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Abstract: Understanding exit choice behaviour is essential for optimising safety management strate-
gies in building evacuations. Previous research focused on contextual attributes, such as spatial
information, influencing exit choice, often using utility models based on monotonic functions of
attributes. However, during emergencies, evacuees typically make rapid, less calculated decisions.
The choice of context can significantly impact the evaluation of attributes, leading to preference rever-
sals within the same choice set but under varying context conditions. This cognitive psychological
phenomenon, known as context effects, encompasses the compromise effect, the similarity effect,
and the attraction effect. While researchers have long recognised the pivotal role of context effects in
human decision making, their incorporation into computer-aided evacuation management remains
limited. To address this gap, we introduce context effects (CE) in a social force (SF) model, CE-SF.
Evaluating CE-SF’s performance against the UF-SF model, which considers only the utility function
(UF), we find that CE-SF better replicates exit choice behaviour across urgency levels, highlighting its
potential to enhance evacuation strategies. Notably, our study identifies three distinct context effects
during evacuations, emphasising their importance in advancing safety measures.

Keywords: building evacuations; exit choice behaviour; social force model; context effects

1. Introduction

Understanding how crowds can safely and efficiently evacuate in emergencies is
crucial for public safety. The urban population is growing faster than ever before, and
mass gatherings are becoming more regular [1], thus making the probability of overcrowd-
ing, crowd surges, crowd collapses, and stampedes much higher [2]. The South Korean
Halloween night tragedy on 29 October 2022, the worst stampede disaster in the recent
year, which caused 156 deaths and 170 injuries [2], highlights the significance of crowd
management and evacuation optimisation strategies.

Optimisation via behavioural modification in route/exit choice is one of the important
approaches to improve evacuation efficiency [3]. Various numerical and experimental
studies have investigated how to optimise evacuation by modifying the route/exit choice
strategies. For instance, Wang and Cao [4] used a revised social force model to investigate
the efficacy of diverse evacuation strategies, including walking along walls and following
the average moving direction or positional cues, across differing visibility levels, densities,
and exit widths. Observations revealed the varying effectiveness of these strategies across
different conditions; for instance, following the average movement direction or position
proved more efficient under high densities, while wall walking exhibited greater efficacy
under low densities. Similarly, Zhou et al. [5] utilised the social force model to compare
five evacuation strategies incorporating distance, density, and capacity considerations.
Optimal performance across these strategies diverged under different conditions, as evalu-
ated from the perspectives of evacuation time, the channel utilisation rate, and evacuation
efficiency. For instance, strategies integrating density and capacity factors excelled in min-
imising evacuation time, whereas distance-based strategies exhibited a superior evacuation
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efficiency. Additionally, Ma et al. [6] proposed a dynamic exit choice model to assess
the evacuation efficiency of varied multiple exit layouts, establishing alterations in exit
locations and the implementation of two parallel exits as the most efficient layout for opti-
mising evacuation time. Furthermore, Feng et al. [7] conducted virtual reality experiments
to evaluate the impact of additional evacuation information—namely exit signs, directional
signage, and cues provided by fellow evacuees—on exit choice performance, noting signifi-
cant influences and observing asymmetrical exit choices, particularly in interactions with
other evacuees. Moreover, Zhang et al. [8] highlighted the substantial influence of crowd
flow on human wayfinding decisions and performance, emphasising the importance of
comprehending how individuals navigate route and exit choices in optimising evacuation
strategies. Real-world observations by Helbing and Molnár [9] underscored the frequent
oversight or inefficient utilisation of exits during emergency situations, further emphasising
the criticality of understanding decision-making processes in route and exit selection to
optimise evacuation strategies.

In the context of exit choice, decision makers engage in a multifaceted evaluation of
various choice attributes, encompassing factors such as the distance to exits, fire conditions,
and the presence of emergency illumination [10]. Consequently, their decisions hinge upon
a convergence of factors, incorporating external considerations like the architectural config-
uration of the structure [11] and the information available to them during evacuation [7,12].
Additionally, internal factors, such as individual risk attitude [13] and demographic charac-
teristics [14,15], play a pivotal role in shaping exit choices. Moreover, the dynamics of social
interaction, as evidenced by leader–follower behaviour [16,17], introduce an additional
stratum of complexity to this decision-making process.

Despite potential evacuee familiarity with a building’s layout, presuming exhaustive
knowledge of factors influencing exit choice is unrealistic [18]. In reality, individuals often
grapple with integrating information across multiple attributes to make strategic decisions
accurately. This challenge in attribute weighting can lead to conflicting preferences among
decision makers. Additionally, the seminal contributions of Daniel Kahneman, a renowned
psychologist awarded the Nobel Prize in 2002 for his insights into the psychology of
judgment and decision making, have shed light on the prevalence of heuristics and biases
in human decision processes [19,20]. His research underscores the non-uniform rationality
of human decisions. Furthermore, Klüpfel et al. [21] have highlighted the inherent difficulty
evacuees face in making meticulously calculated strategic decisions during emergencies.
Moreover, Gao et al. [13] have demonstrated that exit choice decision making is subject
to rank-dependent and reference-dependent preferences, further elucidating the intricate
nature of this process in evacuation contexts.

The selection of context holds significant sway over attribute evaluation, thereby
profoundly influencing decision makers’ preferences [22]. Notably, the occurrence of pref-
erence reversals can arise within the same choice set under varying contextual conditions,
including distinct framing or representations of identical choice sets [23]. Empirical investi-
gations across a range of decision tasks consistently revealed the profound impact of context
effects on the decision-making processes [24]. This phenomenon manifests across diverse
domains, including, but not limited to: (a) decision making within game scenarios with
penalties for incorrect responses [25], (b) assessments of suitable candidates for scholarship
awards [26], (c) product-selection processes and subsequent in-store purchasing decisions
by consumers [27], and (d) resolutions of perceptual dilemmas [28]. Moreover, our prior
investigation [29] furnishes compelling evidence that context effects play a pivotal role in
exit choice behaviour during evacuations.

Numerous scholars specialising in evacuation modelling have conducted extensive
inquiries into the impact of contextual variables, such as exit proximity and prevailing fire
conditions, on exit choice [30,31]. Nonetheless, it is worth noting that, to the best of our
knowledge, relatively few modelling simulations have accounted for the psychological
responses of evacuees to visual cues and available information during building evacuations.
This study seeks to address this gap by integrating context effects into the development
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of a social force model. By incorporating psychological reactions into the visual context,
our model aims to provide a more comprehensive representation of the complex decision-
making dynamics inherent to evacuation scenarios.

The subsequent sections of this paper are structured as follows. Section 2 provides an
overview of context effects, a brief explanation of utility function, and a general introduction
to the social force model. In Section 3, a comprehensive account of the experiment and
simulation methodologies is delineated. Section 4 is dedicated to presenting simulation
results, followed by a comparative analysis with empirical data. Section 5 engages in a
thorough discussion of the findings. Lastly, Section 6 offers a summary of the discoveries
and provides concluding remarks, encapsulating the core insights derived from this study.

2. Related Works
2.1. Context Effects

Human decision making frequently diverges from strategic and rational principles,
primarily due to the human brain’s struggle to provide accurate and precise measurements
for available options. As Kahneman [19] observed: people are lazy controllers who avoid
effortful thinking when possible. This phenomenon aligns with the principle of least
effort, whereby individuals inherently seek paths of minimal cognitive exertion. Numerous
studies [19,32–35] have observed that people make a decision based on cognition, heuristics,
and biases. The phenomenon of context effects constitutes a notable aspect of cognitive
psychology, elucidating systematic alterations in decision-making behaviour stemming
from individuals’ perception of choice sets [35]. The context effects include the compromise
effect, similarity effect, and attraction effect [24,35].

The compromise effect [36] posits that individuals tend to perceive a particular option
more favourably when they view it as a compromise among available choices, rather than
considering it as an extreme or outlier selection [37]. For example, Figure 1a shows the
distances and congestion of two exits in front of an evacuee. Exit A is located in close
proximity to the evacuee but is heavily congested, while Exit C is farther away but less
crowded. In general, the probabilities of the evacuee choosing either Exit A or Exit C as
their target are similar. Then, we introduce a third option, Exit B, which differs significantly
from both Exit A and Exit C. In accordance with the compromise effect, the presence of
Exit B results in a reduction in the probability of the evacuee choosing either Exit A or Exit
C as their preferred exit, while the likelihood of choosing Exit B increases. This shift in
behaviour reflects a preference for Exit B as the compromise option, akin to a customer
rating a restaurant’s service from a range of five options: very poor, poor, fair, good, and
very good. In such cases, most customers tend to avoid extreme ratings (i.e., very poor
and very good) in favour of selecting a compromise option, a behaviour elucidated in
previous literature [36].
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Figure 1. Illustration of (a) compromise effect; (b) similarity effect; and (c) attraction effect in the
context of exit choice during evacuations. The arrow points to the exit more likely to be selected
under three distinct context effects, with varying Exit B conditions, while the choice set {Exit A, Exit
C} remains constant.
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The similarity effect [38] denotes a phenomenon where decision makers tend to change
their choices away from options that closely resemble existing alternatives and lean toward
options that exhibit dissimilarity, particularly when the similar option is neither clearly
superior nor inferior [39]. This effect can manifest in exit choice scenarios, as shown in
Figure 1b. In the absence of Exit B, the probabilities of evacuees choosing Exit A and Exit C
as their preferred exits are comparable. However, with the introduction of Exit B, which
closely resembles Exit A, the probability of evacuees choosing Exit A and Exit B diminish,
while the probability of choosing Exit C, which significantly differs from both Exit A and
Exit B, increases. This change in choice behaviour illustrates the presence of the similarity
effect, wherein decision makers are inclined to opt for options that are dissimilar to those
already under consideration. A parallel example in a shopping context reinforces this
concept: consider encountering three apples in a fruit shop, two of which closely resemble
each other in terms of size, smell, and colour, and both are smaller but cheaper than the
third apple. Due to the similarity effect, customers are more likely to choose the third apple
due to its uniqueness and dissimilarity to the other two, even though it is comparatively
larger and more expensive.

The attraction effect [40] describes a phenomenon where the likelihood of choosing a
superior option is heightened when an option that is similar but inferior is introduced into
the choice set [24,37]. This effect is illustrated in Figure 1c within the context of exit choice
during an evacuation. Exit A, while in close proximity to an evacuee, is congested, whereas
Exit C, though farther away, offers less congestion. When Exit A and Exit C are the sole
exit options, the probabilities of choosing either exit are comparable. However, with the
introduction of Exit B, which is marginally less favourable than Exit A, evacuees tend to
be drawn toward similar exit alternatives. As a result, a majority of evacuees opt for the
superior exit, Exit A. This effect can also be demonstrated by a shopping scenario. Consider
three toaster options: a USD 3 toaster (toaster A) with two slots wide enough for standard
white bread, a USD 9 toaster (toaster C) with six slots of the same size, and a USD 3 toaster
(toaster B) with two slots that are too narrow for standard white bread. In this scenario,
customers tend to evaluate the two similar toasters (A and B) and often choose toaster A
due to its superior attributes. Consequently, toaster C becomes less attractive to customers
due to the presence of the attraction effect.

Decades of research have observed these effects and explored how context influences
preferences in decision making involving multiple attributes and alternatives, spanning
from traveller choice dynamics [41] to consumer decision-making processes [42], from the
intricacies of risky decision making [43] to the complexities of market behaviour [44], and
from the discernment of preferences by human decision makers [45] to the remarkable
decision-making abilities exhibited by non-human entities such as honeybees [46] and even
slime mould [47]. These findings highlight the necessity for any serious theoretical model
to capture the context effects in the decision-making process [48,49].

2.2. Utility Function

Modelling exit choice behaviour is generally based on the framework of utility func-
tion [50–53], which depends on the linear weighting attributes of available exits [15,30].
The exit with the maximum utility is chosen as the target exit. To account for the evac-
uees’ behavioural uncertainty, the utility Ut

ik of option k for evacuee i at time t is ex-
pressed as [14,15,31]:

Ut
ik = Vt

ik + εt
ik (1)

where Vt
ik denotes a deterministic component given by Equation (2) and εt

ik is a random
residual parameter:

Vt
ik =

M

∑
m=0

βmkXt
imk (2)
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Here, there are M factors influencing exit choice. Xt
imk is the expected value of the mth

factor affecting the choice for option k perceived by evacuee i at time t. βmk is the weight
parameter representing the evacuees’ preferences related to the factor m.

2.3. Social Force Model

Social Force (SF) model is one of the most widely used evacuation simulation models
with the significant merits of simulating continuous movement [9,54] and describing the
realistic self-organisation phenomena of crowd behaviour, e.g., arching and clogging [9],
lane formation [55], “faster is slower” [56], and stop-and-go waves [57]. The SF model
can be used to describe the diversity of pedestrians, e.g., disabilities [58] and wicked
pedestrians [59]. The SF model is based on Newton’s Second Law, which describes the
force generated by evacuees and their surroundings observed in crowd evacuations [54,57].
The force expression is given by Equation (3), which can be divided into three parts: the
self-driving force of evacuee i, f 0

i (Unit: N); interaction force between evacuee i and j, fij
(Unit: N); and interaction force between evacuee i and walls W, fiW (Unit: N):

mi
dvi(t)

dt
= f 0

i + ∑
j( ̸=i)

fij + ∑
W

fiW (3)

where evacuee i of mass mi (Unit: kg) changes his or her position with the velocity
vi(t) =

dri
dt

(Unit: m/s). The expression of self-driving force is as follows:

f 0
i = mi

v0
i (t)e

0
i (t)− vi(t)

τi
(4)

where evacuee i likes to move with a desired velocity v0
i (t) (Unit: m/s) in the expected

direction e0
i (t) at time t, and τi is the acceleration time from the current velocity to the

desired velocity.
In rooms with multiple exits, evacuees need to make a decision on their direction

of movement, i.e., e0
i (t). Several studies have explored exit choice strategies within the

SF model framework. Xie et al. [60], Hou et al. [61], and Song et al. [62] delineated
exit choice strategies for evacuees, categorising them based on their roles. Xie et al. [60]
and Hou et al. [61] distinguished between leaders and followers, while Song et al. [62]
classified them as authority figures and normal evacuees. Leaders and authority figures
were typically directed towards either the nearest exit or the exit with lower pedestrian
density, while followers or normal evacuees tended to follow the guidance of their leaders
or authority figures. Zheng et al. [63] proposed an improved SF model to determine the exit
direction by probability with consideration of spatial distance and occupant density. They
defined transition rules to address the issue of unrealistic evacuee trajectories in previous
methods. Fu et al. [64] proposed a static and dynamic exit choice model to calculate the
probability of exits being selected, and evacuees either choose the exit with the highest
probability or keep the original direction. In this study, the proposed CE-SF model is used
to determine the desired moving direction, i.e., e0

i (t). This approach upgrades the SF model
from pre-defining an exit for each occupant to evacuees autonomously choosing an exit
based on their visual context.

3. Methodology
3.1. Experimental Data

We use the experimental data collected from a field observation reported by Haghani
et al. [16] for model calibration and validation. The controlled experiment was conducted in
a rectangular room equipped with two entrances (each 1 m wide) and three exits (each 0.5 m
wide), as depicted in Figure 2. Participants entered the room through Entrance I and II and
made decisions on exiting through Exit A, B, or C. Two types of scenarios were implemented:
low- and high-urgency scenarios. In the low-urgency scenarios, 33 participants waited at
Entrance I and 27 participants waited at Entrance II, instructed to leave the room without
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competition. Conversely, in the high-urgency scenario, 27 participants waited at Entrance I
and 25 participants waited at Entrance II, tasked with escaping from the room as fast as
possible. The experiment was recorded using a camera to capture participant’s trajectories
and evacuation times. Additional details of the experimental setup can be found in the
reference [16]. We used PeTrack [65,66] software (version v0.9) to extract participants’
trajectories, enabling us to analyse their exit choice. Trajectories were computed at a 25
frames per second rate, i.e., 0.04 s/frame. At each frame, the coordinates of the participants’
position were recorded and then used to calculate the distance to exits by comparing their
coordinates with those of each available exit.

Exit B

Entrance Ⅱ Entrance Ⅰ

Exit A

8
.2

 m
8
.2

 m

2.4 m2.4 m
0.5 m0.5 m

2.4 m2.4 m
0.5 m0.5 m

5.3 m5.3 m

3
.6

 m
3
.6

 m

1
 m

1
 m

0.5 m0.5 m

11.1 m11.1 m Exit C

Evacuees leaving from entrances to exits

The evacuee i

The evacuees choosing Exit A in the exit area

The evacuees choosing Exit B in the exit area

The evacuees choosing Exit C in the exit area

Figure 2. Schematic of the experimental and modelling setup. To estimate the number of people in
proximity to each exit, we use the exit area [63,67], which is defined as a semi-circular region centred
on the exit and having a radius equal to the distance between the evacuee and the exit. For Exit A, B,
and C, the exit areas are indicated by red, blue, and yellow semi-circular regions, respectively.

The distance dt
ik (Unit: m) from evacuee i to exit k at time t is represented by the

dashed straight line in Figure 2. The decision on exit choice at each time step is determined
by the change in distance from t − 1 to t. The choice is made based on the exit with the
shorter distance and the maximum absolute distance. A semi-circular area centred on the
exit position, with a radius from the evacuee, is defined as the exit area [63,67], illustrated
by the red, blue, and yellow area in Figure 2. Evacuee i competes with those in the exit area
who choose that exit, so the number nt

ik of evacuees choosing exit k within the exit area is
considered as a factor in making the exit choice, calculated at each time step.

3.2. Model Description

In this section, we introduce the ‘UF-SF model’, integrating the previously discussed
utility function (UF) with the social force (SF) model, to consider the impact of specific
attributes on exit choice in the experiment. Additionally, building upon this original model,
we propose the context-effects-implemented social force (CE-SF) model in this study to
simulate real exit choice behaviour. Both the UF-SF and CE-SF models are employed to
determine the desired moving direction, with subsequent movement being driven by the
SF model.

3.2.1. UF-SF Model

Li et al. [68] determined three factors governing exit choice through a VR experiment
and a field study, namely: (i) distance to exits, (ii) density in front of exits, and (iii) moving
speed at exits. Lovreglio et al. [69] also determined three factors contributing to exit choice:
(i) the number of people using exits, (ii) the distance of an evacuee to exits, and (iii) the
presence of smoke. Cai et al. [50] developed an exit choice model in which they defined
the total utility of each exit, which is the linear combination of the exit’s defined static
and dynamic utilities, and found that the exit with the largest total utility is chosen. The
static utility is determined by the width of the exits. The dynamic utility is defined as the
linear combination of two terms: (i) the distance of an evacuee to exits and (ii) the evacuees’
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density at exits. The path distance and the level of congestion at exits markedly influence
exit choice [64]. Based on the above factors and Equations (1) and (2), utility U is given by

Ut
ik = βd

dt
ik

dt
i, max

+ βn
nt

ik
nt

i, max
(5)

where dt
ik (Unit: m) is the Euclidean distance of evacuee i from exit k at time t, see the

straight dashed line in Figure 2; nt
ik (Unit: ped) refers to the number of evacuees in proximity

to the exit k, see people at the semi-circular region in Figure 2; and di, max (Unit: m) is
the distance of evacuee i from the farthest exit, i.e., di,max = maxk=A,B,C(dt

ik). Similarly,
ni,max = maxk=A,B,C(nt

ik) (Unit: ped), and βd and βn are coefficient parameters of the
weighting distance and exit efficiency, respectively. As the distance from the exit increases
and the number of people selecting that exit rises, the utility of that exit should decrease,
and thus both βd and βn are negative.

3.2.2. CE-SF Model

When a room has only one exit, no exit choice needs to be made. If there are two exits,
the exit with the higher U is chosen. When there are three or more exits, the exits with the
three highest U are chosen, and the final exit choice is made after accounting for context
effects. According to the references [49,70,71], the coexistence of the three context effects is
very rare. Therefore, a demarcation system was proposed in this study to identify the most
dominant context effects for a given exit-choice scenario.

The compromise effect requires the three exits to be dissimilar to each other; the
similarity effect requires two exits to be similar and the third exit to be dissimilar to the
other two; and the attraction effect requires two exits to be dissimilar to each other, while
the third exit should exhibit similarity but be inferior to one of the others. Therefore, the
measurement of option similarity and inferiority is our primary cue for identifying the
three context effects.

Two attributes, i.e., distance to exit k, dk (Unit: m) and the number of evacuees near
exit k, nk (Unit: ped), are considered separately in our study as the different units and
ranges. Two threshold values dsim (Unit: m) and nsim (Unit: ped) are defined to demarcate
similarity and dissimilarity. That is, Exit k1 and k2 are similar if Equation (6) is satisfied;
otherwise, they are dissimilar. Similarly, two threshold values dinf (Unit: m) and ninf (Unit:
ped) are defined to demarcate inferiority and non-inferiority. Exit k2 is inferior to Exit k1 if

Equation (7) is satisfied; otherwise, it is non-inferior. Here,

{
0 < dinf < dsim

0 < ninf < nsim
.{

|dk2 − dk1 | ≤ dsim

|nk2 − nk1 | ≤ nsim
(6)

{
dk2 − dk1 ≥ dinf

nk2 − nk1 ≥ ninf
(7)

Figure 3 illustrates how context effects influence exit choice. The size marking on the
rectangular area of the left of Figure 3 is determined by Equations (6) and (7). An option
within the light-coloured area is similar to the centre reference point, an option within the
darker area at the bottom left corner is superior to the reference point, and an option within
the darkest area at the top right is inferior to the reference point. The compromise effect
occurs when the three exits are dissimilar from each other, and the compromise option, Exit
B in Figure 3a, where the size of each attribute is the middle, i.e., Exit B in Equation (8), is
chosen. The similarity effect occurs when the two exits are similar to each other, and the
dissimilar option, see Exit C in Figure 3b, where the size of one attribute is small, and the
other is large, i.e., Exit C in Equation (9), is chosen. The attraction effect occurs when the
two exits are similar to each other, and one of the similar options, which is superior to the
other, such as Exit A being superior to Exit B in Figure 3c, is chosen:
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Figure 3. Demonstration of the (a) compromise effect for choosing the compromise option, i.e., Exit B;
(b) similarity effect for choosing the dissimilar option, i.e., Exit C; and (c) attractive effect for choosing
the superior option, i.e., Exit A. The target exit is highlighted in yellow. For each rectangular area, the
light-coloured area around the exit point is the similar range; the darker area at the bottom left corner
is the superior range; the darkest-coloured area at the top right corner is the inferior range.{

dA < dB < dC

nA > nB > nC
(8)

{
dA < dB < dC

nA > nB > nC
or

{
dA > dB > dC

nA < nB < nC
(9)

3.2.3. Model Framework

In the CE-SF model, context effects are integrated as a new module to improve the
traditional UF-SF model. The simulation process of these two models is illustrated in
Figure 4 through a flow chart. First, all attributes are computed, and the U values for all
available exits are determined using Equation (5). Next, the three exits with the three highest
U are selected. In the UF-SF model, the target direction is oriented towards the exit with the
maximum U, while in the CE-SF model, the evacuees’ visual context on exits determines
the target direction. The context module is highlighted in the yellow rectangle in Figure 4.
After identifying the three exits with the highest U, Equation (6) is employed to assess the
similarity between the two exits. If all three exits are similar to each other, evacuees follow
the moving direction of their last step. Conversely, if all three exits are dissimilar to each
other and there exists a compromised exit (determined by Equation (8)), the compromise
effect is applied, and the compromised exit becomes the desired target. If the dissimilar exit
is not significantly superior to the two similar exits (determined by Equation (9)), and if an
exit is superior to its similar exit (determined by Equation (6)), then the attraction effect is
applied, and the superior exit is chosen. Otherwise, the similarity effect is applied, and the
dissimilar exit is chosen. Lastly, in both UF-SF and CE-SF models, the position of evacuees
is updated by the SF model after making a decision on exit choice. The simulation continues
until all evacuees leave the room. The SF model parameters in this study adhere to those
originally proposed by Helbing et al. [54]: k = 1.2 × 105 kg/s2, κ = 2.4 × 105 kg/(m · s),
τi = 0.5 s, Ai = 2 × 103 N, Bi = 0.08 N. All evacuees are assumed to have a body radius of
0.2 m and a weight of 80 kg. The desired moving velocity is set as 1.2 m/s for low urgency
and 2.5 m/s for high urgency [16,54].
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Figure 4. Flow chart of the simulation process.

4. Results
4.1. Sensitivity Analysis of the UF-SF Model

Two sensitivity parameters, namely βd and βn , are used to control evacuees’ preference
for exit choice. βd and βn weight the influence of path distance and exit congestion,
respectively. In this study, βd and βn vary from −0.3 to −10, and the combination for
simulation scenarios is shown in Table 1. In scenarios U1 and U2, the effect of exit congestion
is greater, while in scenarios U4 and U5, the effect of path distance is greater; in the middle
scenario U3, the effect is the same for both. To compare the simulation results with the
corresponding experiment results, the difference in the total evacuation time between the
simulated TSIM (Unit: s) and the corresponding experimental TEXP (Unit: s) is termed the
error(T), given by Equation (10):

error(T) =
|TSIM − TEXP|

TEXP
(10)

Table 1 shows that all the error(T) of UF-SF simulations are under 15%. However, the
simulated moving trajectories significantly disagreed with the experiment, see Figure 5.
Figure 5a,g show that at least three individuals entered the room through Entrance I and
chose Exit C to leave in the experiment, as indicated by the arrow of the moving direction
depicted in Figure 5a,g. In contrast, there was no one from Entrance I leaving from Exit C
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in the UF-SF simulations. Moreover, the number of evacuees leaving from exits over time is
shown in Figure 6. The flow of people leaving from Exit A and C in the UF-SF simulation
is faster than that in the experiment (see the slopes of lines in Figure 6a,c,d,f), while it is
reversed for the flow of people leaving from Exit B (see Figure 6b,e).

Table 1. Simulation scenarios and parameters used in the UF-SF model and the simulation error of
total evacuation time error(T). The bolded line is the UF-SF parameters used for further study in the
next section.

No. UF-SF Model error(T)
βd βn Low Urgency High Urgency

U1 −0.3 −10 1.6% 3.8%
U2 −0.3 −1 9.4% 3.8%
U3 −1 −1 11.1% 10.0%
U4 −10 −0.3 2.2% 2.2%
U5 −1 −0.3 9.6% 13.2%
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(l) E5
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(d) U3 (e) U4 (f) U5

(h) U1 (i) U2

(j) U3 (k) U4 (l) U5
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(g) EXP

High

(g) EXP

Exit A Exit B
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EntranceⅠ  

EntranceⅡ   

Figure 5. Evacuees’ movement trajectories in the experiment (EXP) under low urgency (a) and high
urgency (g), and simulated in UF-SF model by different parameters (see U1–U5 in Table 1 under low
urgency (b–f) and high urgency (h–l)).
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Figure 6. The number of evacuees leaving from Exit A, i.e., (a,d); Exit B, i.e., (b,e); and Exit C, i.e.,
(c,f) under low urgency (a–c) and high urgency (d–f) in the different scenarios of UF-SF model, i.e.,
U1–U5.

Although the evacuation time of the UF-SF simulation is consistent with the exper-
iment, the moving trajectories and the exit choice are significantly different from the
experiment. Therefore, to simulate the real exit choice behaviour, in this study, the context
effects are implemented into an SF model, i.e., the CE-SF model. Considering the relatively
good performance of error(T), moving trajectories, and the flow of people leaving exits
in the UF-SF simulations, the parameters in scenario U2, i.e., βd = −0.3, βn = −1, are
adopted in the CE-SF model.

4.2. Simulation Performance of the CE-SF Model
4.2.1. Sensitivity Analysis of the CE-SF Model

Two pairs of threshold parameters dsim, nsim and dinf, ninf are used to determine the
similarity and the inferiority of two available exits, which further determine whether the
context effects can be applied. Specifically, dsim and nsim are the smallest detectable dif-
ference of dk and nk between two exits. The Just Noticeable Difference (JND), which
signifies the visibility threshold, refers to the smallest detectable difference between
two stimuli [72]. According to Weber’s Law, the JND is directly proportional to the
magnitude of the stimulus (ϕ), expressed mathematically as ∆ϕ = kϕ, where k is Weber
fraction, a constant [73]. Research indicates that Weber fractions for perceived 3D lengths
vary between 25 and 30% [74], and the median Weber fraction for the visual ratio was found
to be 32.6% [75]. Therefore, in this study, the range of dsim and nsim is derived from the JND
and Weber fraction k and is estimated as 30%. Given that the maximum distance to an exit
is 11.8 m and the number of evacuees near the exit does not exceed 20 ped, consequently,
dsim ≤ 3.5 m , nsim ≤ 6 ped. dsim ranges from 2 to 3 m, and nsim ranges from 3 to 6 ped
during simulations. Additionally, dinf and ninf are introduced to delineate inferiority and

non-inferiority, as shown in Figure 3; that is,

{
0 < dinf < dsim

0 < ninf < nsim
. Thus, the range of dinf is set

from 1 to 1.5 m, and ninf is 2 ped. Table 2 shows the value of these parameters adopted in
this study and the nine simulation scenarios, i.e., C1–C9 in the CE-SF model.

The percentage of evacuees entering the room from Entrance I and II and leaving from
Exit A, B, and C is presented in Figure 7. Whether under low urgency (Figure 7a) or high
urgency (Figure 7b), around 10% of evacuees entered from Entrance I and left from Exit B
or C in the experiment (EXP). In contrast, in the UF-SF model, no evacuees who entered the
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room from Entrance I left from Exit C under low or high urgency. In the CE-SF model, the
percentages of evacuees entering from Entrance I and leaving from Exit B and C fluctuate
around 10%, except for scenario C9. To further compare the simulation and experimental
results, the difference in the percentage of evacuees leaving the exit between the simulated
PSIM and experimental PEXP is determined by Equation (11):

error(P) = ∑
i=A, B, C

∑
j=I, II

|PSIMi,j − PEXPi,j | (11)

Table 2. Simulation scenarios and parameters used in the CE-SF model.

No. dsim (m) nsim (ped) dinf (m) ninf (ped)

C1 2 3 1.5 2
C2 2 4 1.5 2
C3 2 6 1.5 2
C4 2 3 1 2
C5 2 4 1 2
C6 2 6 1 2
C7 3 3 1.5 2
C8 3 4 1.5 2
C9 3 6 1.5 2
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Figure 7. Percentage of evacuees choosing the exit is depicted for (a) low-urgency and (b) high-
urgency scenarios. The columns without and with white diagonal lines represent the percentage of
evacuees entering the room from Entrance I and II, respectively. The black dashed line indicates the
dividing line between the percentage of evacuees entering from Entrance I and II in the experiment.

Figure 8 illustrates the simulation error of evacuation time, error(T), and the percent-
age of evacuees leaving from exits, error(P). The error(T) under low urgency, as shown in
Figure 8a, in the CE-SF model, except for C7, fluctuates at the error(T) of the UF-SF model,
i.e., 0.1. The error(T) under high urgency in the CE-SF model is larger than that in the
UF-SF model. However, under both levels of urgency, the error(P) (see Figure 8b) of the
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CE-SF model is significantly smaller than that of the UF-SF model. To further investigate
the differences between the UF-SF and CE-SF models, the scenario of C1 is selected for
additional analysis, due to its commendable performance in both error(T) and error(P).

C1 C2 C3 C4 C5 C6 C7 C8 C9
0.0

0.1

0.2

0.3

0.4

0.5

0.6

er
ro

r(
P

)

(b)

C1 C2 C3 C4 C5 C6 C7 C8 C9
0.0

0.1

0.2

0.3

0.4

0.5

0.6
er

ro
r(

T
)

(a)

 CE-SF  UF-SF

Low urgency High urgency

 CE-SF  UF-SF

Figure 8. The simulation error of (a) total evacuation time error(T) and (b) percentage of evacuees
leaving from exits error(P) in the different scenarios of CE-SF model, i.e., C1–C9. The scenario of C1
in the yellow oval is selected for further study.

4.2.2. Different Percentages of Evacuees Affected by Context Effect

To further investigate the influence of context effects on our proposed exit choice
model, some evacuees were designated to adhere to the CE-SF model while others followed
the UF-SF model. Three simulation scenarios were conducted, where different percentages
of evacuees (i.e., 100%, 80%, and 60%) adhered to the CE-SF model, denoted as CE-SF_100%,
CE-SF_80%, and CE-SF_60%, respectively, while the remaining evacuees followed the UF-
SF model, which adopted the parameters of C1.

Figure 9 presents a comparison of movement trajectories between the experimental
data and simulations. In both low- and high-urgency scenarios of the experiment, evacuees
were observed entering the room from Entrance I and exiting from Exit C, as depicted
by the arrow of the moving direction in Figure 9a,g. Notably, this phenomenon was
effectively simulated by the CE-SF model across various scenarios, irrespective of the
percentage of evacuees influenced by the context effects (see Figure 9d–f for low urgency
and Figure 9j–l for high urgency). However, this observed behaviour was notably absent
in simulations conducted using the SF model with the shortest path (Shortest) or the UF-
SF model, as evidenced in Figure 9b,c,h,i. Additionally, the experimental observations
revealed instances of exit choice-changing behaviour, particularly notable in scenarios
characterised by high urgency (see Figure 9g). In contrast, simulations utilising the Shortest
or UF-SF models exhibited rare instances of exit choice alteration (see Figure 9b,c,h,i).
Impressively, our proposed CE-SF model successfully replicated this observed decision-
changing behaviour across various scenarios, regardless of the percentage of evacuees
influenced by the context effects. Notably, the scenario where 80% of evacuees adhered
to the CE-SF model demonstrated the highest fidelity in simulating exit choice-changing
behaviour. The CE-SF model exhibits remarkable flexibility in modelling both exit choice
behaviour and exit choice-changing behaviour, which has been observed in numerous
empirical studies [76–79].

Moreover, Figure 10 shows that the number of evacuees leaving from exits over time in
the three scenarios of the CE-SF model is much more consistent with the experimental data
compared to that from the Shortest and UF-SF models. Although the errors in evacuation
time for the UF-SF and Shortest are smaller than those in the CE-SF model (still less than
0.3), as shown in Figure 11a, the errors in the percentage of evacuees leaving from exits in
the UF-SF and Shortest models are much larger than those in the CE-SF model, as depicted
in Figure 11b.
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Figure 9. The movement trajectories of evacuees are depicted in the following scenarios: (a,g) experi-
ment (EXP); (b,h) SF model using the shortest path (Shortest); (c,i) UF-SF model; and (d–f,j–l) CE-SF
model with varying percentages of context effect under low urgency (a–f) and high urgency (g–l).

4.3. Evidenceof Context Effects in Experimental Data

The coordinates of each participant in the room for each frame were obtained us-
ing PeTrack software (version v0.9) from the experimental video (see Section 3.1 for
more details), facilitating the extraction of exit k attributes, i.e., dk and nk. Subsequently,
Equations (6) and (7) were employed to determine whether exit choice is influenced by the
context effects or not. The parameter pairs in Equations (6) and (7) are given by the scenario
of C1: dsim = 2 m, nsim = 3 ped, dinf = 1.5 m, and ninf = 2 ped. Finally, the cumulative
occurrences of occurrences in the context effects are computed and shown in Figure 12. All
three context effects—the compromise effect, similarity effect, and attraction effect—were
observed in the experiment under both low and high urgency levels. Notably, the similarity
effect occurred more frequently than the compromise and attraction effects.
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Figure 10. The number of evacuees leaving from Exit A, i.e., (a,d); Exit B, i.e., (b,e); and Exit
C, i.e., (c,f) under low urgency (a–c) and high urgency (d–f) in the CE-SF model with different
percentages of context effects.
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5. Discussion

The simulation results in the UF-SF model (see Section 4.1) reveal that the traditional
utility function model, relying solely on a monotonic function of the attribute value, fails to
accurately mimic real exit choice behaviour. Previous studies [24,37,80] have demonstrated
that the simple scalability property, fundamental to most utility models, inadequately
accounts for the three context effects commonly observed in multialternative and multiat-
tribute decision-making tasks. Moreover, significant evidence of context effects emerged
in evacuation experiments under varying urgency levels (see Section 4.3). This evidence
elucidates why our CE-SF model outperforms the original exit choice model, i.e., the UF-SF
model, in replicating exit choice behaviour. However, errors persist in movement trajec-
tories and evacuation time during CE-SF simulations. These errors can be mitigated by
reducing the percentage of evacuees affected by context effects to 80% (see Section 4.2.2).
As illustrated in the previous studies [80,81], the context effects change the probabilities of
the same option across different choice sets. Nonetheless, the maximum or an increase in
the probability of an option does not guarantee the final choice. Thus, it is reasonable to
assume that not all individuals adhere to context effects when making decisions.

6. Conclusions and Limitations

Exit choice behaviour under varying levels of urgency was investigated by integrating
context effects into a social force model (CE-SF). The capability of the CE-SF model was
validated by comparing evacuation time, exit utilities, and movement trajectories with those
of a utility-function-based SF model (UF-SF). A sensitivity analysis of the UF-SF model
revealed that while the simulated evacuation time aligned well with experimental data
across urgency levels, the trajectories and exit utilities exhibited significant discrepancies
from the experiment, irrespective of variations in the exit attribute parameters. Despite
CE-SF displaying a slightly inferior performance in evacuation time compared to UF-SF, it
surpassed UF-SF in terms of trajectory accuracy and exit utilities regardless of the parameter
values. The simulation results of CE-SF with different percentages of evacuees influenced
by context effects indicated that adjusting the percentage to 80% could enhance trajectory
accuracy, albeit leading to a slight increase in the evacuation time error. Furthermore,
we provided substantial evidence of three context effects during real evacuation decision
making, irrespective of urgency levels.

However, our study has limitations that need addressing in future research. Firstly,
we solely explore variations in participant urgency within the same experimental layout.
Despite each evacuee facing the same choice set of exits A, B, and C, the properties of each
exit (e.g., distance and congestion) differ at each time step. In other words, in the continuous
simulations, the evacuees are faced with a different choice set due to the different exit
properties at each time step.

Secondly, our study only considers three exits. The definition of context effects neces-
sitates a choice set with three or more options. While most studies [24,35,37,49] on context
effects examined a choice set of three options, some researchers [82,83] have observed
context effects in choice sets with more than three options. Additionally, a recent study [84]
suggested that comparisons between multiple options could be made in pairs before finally
being considered together. Another approach to addressing the issue of having more than
three exits could involve considering only the three most preferred exits for each evacuee,
as it is unlikely for an evacuee to choose exits with low preference levels. Therefore, our
findings can be applicable to evacuation scenarios with more than three exits.
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