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Abstract: During the last few decades the fish community has changed substantially along the Eastern
Mediterranean continental shelf, which is a hotspot of invasion by species that had migrated via
the Suez Canal. Trawl data from the Israeli coast spanning two periods (1990–1994 and 2008–2011)
were compared to identify species with substantial variation in their relative abundance between
the two periods. The aim of this study was to examine if certain ecological traits characterize fish
species showing an increase or decrease in relative abundance, and if non-indigenous fishes with
strongly increasing populations may have caused the decline of native species with similar habitats
and diets. We found that the main predictors of population trends were species length, habitat
affinity, and maximum depth, with larger and soft bottom species displaying decreasing abundances.
Comparing native and non-indigenous fishes with similar habitat and diet, we found a potential for
competitive impact of the Indo-Pacific Plotosus lineatus and two Upeneus spp. on the native Mullus
species. However, competition with non-indigenous fishes could not generally explain the dramatic
decline of many other native species between the two study periods. Alternative causes, such as
fishery pressure and increasing water temperature, are discussed.

Keywords: biological invasion; Lessepsian migration; ecological traits; community ecology

1. Introduction

Changes in marine fish communities, i.e., shifts in species composition or a decrease in abundance,
have been a main focus of study over the last few decades. Profound changes were observed in a wide
range of marine regions from subarctic to tropical zones [1–4]. These have mainly been attributed
to climate change [5–7], fishery pressure [8–11], and habitat degradation or loss [12–14]. Fishery
pressure and habitat degradation often operate in tandem [14,15], as do climate change and habitat
degradation [6,16,17].

One region where considerable changes in fish communities has occurred is the Eastern
Mediterranean Sea. Indo-Pacific fishes immigrated to the Levantine basin and increased the total
number of Mediterranean fishes significantly [18–22], currently including as much as 90% of total
fish biomass in some habitats of the Eastern Mediterranean [18,23,24]. Though Indo-Pacific fishes
may arrive at the Levantine basin in a number of ways, immigration via the Suez Cannel (so-called
Lessepsian invasion) is the most likely path. The Suez Canal was opened in 1869 and since the first
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report of Indo-Pacific fishes from the vicinity of Port Said by Tillier [25], the number of immigrants
increased progressively [20,26].

The Mediterranean continental shelf and upper slope of the Israeli coast is part of the region
where a profound change in the fish community has been observed [27]. Edelist et al. [27] compared
earlier (1990–1994) and more recent (2008–2011) trawl surveys and found an increasing proportion
of Lessepsian fishes, i.e., non-indigenous fish species that had migrated via the Suez Canal. Whereas
only six non-indigenous species, totaling of 25% of individuals were found to be among the 20 most
common benthic and benthopelagic fishes in the first study period, their proportion had increased to
11 species totaling 49.2% of individuals 15 years later. During the same period, proportions of many
native and some non-indigenous species declined [28].

While the change in the fish community of the Eastern Mediterranean is well documented,
the causes and driving forces for the observed shifts seem to be less understood. For example, a strong
impact of non-indigenous marine fishes on native fish species was often suggested, but rarely tested
(see Golani [29] for a summary). The impact of predators may be significant, as shown in the case
of the lionfish (Pterois spp.) in the Caribbean Sea [30–32]. However, in the examined habitats off the
Israeli coast predation is unlikely to be the cause of fish decline, as none of the abundant Lessepsian
species in the latter period are known as voracious fish predators with the ability to cause the collapse
of native populations. Another possible reason for the shift in relative abundance between the
periods 1990–1994 and 2008–2011 is that of the competitive exclusion of native fishes by immigrating
non-indigenous fishes. Competitive displacement of native Mediterranean species was suggested,
e.g., in the case of Merluccius merluccius by Saurida lessepsianus [33], native goatfishes (Mullus spp.)
by non-native con-familiars [34], and Sarpa salpa by rabbitfishes (Siganus spp.) [35,36]. Competition
between newly-appearing and native species may be possible if fishes co-occur spatio-temporally and
simultaneously overlap in diet and habitat use. A strong overlap would imply competition between
non-indigenous and native species, which could represent a possible reason for the decline of several
native species. In a recent study, Givan et al. [28] compared the impact of three major anthropogenic
drivers on fish abundances. They showed that, for shallow-water species, the most important driver of
population size changes is sensitivity to climate change rather than competition with non-indigenous
species. However, Givan et al. used a macro-ecological approach looking across the entire community
and, hence, did not examine specific cases in which competition may have taken place. Thus, we are
missing a more refined analysis that considers the development of the entire community on one side,
but allows the identification of specific cases of competitive exclusion on the other side.

In this study, we combine first time trawl survey data between two periods [27] and trait data
to address the following questions: (i) Which species showed an increase or decrease in relative
abundance between 1990–1994 and 2008–2011? (ii) Can certain ecological traits be linked to species
with increasing or decreasing populations? (iii) Do decreases in native species abundances coincide
with increases in non-indigenous species with overlapping diet and habitat? The answers to these
questions are of crucial importance for understanding the reasons underlying the population changes
along the Israeli coast, and may be useful for predicting changes in soft-bottom communities in other
parts of the Mediterranean Sea.

2. Results

The 45 considered fish species comprised 30 benthic and demersal and 15 pelagic fishes (Table 1).
In the 1990–1994 period, Upeneus moluccensis constituted the most common trawled fish, and
only six non-indigenous species belonged to the 25 most common trawled fishes. Thus, although
non-indigenous species did not represent a new phenomenon in the period 2008–2011, their number
has since doubled among the 25 most commonly trawled fishes.

Between the first and second trawl period, the proportion of 16 species increased by a factor of 2
or more. The proportions of ten species, all of them Red Sea immigrants, increased by a factor of 7 or
higher. In contrast, the proportions of 14 species decreased between the two study periods by a factor
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of 2 or more, including 10 native and two non-indigenous fishes (Table 1). The strongest declines
were observed in M. merluccius (6.7 fold), Mullus barbatus (7.7 fold), and a greater than one magnitude
decline in Trigla lyra, Mullus surmuletus, Uranoscopus scaber, Trachurus picturatus, and Trachinus draco. T.
picturatus is the only species with a proportion of >0.25% during the period 1990–1994 but which had
disappeared completely by 2008–2011.

Table 1. Recorded fish species with proportions of ≥0.0025 during at least one of the trawl periods.
Species are listed from largest relative increase to the largest decline of trawl proportions between
1990–1994 and 2008–2011.

Species Proportion 1990–1994 Proportion 2008–2011 Log-Ratio of Proportional Change

Plotosus lineatus (Thunberg, 1787) <0.0001 0.0900 3.6302
Nemipterus randalli Russell, 1986 <0.0001 0.0493 3.3685
Decapterus russelli (Rüppell, 1830) <0.0001 0.0203 2.9839

Jaydia smithi Kotthaus, 1970 <0.0001 0.0196 2.9680
Ostorhinchus fasciatus (White, 1790) <0.0001 0.0133 2.8007

* Etrumeus golanii Dibattista et al., 2012 <0.0001 0.0107 2.4060
* Trachurus indicus Nekrasov, 1966 <0.0001 0.0053 2.4034

Lagocephalus suezensis Clark & Gohar, 1953 <0.0007 0.0238 1.5610
Lagocephalus spadiceus (Richardson, 1845) <0.0002 0.0044 1.3681

* Dussumieria elopsoides Bleeker, 1849 <0.0008 0.0055 0.8622
* Scomber colias Gmelin, 1789 0.0033 0.0184 0.7480

* Spicara maena (Linnaeus, 1758) 0.0100 0.0382 0.5835
* Trachurus trachurus (Linnaeus, 1758) 0.0056 0.0199 0.5511

Upeneus pori Ben-Tuvia & Golani, 1989 0.0038 0.0133 0.5454
Chlorophthalmus agassizi Bonaparte, 1840 0.0012 0.0038 0.5046

Equulites klunzingeri (Steindachner, 1898) 0.0595 0.1293 0.3371
Macroramphosus scolopax (Linnaeus, 1758) 0.0089 0.0154 0.2367
* Engraulis encrasicolus (Linnaeus, 1758) 0.0300 0.0505 0.2269

Stephanolepis diaspros Fraser-Brunner, 1940 0.0034 0.0050 0.1631
Lithognathus mormyrus (Linnaeus, 1758) 0.0026 0.0034 0.1083

Pagellus acarne (Risso, 1827) 0.0425 0.0489 0.0613
* Sardinella aurita Valenciennes, 1847 0.0063 0.0059 −0.0292

Bothus podas (Delaroche, 1809) 0.0050 0.0046 −0.0353
Citharus linguatula (Linnaeus, 1758) 0.0146 0.0130 −0.0508

Upeneus moluccensis (Bleeker, 1855) 0.1267 0.0951 −0.1246
Dentex macrophthalmus (Bloch, 1791) 0.0369 0.0252 −0.1651

Saurida lessepsianus Russell et al., 2015 0.0327 0.0223 −0.1661
Callionymus filamentosus Valenciennes, 1837 0.0238 0.0159 −0.1748

Pagellus erythrinus (Linnaeus, 1758) 0.1065 0.0678 −0.1958
Serranus hepatus (Linnaeus, 1758) 0.0122 0.0072 −0.2298

Boops boops (Linnaeus, 1758) 0.0899 0.0476 −0.2762
* Sardina pilchardus (Walbaum, 1792) 0.0153 0.0074 −0.3173

* Spicara smaris (Linnaeus, 1758) 0.0473 0.0187 −0.4033
* Trachurus mediterraneus (Steindachner, 1868) 0.0328 0.0123 −0.4238

Lepidotrigla cavillone (Lacépède, 1801) 0.0332 0.0097 −0.5351
* Alepes djedaba (Forsskål, 1775) 0.0060 0.0014 −0.6349

* Sphyraena pinguis Günther, 1874 0.0093 0.0021 −0.6542
* Sphyraena sphyraena (Linnaeus, 1758) 0.0052 0.0011 −0.6596
Merluccius merluccius (Linnaeus, 1758) 0.0189 0.0028 −0.8221

Mullus barbatus Linnaeus, 1758 0.0872 0.0113 −0.8878
Trigla lyra Linnaeus, 1758 0.0027 0.0002 −1.1608

Mullus surmuletus Linnaeus, 1758 0.0704 0.0041 −1.2345
Uranoscopus scaber (Linnaeus, 1758) 0.0027 0.0002 −1.2475

Trachinus draco Linnaeus, 1758 0.0066 0.0001 −2.1136
* Trachurus picturatus (Bowdich, 1825) 0.0030 <0.0001 −2.3690

Non-indigenous species are marked in bold. * Pelagic species, excluded from multivariate trait analyses but included
in the generalized linear models.

2.1. Species Traits Linked to Population Trends

When examining all species together, we find that all highly-supported models distinguished
between native and non-indigenous species (Table 2). Hence, non-indigenous species population
trends are higher than that of natives (Figure 1). Species length appeared as a predictor in almost all
highly-supported models, with larger species showing more negative population trends. Maximum
depth and habitat type (Table 2; Figure 1) were also well supported in the analyses of all species.
Species at shallower depth and species using multiple habitats display more positive population
trends. Other predictors appeared less strongly supported. For analyses containing native species only,
we find that the best model contained the intercept only (Table 2), meaning that no predictor strongly
explains their population trends.
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Table 2. Results of the generalized linear models, relating population trends (log ratio of relative
population size between time periods) to species traits. Separate analyses were conducted for all
species, non-indigenous species (NIS), and native species. The five models with the lowest Akaike’s
information criterion (AICc) are shown. For continuous predictors, numbers in the table represent their
regression coefficient.

Category NIS Growth rate Habitat Length log (cm) Max. Depth log (m) Min. Depth log (m) Trophic
Level AICc ∆AICc Weight

All
species 2.17 + −2.14 1.33 131.46 0.00 0.27

2.19 + −2.01 1.31 0.22 133.54 2.08 0.09
1.96 0.87 + −1.79 1.29 133.60 2.14 0.09
2.12 + −2.40 1.30 0.26 134.10 2.63 0.07
1.89 1.63 + 1.22 134.78 3.32 0.05

NIS + −5.62 1.80 64.05 0.00 0.29
−5.54 65.38 1.32 0.15

+ −4.96 65.68 1.63 0.13
−5.67 1.17 67.11 3.06 0.06

1.18 −4.96 68.21 4.16 0.04
Natives 65.45 0.00 0.15

1.48 65.88 0.43 0.12
−0.93 66.46 1.01 0.09

0.31 67.55 2.10 0.05
−0.09 67.92 2.47 0.04

Blank cells indicate that the predictor was not included in the specific model.

Figure 1. Relationship between population trends and the major identified traits for non-indigenous
(top) and native (bottom) species. Left panels (a,c) show the relationship with habitat affinity and right
panels (b,d) the relationship with length at first maturity. Lines in the right panel indicate ordinary
least squares regression results.

2.2. Estimation of Competition: Overlap in Habitat Use and Diet

The potential for competition was estimated by the overlap of habitat use and diet related traits
in benthic and demersal fishes. Figure 2 shows the relations between six native species suffering
the strongest declines between 1994 and 2008 and the co-occurring Indo-Pacific fishes. We found
a high overlap in co-occurrence and traits between native M. barbatus and M. surmuletus and
a group of non-indigenous species. The similarity indices imply an overlap >0.6 in both diet and
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habitat use between Upeneus spp. and Plotosus lineatus and the two native Mullus species (Figure 2)
indicating possible competition. Additionally, all these species show a similar foraging strategy.
The non-indigenous Equulites klunzingeri, Nemipterus randalli, and Lagocephalus spp. also have similar
habitat requirements (i.e., depth range distribution) and overlap partially in diet with the native Mullus
species. These fishes could possibly represent an additional disturbance of the native mullets.

The non-indigenous species exhibiting increasing populations do not overlap markedly with
the declining M. merluccius, T. draco, T. lyra, U. scaber, or Pagellus erythrinus. At least in one group of
traits (i.e., habitat use or diet related traits) the overlap is not higher than 0.56 in P. erythrinus and less
than 0.5 in the other four species. Therefore, a strong competition between these native fishes and
newcomers, e.g., P. lineatus or N. randalli, is not likely to have been the cause of the natives’ decline.

Figure 2. Overlap in habitat use and diet related traits between native and non-indigenous species.
Only benthic and bentho-pelagic fishes are included. (a) Habitat use including the depth-range
distribution based on the Bray-Curtis index; (b) diet-related traits based on the Morisita-Horn
index. Abbreviations (capitals are used for non-indigenous species): CAF, Callionymus filamentosus;
Chl, Chlorophthalmus agassizi; DEC, Decapterus russelli; EQU, Equulites klunzingeri; Lit, Lithognathus
mormyrus; LSP, Lagocephalus spadiceus; LSU, Lagocephalus suezensis; Mac, Macroramphosus scolopax;
Mer, Merluccius merluccius; Mba, Mullus barbatus; Msu, Mullus surmuletus; NEM, Nemipterus randalli;
PLO, Plotosus lineatus; SAU, Saurida lessepsianus; Tra, Trachinus draco; Tri, Trigla lyra; UPM, Upeneus
moluccensis; UPP, Upeneus pori; Ura, Uranoscopus scaber. Arrows and +/− indicate increasing
positive/negative population trends of species.

3. Discussion

3.1. Competitive Displacement of Native Species by Non-Indigenous Fishes

Strong competitive impacts of non-indigenous fishes on native species have been shown in
freshwater systems [37–43]. However, in marine habitats such direct links between invasion and
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competitive exclusion are rarely evident. In parts of the Baltic and North Seas the euryhaline
Ponto-Caspian Neogobius melanostomus competes for space, nesting sites and food resources with many
co-inhabiting native benthic fish, e.g., Platichthys flesus, Pomatoschistus spp., and Gobius niger [44–46].
In subtropical and tropical brackish water habitats the Mayan cichlid Cichlasoma urophthalmus
represents a strong competitor in the invaded habitat. Populations of Cyprinodon variegatus, Fundulus
confluentus, and Gambusia holbrooki strongly decline in the presence of the Mayan cichlid [47].

The impact of the Lessepsian fishes has repeatedly been hypothesized to be linked to competitive
displacement by native Mediterranean species [18,33,34,48]. However, Golani [29] questioned
competition as a driver of population decline reasoning that scientific evidence is rare, the depth
range distribution of native species prior to colonization of Lessepsian immigrants is often not
thoroughly documented, and conclusions on impact are “speculative at best”. Invasive herbivorous
rabbitfishes (Siganus luridus, S. rivulatus) profoundly alter their Mediterranean habitats by transforming
rocks initially densely covered by erect algae into bare surfaces [49]. Thus, although their impact
on macroalgal assemblages and, via habitat change, on the fish community is significant, direct
competition with native fishes seems to be limited to S. salpa [35,36,50]. Elleouet et al. [51] proposed
a trait-based approach for assessing and mapping potential niche overlap between native and exotic
species at large spatial scales in the Mediterranean Sea. They studied the distribution of species, but
not real species communities, and concluded that the examination of a specific area or species in terms
of exotic threats needs more in-depth studies [51]. Our study started precisely at this point.

Contrary to our expectations, population declines of native species were not primarily associated
with an increase in invasive species possessing similar traits. Rather, our examination of the
dataset revealed that the number of declines associated with competition is probably very limited.
We found that competitive exclusion is only possible in the case of the native mullets M. barbatus and
M. surmuletus, caused by a group of non-indigenous fishes comprising Upeneus spp. and P. lineatus.
Edelist et al. [27,52] suggested that the decrease of the Mediterranean T. draco might be due to the
competition with the non-indigenous P. lineatus. However, this was not confirmed in our analysis.
Neither the decline in T. draco nor that in M. merluccius, U. scaber, or P. erythrinus can be explained by
increasing relative abundance of Red Sea species. The populations of the native fishes had already
collapsed before the immigrants appeared (as evidenced by trawl data from 2000; Edelist [53] and
their overlap in depth-range distribution, diet and habitat use is not high (see Figure 2). Thus, overall,
we found only one well-established case in which declines can be reasonably associated with Red
Sea immigrants.

Even though the Eastern Mediterranean Sea is a hotspot of species invasion, where nonindigenous
fishes may reach more than 50% of fish biomass [54–56], the presence of a distinct link between
Lessepsian invasion and native species decline is difficult to establish. This might imply that
high impact invasive fishes are rare in marine systems or difficult to detect. Regarding the
Eastern Mediterranean, the reason for the low impact might be that Indo-Pacific species tend to
occupy unutilized ecological niches [57,58], thus reducing their direct impact on natives. Ecosystem
engineering species, such as the above-mentioned rabbitfishes (Siganus spp.), may indirectly
affect native species by modifying the seascape and, thus, could represent an exception to this
widespread observation.

3.2. Alternative Causes for Species Decline

If competitive displacement does not explain the decrease in most native fishes, the question
arises as to whether climate change or fishery pressure may better explain the community shift along
the Israeli coast.

The length at first maturity (Lm) is significantly (p < 0.05) lower in the ten strongest increasing
species, all of which are invasive (mean + standard deviation: 11.7 + 3.4 cm), compared to the 10 most
decreasing fishes (24.6 + 12.2 cm), eight of which are native. This may suggest that fishing pressure
has contributed to the decline in slow-growing species and thus indirectly benefitted fast-growing,
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mostly non-indigenous, species. Species with high growth rates and smaller size have a higher
resilience to fishing [59–61]. Shifts in species composition were also described by Jennings et al. [10]
and Daan et al. [11] in heavily exploited fish stocks of the North Sea. These shifts are often linked to
a long-term change in trophic level (TL) due to ‘fishing down the marine food web’ [8,62]. However,
there was no change in TL observed in the trawls off the Israeli coast between the periods 1990–1994
and 2008–2011 ([27]; confirmed by our analysis). Nevertheless, TLs do not necessarily change and may
even increase in exploited areas (e.g., in the Western Mediterranean area [63,64]). Thus, whether fishing
pressure has contributed to the decline of species during the study period or to the destabilization
of the ecosystem, hence promoting the increase of fast-growing species, must currently remain
an open question.

The Mediterranean Sea has been facing increasing sea surface temperatures (SST) over the
last few decades, which could represent a driving force in the observed shifts of fish communities.
Regarding native species, a northwards extension of native species distribution ranges due to
increasing SST was observed for few species [65,66] and predicted for more species using species
distribution models [67,68]. Furthermore, new evidence suggested that this northwards extension
could be combined with a decline in abundance of some species in the southern part of their
range [28]. A warming Mediterranean Sea may cause the migration of non-indigenous fishes of tropical
origin [21,66,69,70], though a higher SST is not necessarily an important predictor for introduction
or establishment success [26,71,72]. Along the Israeli coast, the abundance of several native species,
e.g., T. draco and M. merluccius, had already declined along the Israeli coast between 1990–1994 and 2000
(Edelist) [53], in a period before the Indo-Pacific P. lineatus, N. randalli, or D. russelli were first recorded.
Therefore, it is most likely that populations of several native species declined due to increasing SST,
along with, or as part of, a synergic effect with other factors.

3.3. Caveats

With only two time periods available for examination, it is difficult to assess whether the observed
ecological trends represent continuous long-term shifts in community composition. Nevertheless,
we feel that the long duration of each sampling period (three to four years), as well as the large
spatial and temporal scales (i.e., all seasons, trawling during the day and at night), make each
sampling period sufficient to represent the community composition at the time they were performed.
We acknowledge that our relative abundance data do not enable detection of changes in absolute
abundance. Thus, strong fishing pressure, for example, may cause a decline in the absolute abundance
of many species but reveal little detectable patterns in terms of relative abundance changes. This is
a caveat to keep in mind when interpreting the recorded trawl data.

4. Materials and Methods

4.1. Study Area and Sampling Data

The trawl data were acquired from along the Israeli continental shelf and upper slope, between
latitudes 31◦20′ N and 33◦05′ E by the Israel Fishery Department (Figure 3). Data were collected from
commercial trawl hauls during the periods April 1990 to December 1994 (267 hauls) and between
October 2008 and March 2011 (183 hauls). In both periods, trawling depths ranged between 15 and
300 m, and three different depth ranges were assessed: shallow (15–37 m), medium (38–82 m), and deep
(83–300 m). Hauls were carried out by 15–22 m length overall (LOA) stern trawlers dragging 40 mm
diamond mesh nets with sweeps. The towing speed remained constant at three knots. The horizontal
opening of the gear (distance between trawl doors) increased from 55–65 m in 1990–1994 to 60–80 m in
2008–2011. Moreover, the vertical reach of the nets also increased from 1.2–1.5 m, to 1.5–1.8 m at the
headline midpoint.

The same sampling protocol was used in both periods: a representative sub-sample of one box
from the total catch was obtained from the fish pile onboard with no specific preference given to any
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direction on deck to assure randomness. As the same sample size was used in each trawl, the data
represent only relative and not absolute abundance. All fishes in samples were taxonomically identified
at the species level and measured to the nearest 0.5 cm [27].

Figure 3. Map of the study site off the Israeli coast (Eastern Mediterranean Sea). N, North; E, East.

4.2. Statistical Analyses

4.2.1. Analyses of Traits Linked to Population Trends

The log-ratio of abundance in 2008–2011 to abundance in 1990–1994 (hereafter ‘population trend’)
was employed as response variable. A total of 179 fish taxa were recorded. Species representing≥0.25%
of the total numbers in at least one of the study periods (1991–1994, 2008–2011) were included in the
analyses. A total of 45 species met this criterion (Table 1). The remaining species, comprising 114 native
and 20 non-indigenous fishes, were excluded from the analyses because they were not abundant
enough to allow conclusions about increasing or decreasing populations, and many of them had been
recorded only once or twice. Since a division by zero is not possible and seven non-indigenous species
were not recorded in the period 1990–1994, one individual was added to the recorded numbers of
all species for both periods. The traits used are species-level attributes that do not accommodate
intraspecific variation in trait values which is likely to be low relative to interspecific differences.
Moreover, in practical terms, the data currently available for these traits is not sufficient to allow
estimates of interspecific variation over so many species.

Description of independent predictors: We related population trends to the following independent
predictors: growth rate, length at first maturity, trophic level, depth, habitat use, and the schooling
level. We selected these traits because they represent general growth, diet, and habitat-related
parameters regarding the ecological roles played by species within a community. These traits have
often been speculated to be associated with invasion success and susceptibility to anthropogenic
disturbance [28,71]. Parameters, such as schooling level and depth range distribution, were also
attributed to the success of Red Sea migrants into the Mediterranean Sea [26,29,71].

Growth rate (K): The increase in weight of a fish per year, divided by the initial weight [73].
The growth rate was not available for seven species; K values from next-related species were used in
these cases.
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Length: The length of a fish is related to its average fecundity, maximum lifespan, and
dispersal ability [74,75]. For example, fishes with small adult size are characterized by rapid growth,
early maturity, and high fecundity [60]. The length at first maturity was used in the analysis. The Lm
is the mean length at which fish of a given population develop ripe gonads for the first time [73].
The Lm in cm was log10 transformed for the model. Lm was not available for seven species; estimated
values adapted from related species were used in these cases.

Trophic level (TL): Position in the food chain, determined by the number of energy-transfer steps
to that level [73].

Depth range of species: The shallowest and deepest depths at which a species was observed (in m)
were included as two separate predictors. The data were log10 transformed.

Habitat type and use: The following options were treated as nominal parameters: (i) Pelagic;
(ii) hard bottom, rocks, caves, crevices; (iii) soft bottom; (iv) vegetated bottom including seagrass
meadows and algal forests; and (v) multihabitat use.

Schooling level: Schooling behavior was examined as it may indirectly reflect resource use and
vulnerability to fishing [60,76]. The schooling level represents one of the following four ordinal
categories: 1—solitary individuals; 2—occurring mostly in pairs; 3—usually forming small groups
(3–50 individuals); and 4—usually in large schools (>50 individuals).

The predictors (K, Lm, TL, shallowest and deepest depth) were not correlated (the maximal value
of the correlation was 0.47).

We used generalized linear models to relate the changes in species abundance (population trend)
with traits. For this we employed a model selection approach in which the model receiving the
largest support from the data was selected using corrected Akaike’s information criterion (AICc) [77],
where minimal AICc is the model that receives the largest support. Three models were examined:
one for native species only, one for non-indigenous species only, and one with both types of species
along with a predictor indicating whether the species are native or non-indigenous. The latter model
allowed to test whether the determinants of population size change differ between native and
non-indigenous species. Analyses were performed in R (R Foundation for Statistical Computing,
Vienna, Austria) [78].

4.2.2. Estimation of Competitive Displacement of Native Fishes

Newly-appearing non-indigenous species may compete with species already present in
a community if they co-occur spatio-temporally and overlap in diet. Therefore, we compared
habitat use, including the depth range distribution, and the diet components of non-indigenous
fishes increasing between 1994 and 2011 with those of native fishes decreasing in the same period.
A strong overlap between species with increasing and decreasing populations would imply potential
competition and, therefore, could be a possible reason for the decline of the native fishes.

For this purpose similarity indices were used to calculate the overlap. The 30 most abundant
benthic and bentho-pelagic fishes were included in this analysis allowing a direct comparison to the
results provided by Edelist et al. [27].

The Bray-Curtis similarity index was calculated to quantify the amount of overlap in the
depth-range distribution and habitat use. Bray-Curtis is a quantitative and asymmetrical similarity
measure and widely used to show overlap of species along ecological gradients [79,80]. We selected the
Morisita-Horn index to determine the diet overlap as this index is well established for the estimation
of diet overlap in fish ecology [81–83]. Both indices are mathematically related [80] and range from
0 (no overlap) to 1 (complete overlap). Values above 0.6 are regarded an ecologically significant overlap
in diet [81] (Supplementary Materials).

The indices were calculated using PAST [84]. The following parameters were included in the
calculation:
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Habitat-related traits:

Depth-range distribution: Species can compete only if they co-occur spatially. Therefore,
an overlap in depth-range distribution between species with decreasing and increasing populations
would be necessary to indicate competition between them. The depth-range distribution in the trawls
from 1990–1994 was used for fishes with decreasing proportions, but that of 2008–2011 for increasing
species. Data from three depth ranges (shallow, medium, deep) were available and log10 transformed
for the calculation.

Habitat types: (1) Pelagic; (2) hard bottom, rocks, caves, crevices; (3) soft bottom; and (4) vegetated
bottom, including seagrass meadows and algal forests. All four parameters are ordinal values
(0—absent from the habitat type; 1—partly using the habitat type; 2—main habitat type).

Diel activity: Diel activity patterns in fishes may be strongly determined by activity patterns of
their prey, thus, differences in activity indicate niche separation or represent avoidance of competition,
while coinciding feeding activity among species may result in strong competition [85–87]. We used
two variables representing the main activity period, diurnal and nocturnal (0—no; 1—yes, for each).

Diet-related traits:

Diet: Major diet components (10 components for juveniles and 12 for adult fishes): Seagrass
and algae (juv./adult), zooplankton (juv./adult), Echinodermata (juv./adult), Hydrozoa (juv./adult),
Porifera (juv./adult), worms (juv./adult), mollusks (juv.), Gastropoda (adult), Bivalvia (adult),
Cephalopoda (adult), Peracarida (juv./adult), Decapoda (juv./adult), fish (juv./adult). All diet
components were classified according to four ordinal categories: 0—less than 1% of total food; 1—1
to 10% of total food; 2—>10 to 40% of total food; and 3—more than 40%. These categories refer to
food weight proportions for juvenile or adult stages of a certain fish species. If two or more studies
revealed differences in the weight proportions of a certain species between seasons or locations, the
data were averaged. Stergiou and Karpouzi [88], and several additional published data, were used
to determine the categories of diet components and most diet analyses, even from non-indigenous
species, were conducted in the Mediterranean Sea. If weight proportions were not given in these
references, the Index of Relative Importance [89] was used instead.

5. Conclusions

Spatio-temporal shifts in fish communities may be caused by complex and long-term processes.
Obvious culprits such as invasive species are easy to pinpoint, but here we found the direct link
with native species decline to be weak. More detailed studies on non-indigenous marine fish
species are needed to verify or refute their impact on native species. Studies should include an
assessment of fishery data, field observations (monitoring), and experimental studies on predation,
competition, alteration of habitat, and interruption of food webs. Experimental studies verifying
the ecological impact of invasive fishes have already been carried out for Pterois spp. in the Greater
Caribbean [30,31,90,91] and N. melanostomus in the Baltic Sea [44]. However, in the Mediterranean
Sea an impact of invasive species on native ecosystems or species was demonstrated experimentally
only for Siganus spp. [49]. Fisheries data may also constitute an under-utilized source of information,
because they are widely available and recorded over long periods. Regardless of the direct impact
of non-indigenous fishes on native species, a transformation of the Eastern Mediterranean Sea to
an ichthyological extension of the Red Sea may have multiple indirect consequences for ecosystem
structure and function that are currently not well understood.

Supplementary Materials: The following tables are available online at http://www.mdpi.com/2410-3888/3/
2/19/s1; Table S1: Data used in the calculation of GLM to relate the changes in species abundance (population
trend) with traits, Table S2: Data used in the calculation of the Bray-Curtis index (overlap of habitat-related traits),
Table S3: Data used in the calculation of the Morisita-Horn index (overlap of diet-related parameters).

http://www.mdpi.com/2410-3888/3/2/19/s1
http://www.mdpi.com/2410-3888/3/2/19/s1
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invader round goby, Neogobius melanostomus (Actinopterygii: Perciformes: Gobiidae), and its trophic role in
the Curonian Lagoon, SE Baltic Sea. Acta Ichthyol. Piscat. 2013, 43, 95–108. [CrossRef]

47. Harrison, E.; Lorenz, J.J.; Trexler, J.C. Per capita effects of non-native Mayan Cichlids (Cichlasoma urophthalmus
Günther) on native fish in the estuarine southern Everglades. Copeia 2013, 80–96. [CrossRef]

48. Goren, M.; Galil, B.S.; Diamant, A.; Stern, N.; Levitt-Barmats, Y. Invading up the food web? Invasive fish in
the southeastern Mediterranean Sea. Mar. Biol. 2016, 163, 180. [CrossRef]

49. Elleouet, J.; Albouy, C.; Ben Rais Lasram, F.; Mouillot, D.; Leprieur, F. A trait-based approach for assessing
and mapping niche overlap between native and exotic species: The Mediterranean coastal fish fauna as
a case study. Divers. Distrib. 2014, 20, 1333–1344. [CrossRef]

50. Sala, E.; Kizilkaya, Z.; Yildirim, D.; Ballesteros, E. Alien Marine Fishes Deplete Algal Biomass in the Eastern
Mediterranean. PLoS ONE 2011, 6, e17356. [CrossRef] [PubMed]

51. Vergés, A.; Tomas, F.; Cebrian, E.; Ballesteros, E.; Kizilkaya, Z.; Dendrinos, P.; Karamanlidis, A.A.; Spiegel, D.;
Sala, E. Tropical rabbitfish and the deforestation of a warming temperate sea. J. Ecol. 2014, 102, 1518–1527.
[CrossRef]

52. Edelist, D.; Golani, D.; Rilov, G.; Spanier, E. The invasive venomous striped eel catfish Plotosus lineatus in
the Levant: Possible mechanisms facilitating its rapid invasional success. Mar. Biol. 2012, 159, 283–290.
[CrossRef]

53. Edelist, D. (National Institute of Oceanography, Tel-Shikmona, Haifa, Israel). Personal communication, 2017.
54. Gücü, A.C.; Bingal, F. Trawlable species assemblages on the continental shelf of the Northeastern Levant Sea

(Mediterranean) with an emphasis on Lessepsian migration. Acta Adriat. 1994, 35, 83–100.
55. Golani, D.; Ben-Tuvia, A. Lessepsian migration and the Mediterranean fisheries of Israel. In Condition

of the World’s Aquatic Habitats, Proceedings of the World Fisheries Congress 1992, Theme 1; Athens, Greece;
Armantrout, N.B., Wolotira, R.J., Jr., Eds.; Oxford & IBH Publishing Company: Delhi, India, 1995; pp. 279–289.

56. Carpentieri, P.; Lelli, S.; Colloca, F.; Mohanna, C.; Bartolino, V.; Moubayed, S.; Ardizzone, G.D. Incidence of
lessepsian migrants on landings of the artisanal fishery of south Lebanon. Mar. Biodivers. Rec. 2009, 2, e71.
[CrossRef]

57. Azzurro, E.; Tuset, V.M.; Lombarte, A.; Maynou, F.; Simberloff, D.; Rodríguez-Pérez, A.; Solé, R.V. External
morphology explains the success of biological invasions. Ecol. Lett. 2014, 17, 1455–1463. [CrossRef] [PubMed]

58. Givan, O.; Parravicini, V.; Kulbicki, M.; Belmaker, J. Trait structure reveals the processes underlying fish
establishment in the Mediterranean. Glob. Ecol. Biogeogr. 2017, 26, 142–153. [CrossRef]

59. Bianchi, G.; Gislason, H.; Graham, K.; Hill, L.; Jin, X.; Koranteng, K.; Manickchand-Heileman, S.; Payá, I.;
Sainsbury, K.; Sanchez, F.; et al. Impact of fishing on size composition and diversity of demersal fish
communities. ICES J. Mar. Sci. 2000, 57, 558–571. [CrossRef]

60. Jennings, S.; Kaiser, M.J.; Reynolds, J.D. Marine Fisheries Ecology; Blackwell Science: Oxford, UK, 2001.
61. Reynolds, J.D.; Dulvy, N.K.; Goodwin, N.B.; Hutchings, J.A. Biology of extinction risk in marine fishes.

Proc. Biol. Sci. 2005, 272, 2337–2344. [CrossRef] [PubMed]
62. Tittensor, D.P.; Myers, R.A.; Worm, B. Macroecology of exploited marine systems. In Marine Macroecology;

Witman, J., Roy, K., Eds.; University of Chicago Press: Chicago, IL, USA, 2009; pp. 310–340.

http://dx.doi.org/10.1080/03632415.2011.574578
http://dx.doi.org/10.2478/s11756-014-0483-4
http://dx.doi.org/10.1007/s11160-014-9375-5
http://dx.doi.org/10.1093/icesjms/fsl049
http://dx.doi.org/10.5735/086.048.0301
http://dx.doi.org/10.3750/AIP2013.43.2.02
http://dx.doi.org/10.1643/CE-11-182
http://dx.doi.org/10.1007/s00227-016-2950-7
http://dx.doi.org/10.1111/ddi.12235
http://dx.doi.org/10.1371/journal.pone.0017356
http://www.ncbi.nlm.nih.gov/pubmed/21364943
http://dx.doi.org/10.1111/1365-2745.12324
http://dx.doi.org/10.1007/s00227-011-1806-4
http://dx.doi.org/10.1017/S1755267209000645
http://dx.doi.org/10.1111/ele.12351
http://www.ncbi.nlm.nih.gov/pubmed/25227153
http://dx.doi.org/10.1111/geb.12523
http://dx.doi.org/10.1006/jmsc.2000.0727
http://dx.doi.org/10.1098/rspb.2005.3281
http://www.ncbi.nlm.nih.gov/pubmed/16243696


Fishes 2018, 3, 19 14 of 15

63. Pinnegar, J.K.; Polunin, N.V.C.; Badalamenti, F. Long-term changes in the trophic level of western
Mediterranean fishery and aquaculture landings. Can. J. Fish. Aquat. Sci. 2003, 60, 222–235. [CrossRef]

64. Coll, M.; Shannon, L.J.; Moloney, C.L.; Palomera, I.; Tudela, S. Comparing trophic flows and fishing impacts
of a NW Mediterranean ecosystem with coastal upwelling systems by means of standardized models and
indicators. Ecol. Model. 2006, 198, 53–70. [CrossRef]

65. Azzurro, E. The advance of thermophilic fishes in the Mediterranean Sea: Overview and methodological
questions. In Climate Warming and Related Changes in Mediterranean Marine Biota; Briand, F., Ed.; Workshop
Monographs No. 35; CIESM: Villa Girasole, Monaco, 2008; pp. 39–45.
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