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Abstract: To obtain the growth and age characteristics of Diaphus brachycephalus in the South China Sea
(SCS), specimens of D. brachycephalus were collected by a mid-water trawl in January and June 2015.
The relationship between standard length (L) and body weight (W) was W = 0.00002699L2.8789, with
no significant differences between the two survey stations and the sexes. Microscopic observation of
the sagittal otoliths revealed that the daily growth increments in each period were divided into the
central zone, middle zone, and external zone. The age was determined by summing the daily growth
increments of the three areas. The von Bertalanffy growth curve fitted to the relationship between age
and L was shown as: L = 65.6[1 − exp{−0.0132(t − 6.94)}], r2 = 0.935. The growth rate decreased from
juvenile to adult, with a maximum rate of 0.436 mm day−1. The back-calculated hatching dates of
specimens were speculated to be from March to November, but predominantly occurred from April
to May and from September to October.

Keywords: Diaphus brachycephalus; otolith microstructure; age; growth; South China Sea

1. Introduction

The South China Sea (SCS), which covers an area of approximately 3.5 million km2

and has an average depth of 1200 m, is the largest semi-enclosed marginal sea in the Pacific
Ocean [1–3]. Enormous fishery resources in the SCS provide coastal countries and regions
with a core fishing economy. However, the fishery supply capacity in the SCS has been de-
clining because of excessive fishing capacity. The exploitation of mesopelagic fish resources
in the SCS is still in its infancy but has great potential for future development [4–6].

Mesopelagic fishes live in the mesopelagic zone (200–1000 m). They have an estimated
resource of 5–15 billion tons and are considered the most abundant vertebrates in the
biosphere [7–9]. As one of the most dominant groups of mesopelagic fish, lanternfish
belong to Myctophiformes; there are 348 species in 34 genera in this family, including the
most common and most abundant mesopelagic fish species. They account for at least 20%
of total marine fish species [10,11]. Diel vertical migration (DVM) is a well-known habit
common to most lanternfish species. Lanternfish establish temporal, spatial, and biological
connections between multiple water layers and act as a “biological pump” to facilitate
the input of carbon into the deep ocean through DVM [8,12,13]. These fishes also act as a
trophic link between zooplankton and top predators, such as seabirds, marine mammals,
and other fishes. Both contribute to the energy flow and material cycling of the deep-sea
food web and maintain the stability of deep-sea ecosystems [14–16].

The life span of lanternfish is short, usually 1–5 years, but they have a rapid rate
of regeneration, which is an important reason that they have received attention as a fish
resource [17,18]. However, the lack of age and growth information for many mesopelagic
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fish species limits our knowledge and exploitation of this resource. Their age and growth
can be reflected by the otolith microstructure that originates from a primordium, which is
the first calcified tissue during embryonic development of osteichthyans [19,20]. Otolith
microstructure reveals fish growth in the form of daily annuli formed by the differential
deposits of calcium carbonate and protein. Sagittal otoliths are the largest among the three
pairs of otoliths; they have more observable structures and therefore are more widely
used in fish age growth research [21–23]. Moreover, sagittal otoliths are also used to study
other biological and ecological features of lanternfish, such as DVM, early life history, and
reproduction [22,24–26].

As the largest genus of the family, the Myctophidae genus Diaphus contains 77 species,
which accounts for more than one-third of the species in Myctophidae [27–30].
Diaphus brachycephalus, also known as short-headed lanternfish, is widely distributed in
tropical and subtropical waters around the world, including the SCS [11,31–34]. Several sur-
veys conducted in different areas of the SCS had reported the presence of D. brachycephalus
and indicated that the dominant distribution of this species is in the SCS. However, research
on D. brachycephalus in the SCS is still in its infancy; although some studies have investi-
gated their distribution and DVM, research on their age and growth characteristics is still
lacking [34–37]. In this study, the relationship between age and growth was investigated
through the standard length and sagittal otolith microstructure to estimate the growth
pattern and biology of D. brachycephalus in the SCS. Thus, it provides a useful reference for
further study of D. brachycephalus and scientific guidance for the exploitation of mesopelagic
fish in the SCS.

2. Materials and Methods

Specimens of D. brachycephalus were collected from two survey stations in the SCS in
January and June 2015 by the R/V Nanfeng (1537 t GT, 66.7 m length, 12.4 m width, and
4.8 m draught) and a mid-water trawl (a cod-end mesh size of 10 mm, estimated mouth
opening of approximately 128 m2) with a PI44 monitoring system (Kongsberg Maritime
Inc., Kongsberg, Norway) to ensure that the trawl depths remained relatively constant at
a 75 m water depth (Table 1). To prevent these fragile specimens from being destroyed,
specimens were collected on deck and gently cleaned to remove impurities from the surface
of the body. The above steps were completed as soon as possible. Then, specimens were
immersed in seawater and temporarily stored at a temperature of −40 ◦C [38]. Biological
characteristics were measured and recorded in an onshore laboratory, which included
standard length (L, mm) from the snout tip to the last vertebra (to the nearest 0.1 mm) and
body weight (W, g) to the nearest 0.01 g. Sex was determined by macroscopic observation
of gonads [24].

Table 1. Sampling information of Diaphus brachycephalus in the South China Sea.

Starting Location Finishing
Location Trawl Depth Mean Towing Speed

Sample Time M/D/Y Lat. (N)/Long. (E) Lat. (N)/Long. (E) (m) (m/s)

18:17~19:51 01/27/2015 15◦21.45′/115◦11.07′ 15◦19.93′/115◦04.40′ 75 2.3
21:30~22:30 06/20/2015 19◦48.04′/115◦48.90′ 19◦45.44′/115◦51.90′ 75 1.8

Sagittal otoliths were extracted, numbered, and stored in 1.5 mL tubes filled with
75% alcohol to clean the soft tissue and organic material from the surface of the otoliths
(Figure 1). The cleaned otoliths were dried for 1 h at 60 ◦C and then weighed to two decimal
places in milligrams. After gluing and fixing with epoxy resin and hardener (EpoHeat,
Buehler, Lake Bluff, IL, USA), the otoliths were longitudinally ground by a MetaServ 250
grinding machine (Buehler, Lake Bluff, IL, USA) with 280- and 800-grit sandpaper. They
were further polished on top of its viewing surface using 1200- and 2500-grit sandpaper to
obtain clear longitudinal sections [23,39,40].
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Figure 1. Sagittal otolith of Diaphus brachycephalus (scale = 200 µm).

Sagittal otoliths were divided into three regions: the central zone (CZ), middle
zone (MZ), and external zone (EZ), as proposed by Gigarosov and cited in subsequent
studies [23,41–43]. CZ is a bright area that covers the primordium and provides a clearer
record of daily growth increments during the larval stage. Among the three regions, pig-
mentation is most pronounced in the MZ region, such that the otoliths form a white, black,
and white sandwich structure between the three regions. The reason for this phenomenon
may be related to the change in the perching water layer caused by the metamorphosis
of these fish. EZ records the incremental characterization of fish from the completion of
metamorphosis until they are harvested, and is usually the area with the clearest, densest,
and most abundant incremental characterization. Daily growth increments were counted
at least three times and ended with a difference of less than 5% between the average count
and each count, unless it needed to be recounted. The above counting experiment was
conducted by one person using a light microscope, and the mean value was taken as the
final value for analysis. Both growth increments counted in regions of CZ and MZ were
extracted and used to obtain biological information at metamorphosis. The summaries of
CZ, MZ, and EZ were used for age analysis [20,23,42,43].

Differences between the two regions and between the sexes were tested by one-way
ANOVAs. The interaction between the two regions and sexes was also tested. Additionally,
the biological characteristics of D. brachycephalus were discussed based on the different
results of analyses. The relationship between standard length (L) and body weight (W) was
described by the following equation [20,44]:

W = aLb, (1)

where L is standard length, W is body weight, and a and b are regression coefficients [45].
The relationship between daily growth increments of CZ and MZ is shown below [22,23]:

NCZ = cNMZ + d, (2)

where NCZ is the daily growth increment of CZ and NMZ is the daily growth increment of
MZ. C and d are regression coefficients. In addition, the daily growth increment ratio of CZ
and MZ was calculated to determine the proportion of daily growth between the egg and
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metamorphic stage. The growth model selection was based on the von Bertalanffy (VB)
growth curve, which is expressed as follows [22,23]:

Lt = L∞[1 − exp{−k(t − t0)}], (3)

where Lt is the standard length at age t, L∞ is theoretical asymptotic length, k is the growth
coefficient, and t0 is the theoretical age when L = 0. The calculation of the above parameters
was obtained by maximum likelihood estimation. The growth rate curve was transformed
from the VB growth curve [23]:

dL/dt = L∞ × k × exp[−k(t − t0)], (4)

where dL/dt is the growth rate. The data were analyzed and plotted using Excel 2019, SPSS
21.0, and Origin 9.9.0.225.

3. Results

A total of 87 specimens of D. brachycephalus were collected, of which 46 specimens
(9 males and 37 females) were collected in January 2015, and a total of 41 specimens (7 males
and 34 females) were collected in June 2015.

3.1. Body Length and Weight

The standard length and body weight of the D. brachycephalus specimens had no
significant differences (P > 0.05) between the two regions and between the sexes, as tested by
one-way ANOVAs. The interaction between the two regions and sexes was not significant
(P > 0.05). Therefore, the male and female specimens of the two regions were analyzed as a
whole. Means ± SD for the regions and sexes are shown in Table 2.

Table 2. Standard length (L) and body weight (W) of Diaphus brachycephalus.

M/D/Y Sexes L (mean ± SD, mm) W (mean ± SD, g) n

01/27/2015 male 49.6 ± 6.2 1.98 ± 0.62 9
01/27/2015 female 50.4 ± 5.1 2.27 ± 0.57 37
06/20/2015 male 49.6 ± 3.5 2.15 ± 0.42 7
06/20/2015 female 49.7 ± 2.7 2.15 ± 0.42 34

All specimens (87 in total) were used to describe the relationship between L and W
(males, 16; females, 71). L of D. brachycephalus in the SCS (n = 87) ranged 32.0–58.0 mm,
mean 50.0 ± 4.3 mm, and W of specimens ranged 0.71–3.21 g, mean 2.14 ± 0.51 g. The L–W
relationship (Figure 2) of D. brachycephalus was as follows:

W = 0.00002699L2.8789, r2 = 0.905. (5)

3.2. Sagittal Otolith Microstructure

In total, 73 pairs of clear longitudinal sections of the sagittal otoliths were collected
because of losses during extraction and grinding. Females accounted for 59 sagittal otoliths,
of which 30 were from January 2015 and 29 were from June 2015. Additionally, 7 sagittal
otoliths from males were obtained from each region. The one on the right was selected for
microscopic observation. Sagittal otolith microstructure of D. brachycephalus is composed of
CZ, MZ, and EZ (Figure 3). These three zones were wrapped around from the inside out,
which is visible through light micrographs. Moreover, a number of daily growth increments
were found in MZ with abnormal dark colors and shapes. Daily growth increments of CZ,
MZ, and EZ were counted for all 73 specimens. Additionally, the daily growth increments
of CZ and MZ fluctuated within a relatively small range 16–26 (mean = 20.3 ± 2.6) and
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12–20 (mean = 16.0 ± 1.9), respectively. The ratio of CZ/MZ was 1.27, and the relationship
between daily growth increments of CZ and MZ was fitted as:

NCZ = 0.05029NMZ + 13.9574, r2 = 0.0714, P > 0.05. (6)
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middle zone (MZ), and external zone (EZ). The shaded area across the otolith on the right was a
fracture caused by dehydration due to the action of alcohol when the otolith was preserved and did
not affect the observation of daily growth increments.

Daily growth increments in EZ ranged 18–137. The results showed that daily growth
increments of D. brachycephalus did not significantly differ between the regions or between
the sexes (One-way ANOVA, P > 0.05).
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3.3. Age and Growth

The ages of D. brachycephalus, ranging 59–168, were obtained by summing all of
the daily growth increments in CZ, MZ, and EZ. There were non-significant differences
between the two regions and sexes (one-way ANOVA, P > 0.05). Additionally, their
interaction between the two regions and sexes was not significantly different (P > 0.05).
Mean ages of males and females in January 2015 were 115 ± 27 days and 119 ± 25 days,
respectively. The mean ages of males and females in June 2015 were 119 ± 15 days and
115 ± 13 days, respectively. Moreover, the interaction between the two regions and sexes
was not significant (P > 0.05). The VB growth curve for D. brachycephalus was determined
by fitting standard length and age (Figure 4):

L = 65.6[1 − exp{−0.0132(t − 6.94)}], r2 = 0.935, (7)

where L is standard length, t is the age in days (summary of daily growth increments in CZ,
MZ, and EZ). Fitting the relationship between age and L, the growth rate curve was shown
in (Figure 5):

dL/dt = 65.6 × 0.0132 × exp[−0.0132(t − 6.94)]. (8)
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The maximum growth rate was 0.436 mm day−1 at the age of 59 days, when the
standard length of D. brachycephalus was 32.0 mm and the body weight was 0.54 g. Based
on age and date of capture, the back-calculated hatching dates of D. brachycephalus were
distributed from March to May and from August to November, with two peak spawning
periods concentrated from April to May and from September to October (Figure 6).
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4. Discussion

In this study, there were more female than male D. brachycephalus specimens collected
in the SCS, with a ratio of females to males of approximately 4.44. This is a trait thought
to be common in many species of lanternfish; a large number of females would produce
abundant eggs to guarantee a high population recruitment rate, such as in D. garmani,
D. chrysorhynchus, and Myctophum asperum [17,22,46–48]. In our study, the range of stan-
dard length and body weight of D. brachycephalus (L, 32–58 mm and W, 0.71–3.21 g) were
larger than the finding of Lopez-Perez in the Atlantic (L, 12–47 mm and W, 0.02–0.75 g) [49].
Additionally, there were neither sex nor regional differences (P > 0.05) in D. brachycephalus
from the SCS. Gibbs also concluded that D. brachycephalus had no sexual dimorphism in
body size [50]. Thus, based on the premise that there was no significant difference in
body weight and sex, our collection could be used to analyze the relationship between
L–W despite only including a few males. These specimens showed that D. brachycephalus
had negative allometric growth, whereas most species of mesopelagic fish have isomet-
ric growth, such as Benthosema pterotum, Ceratoscopelus warmingii, Hygophum benoiti, and
Hygophum hygomii [23,25,51].

Interestingly, our findings were opposite to those of Froese’s survey in the Atlantic [43].
The L–W relationship in the SCS and Atlantic was W = 0.000026999 × L2.8789 and
W = 0.00000131 × L3.39, respectively, suggesting that D. brachycephalus had negative allomet-
ric growth in the SCS and positive allometric growth in the Atlantic. This phenomenon also
occurred in M. punctatum from different regions, with the following relationships between
L–W: W = 0.00000057 × L3.36 in the Atlantic and W = 0.000014 × L2.97 in the Mediterranean
Sea [25,51]. The differences in the environment and temperature of the ocean may be the
main reasons for the differences in the L–W relationships among lanternfish. By sorting out
the biological characteristics of D. brachycephalus, we found that the length of juveniles of
D. brachycephalus ranged 10–26 mm, subadults 25–40 mm, and adults were generally less
than 61 mm [51,52]. Such evidence might explain the discrepancy between our results and
those of Lopez-Perez; the Lopez-Perez study might have focused more on the subadult
stage of D. brachycephalus and the influence of geographical differences [49].
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CZ and MZ document lanternfish developmental processes during their juvenile years.
CZ covers the embryonic development of a fertilized egg and ends with hatching. The for-
mation of MZ is still uncertain, but it is generally believed that larval fishes migrate to deep
waters where they complete their metamorphosis and thus become subadults [22,23,53].
In the absence of accurate descriptions of egg information for D. brachycephalus, we refer
to spawning information for other species of mesopelagic fish in the genus Diaphus. The
presence of hydrated oocytes signals that the fish are about to spawn; thus, in the absence
of direct collection of eggs from water, the layer of water in which females with hydrated
oocytes are collected can be considered the layer in which spawning takes place [46,54,55].
When the gonads of the specimens were examined, 32.4% of the females were found to have
hydrated oocytes and the rest were in a state of ovarian development close to imminent
spawning. Therefore, D. brachycephalus is likely to spawn in surface waters. Gibbs found
D. brachycephalus larvae at depths from 150 m to 250 m, suggesting that MZ formation was
influenced by metamorphosis and DVM [50].

In our study, CZ ranged 16–26 days (mean = 20.3 days). CZ varies between
different species; for example, 33–43 days in Myctophum nitidulum, 80–139 days in
Tarletonbeania crenularis, 22–32 days in B. pterotum, and 14–40 days in C. warmingii [23,41–43].
Additionally, MZ ranged 12–20 days (mean = 16 days), which was similar to
Lampanyctodes hectoris (5–9 days), Notoscopelus resplendens (mean = 23 days), and M. asperum
(mean = 10 days) [22,47,56]. MZ also varies considerably between lanternfish; for example,
51–102 days in Tarletonbeania crenularis and 24–54 days in C. warmingii [42,57]. In addi-
tion, there was no significant correlation between the daily increments of CZ and MZ
in our study, and the ratio of the mean increments in the CZ/MZ of D. brachycephalus
sagittal otoliths was 1.27. The same weak correlation between EZ and MZ was found in
other studies, with the ratio between the two areas fluctuating around 1.00 [23,42,43]. For
D. brachycephalus, the lower and more concentrated daily growth of CZ and MZ may be
due to a combination of the marine environment in the SCS and the reproductive strategy
of the population. That is, to maintain a relative balance in population dynamics, small
individual fish of D. brachycephalus need to rapidly develop in preparation for entering the
reproductive phase as soon as possible.

The VB growth curve objectively reflects the growth of D. brachycephalus. Age and
standard length were used as parameters to fit the growth equation and study the growth
rate of D. brachycephalus. The L∞ (65.6, mm) of the growth curve was larger than the
maximum standard length (58 mm), whereas L∞ was greater than the currently known
maximum standard length (61 mm) [52]. The VB growth curve objectively reflected the
growth of D. brachycephalus, with r2 = 0.935. Based on the available D. brachycephalus,
the growth rate of juveniles was faster than that of adults, with a maximum growth
rate of 0.436 mm day−1, which was faster than other lanternfish, such as
S. californiensis (0.31 mm day−1), M. asperum (0.3 mm day−1), and C. warmingii
(0.35 mm day−1) [22,23,57,58]. However, benefiting from the distribution of specimens
at various age stages from larval to adult, especially including the larval stage, Sarmiento-
Lezcano argued that the otolith weight–age relationship of N. ressplendens was more in line
with the Gompertz curve, whereas the relationship between standard length and age fitted
well in both the Gompertz and the VB growth curve [56]. In the future, we need to know
more about the distribution characteristics of D. brachycephalus to obtain larval specimens.
The spawning of D. brachycephalus was mainly concentrated in April to May and September
to October, suggesting that D. brachycephalus had at least two peak spawning periods in
one year; however, this is based on the assumption of two surveys. We cannot rule out the
possibility of spawning in other seasons, which will require investigation over a longer
time span.

There are many gaps in the research on the microstructure of lanternfish otoliths that
need to be addressed. In future studies, otolith preservation techniques will need to be
fully considered, in addition to the integrity of the specimens at all age stages; a long-time
span is required for such investigations. Alcohol is the most commonly used preservation
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solvent in otolith studies. Because of the narrow shape of the otoliths in D. brachycephalus,
they would have fractured under the dehydrating effect of alcohol. Furthermore, Moku
found that the preservation techniques of alcohol or formalin, which are popular at this
stage, cause the otoliths to shrink and affect the assessment of age [59]. Therefore, the
preservation method of otoliths needs to be further improved.

5. Conclusions

This study confirmed the age and growth of D. brachycephalus in the SCS for the first
time by analysis of L, W, and sagittal otolith microstructure. The relationship between
standard length (L) and body weight (W) was W = 0.00002699L2.8789, with non-significant
sex differences. Moreover, D. brachycephalus was determined to have a short hatching
period and metamorphosis period on the basis of the different areas of the sagittal otolith
(CZ, MZ, EZ). The von Bertalanffy (VB) growth curves fitted to the relationship between
age and L were shown as: L = 65.6[1 − exp{−0.0132 (t − 6.94)}], r2 = 0.935. We successfully
obtained a faster growth rate during the juvenile period of D. brachycephalus as a result of
the VB growth curve fitted with L and age, and the growth rate curve for L was dL/dt. The
results indicated that D. brachycephalus is a short-lived small fish, and the microstructure of
otoliths could well reflect the age and growth of D. brachycephalus.
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