lower amount of potassium oxide (K2O), thus
indicating a relatively lower slagging tendency. To further demonstrate the potential for
slagging and fouling tendencies in a coal (or biomass)-fired system, several slagging and
fouling indices have been developed as listed in Table 5 [31–34]. Based on the data in
Table 3, Table 5 also shows the evaluation results of the slagging and fouling tendencies
for rice straw and rice husk. Obviously, the latter was superior to the former based on the
high silica content in the rice husk due to its high melting point and lower slagging indices
(RB/A = 0.08 and Fu = 0.06). In this work, the rice straw contained high oxide amounts of
potassium (K) and calcium (Ca) as listed in Table 3, suggesting that this biomass should
pose a moderate–severe slagging tendency in the heat exchanger surfaces of boilers during
combustion based on the higher slagging indices (RB/A = 1.29 and Fu = 0.76). Although
rice straw and rice husk are high calorific biomass fuels, the former may pose a potential
slagging risk in industrial boilers or biomass/coal co-firing power plants based on the
results by using these slagging indices. In addition, it could result in the installation of a flue
gas desulfurization (FGD) system for controlling sulfur oxides (SOx) and a high-efficiency
filtration (e.g., baghouse filter or electrostatic precipitator) system for particulate removal
when combusting rice straw and/or rice husk.

Table 5. Slagging tendencies of rice straw (RS) and rice husk (RH) evaluated in the present study.

Index Expression (wt%/wt% or wt%) a Slagging Degree
Slagging Tendency

Rice Straw Rice Husk

Base/acid ratio
(RB/A)

(Fe2O3 + CaO + MgO + K2O + Na2O)/
(SiO2 + Al2O3 + TiO2)

<0.206 Slight
1.29 (Severe) 0.08 (Slight)0.206–0.40 Moderate

>0.40 Severe
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Table 5. Cont.

Index Expression (wt%/wt% or wt%) a Slagging Degree
Slagging Tendency

Rice Straw Rice Husk

Fouling index (Fu) RB/A × (K2O + Na2O)
<0.6 Slight

0.76 (Moderate) 0.06 (Slight)0.6–40 Moderate
>40 Severe

Slagging index (RS) RB/A × S b

<0.6 Slight

0.09 (Slight) 0.003 (Slight)0.6–2.0 Moderate
2.0–2.6 Severe

>2.6 Highly severe

Slag viscosity
index (G)

SiO2/(SiO2 + Fe2O3 + CaO + MgO) × 100
72–80 Slight

78 (Slight) 99 (Slight)65–72 Moderate
50–65 Severe

a Sources [31–34]. b Percentage of sulfur in dry biomass fuel.

5. Conclusions

Rice residues (i.e., rice straw and rice husk) may be the most important crop residues
in many Asian countries. Therefore, there is increased interest in reusing them as biomass-
derived fuels for direct energy use due to their carbon-neutral feature. In this work, it was
found that the contents of volatile matter in the rice residues varied within a narrow range
of 70 to 75 wt% (dry basis) based on the results of proximate analysis and thermogravimetric
analysis (TGA). Though they had high ash contents ranging from 9.5 wt% to 12.1 wt%,
they are suitable for energy use as biomass fuels based on the other thermochemical
characteristics of rice straw and rice husk, including higher calorific values (over 16 MJ/kg)
and lower inorganic element contents determined with inductively coupled plasma (ICP)
and dispersive X-ray spectroscopy (EDS). As compared to the significant contents of
potassium (K), sulfur (S) and phosphorus (P) in the rice straw, rice husk was superior to rice
straw because of the high silica (SiO2) or silicon (Si) content in the rice husk due to its high
melting point and lower slagging indices (base/acid ratio = 0.08 and fouling index = 0.06).
In this regard, it could result in the installation of a flue gas desulfurization (FGD) system
for controlling sulfur oxides (SOx) and a high-efficiency filtration (e.g., baghouse filter
or electrostatic precipitator) system for particulate removal when combusting rice straw
and/or rice husk. On the other hand, the evaluation results by using several slagging
and fouling indices were also consistent with their contents of inorganic elements or their
oxides in the rice straw ash and rice husk ash.
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