
 
 

 

 
Fishes 2023, 8, 317. https://doi.org/10.3390/fishes8060317 www.mdpi.com/journal/fishes 

Article 

Differentiation of Spatial Units of Genus Euthynnus from the 
Eastern Atlantic and the Mediterranean Using Otolith  
Shape Analysis 
Rubén Muñoz-Lechuga 1,2, Fambaye Ngom Sow 3, Diaha N’Guessan Constance 4, Davy Angueko 5, David Macías 6, 
Alexia Massa-Gallucci 7,8, Guelson Batista da Silva 9, Jorge M. S. Gonçalves 10 and Pedro G. Lino 1,* 

1 Portuguese Institute for the Ocean and Atmosphere (IPMA), Avenida 5 de Outubro s/n,  
8700-305 Olhão, Portugal; rubenmunozlechuga@gmail.com 

2 Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz,  
11510 Puerto Real, Cádiz, Spain 

3 Oceanographic Research Center of Dakar Thiaroye—CRODT/ISRA, LNERV—Route du Front de Terre,  
Dakar BP 2241, Senegal; ngomfambaye2015@gmail.com 

4 Center of Oceanology Research, 29 Rue des Pêcheurs—BP V-18, Abidjan 01, Côte d’Ivoire; 
diahaconstance@yahoo.fr 

5 General Directorate of Fisheries and Aquaculture, Libreville BP 9498, Estuaire, Gabon; 
davyangueko83@gmail.com 

6 Spanish Institute of Oceanography, Oceanographic Center of Málaga, Puerto Pesquero s/n,  
29460 Fuengirola, Málaga, Spain; david.macias@ieo.csic.es 

7 AquaBioTech Group Central Complex, Naggar Street, Targa Gap, MST 1761 Mosta, Malta; 
alexia.massagallucci@gmail.com 

8 Blue EcoTech Ltd., 55 Gardenia Independence Street, ZBG 02666 Zebbug, Malta 
9 Animal Science Department, University Federal Rural of Semiárido, Av. Francisco Mota,  

572—Bairro Pres. Costa e Silva, Mossoró CEP 59.625–900, RN, Brazil; guelson@ufersa.edu.br 
10 CCMAR—Centre of Marine Sciences, Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal; 

jgoncal@ualg.pt 
* Correspondence: plino@ipma.pt 

Abstract: The shape of sagitta otoliths was used to compare individuals of little tunny (Euthynnus 
alleteratus) harvested on board commercial fishing vessels from the coastal areas along the Eastern 
Atlantic, including the Mediterranean Sea. Fish sampling and selection was designed to cover 
possible seasonal changes and tuna size. The research encompassed both morphometric and shape 
analyses of left sagittal otoliths extracted of 504 fish specimens. Four shape indices (Circularity, 
Roundness, Rectangularity, and Form-Factor) were significantly different between two groups, 
showing a statistical differentiation between two clear spatial units. The degree of divergence was 
even more pronounced along the rostrum, postrostrum, and excisura of the generated otolith 
outlines between these two groups. One group corresponds to the samples from the coastal areas 
in the Northeast Temperate Atlantic and Mediterranean Sea (NETAM Area) and a second group 
from the coastal areas off the Eastern Tropical Atlantic coast of Africa (ETA Area). This study is the 
first to use otolith shape to differentiate tunas from separate spatial units. These results could be 
used to re-classify previously collected samples and to correct time series of data collected. 

Keywords: stock delimitation; tuna; morphology; fish population; shaper 

Key Contribution: The analysis of the shape of sagitta otoliths of Euthynnus alleteratus statistically 
differentiated two spatial groups within the Eastern Atlantic. The results have implications for the 
spatial management of this species by ICCAT and could be used to separate historical samples. 
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1. Introduction 
An accurate understanding of the fish population structure is of vital importance for 

sustainable management [1]. The incomprehension of the population structure of 
exploited species can lead to dramatic changes in biological attributes, productivity rates, 
and genetic diversity, as well as overfishing and depletion of the less productive 
population units [2,3]. To initially investigate the population structure of marine fish 
species, it is necessary to successfully determine the discrimination of the populations [4]. 
Several techniques have been used to identify stock limits, such as tagging experiments 
[5], analyses of spatial and temporal variation of genetic or morphometric markers [6–8], 
differentiation of life-history variables [9], parasites composition [10,11], and contaminant 
concentrations [12]. 

Otolith-based research is an important tool that provides information on the 
population biology and life history of fish that is otherwise extremely difficult to collect 
[13]. Otolith research can be categorized into several distinct themes: (1) age and growth 
estimation and validation; (2) chemical composition; (3) historical comparisons using 
ancient otoliths; (4) otolith identification from intestinal contents of marine species in diet-
based studies; (5) species identification, especially among cryptic species or in particular 
environments; and (6) shape analysis for stock structure and fisheries management [14–21]. 

Otolith morphology study can be a powerful tool for fish stock identification 
purposes, in particular for stocks that are likely to have spent a significant part of their 
lives in different environments and therefore may provide an indirect basis for potential 
stock separation [4,22,23]. Otolith shape analysis has recently gained interest among 
fisheries biologists, as it is a particularly powerful tool to investigate the stock 
discrimination in fish species, since several studies show evidence that it is controlled by 
both genetic and environmental factors [24–26], and thus highly variable between species 
and populations [17,27,28]. Although this technique has been widely used for 
discriminating diverse species, it has not been frequently applied in tuna and small tuna 
species [29–31]. 

The group of small tunas include a large number of species [32], mainly from the 
coastal areas [33]. The genus Euthynnus is one of the best-known species groups and is 
composed of three species: Euthynnus lineatus, Euthynnus affinis, and Euthynnus 
alletteratus. The little tunny (LTA)—Euthynnus alletteratus—is distributed throughout 
tropical and temperate zones of the Atlantic Ocean, including the Gulf of Mexico and the 
Mediterranean Sea. It is a commercially important tuna species in regional fishing 
communities due to the large volume of their catches [34], and is mainly exploited by 
gears such as gillnets, handline, traps, and purse seines [35]. 

The International Commission for the Conservation of Atlantic Tunas (ICCAT) is the 
organization responsible for the stock assessment and management of the populations of 
tunas and tuna-like species across the Atlantic Ocean and its adjacent seas [36]. This 
includes small tuna species such as Euthynnus alletteratus. According to the ICCAT official 
catch statistics, this species account for a significant proportion of the total small tuna 
species production, representing in the last years around 15% of the total catch [37]. 
Diverse biological information on this species is available focusing on age and growth 
[38–44], reproduction [45–51], and stock assessment [32,35]. However, concerning stock 
structure, there are some knowledge gaps with a lack of concise information on this 
species [43,44]. At present, there are no clear stock boundaries defined for some small tuna 
species such as little tunny in the Atlantic Ocean. Generally, five stocks unit areas are 
defined by ICCAT for data collection and management purposes: Mediterranean Sea, 
Southwest Atlantic, Southeast Atlantic, Northwest Atlantic, and Northeast Atlantic [35]. 
Therefore, the advance in the knowledge of the stocks structure of this species will 
improve the understanding and management of its fishery in the future. 

In this research, the main focus was to evaluate population differences based on the 
shape of the sagittal otolith for little tunny captured along the coastal areas of Eastern 
Atlantic Ocean and Mediterranean Sea. In the same way, the usefulness of otoliths was 



Fishes 2023, 8, 317 3 of 16 
 

 

validated as an applicable technique in small tunas, so as to generate correct management 
recommendations on these fisheries. 

2. Materials and Methods 
2.1. Tuna Sampling and Otoliths Collection 

Little tunny samples were collected between 2017 and 2021 by observers on board 
commercial fishing vessels of gillnets, trawlers, handlines, traps, and purse seines on the 
Atlantic and Mediterranean, including Malta, Portugal, Spain, Senegal, Côte d’Ivoire, and 
Gabon coastal waters. Fish selection was based on the capture area during all potential 
months to cover possible seasonal changes and tuna size. Sagittal otoliths were extracted 
from 504 fishes at the laboratory, were cleaned with ultrapure water, allowed to dry, and 
stored in Eppendorfs. Straight fork length (SFL) was measured for each specimen to the 
nearest mm ranging from 219 mm to 987 mm (mean 407 mm; SD 135) (Table 1). The left 
sagitta was used for otolith morphometry and shape analysis. 

Table 1. Summary of length samples (cm) of little tunny collected across various areas and countries. 

Area/Country N Mean Mín Máx Fishery 
NETAM Area 164 50.0 21.9 103.0  

Malta 4 94.5 91.0 103.0 Handline 
Portugal 143 45.4 21.9 69.6 Trap; Gillnet 

Spain 17 82.3 22.0 98.7 Trawler; Handline; Purse seine 
ETA Area 340 40.7 27.0 87.2  

Côte d’Ivoire 91 45.0 30.5 87.2 Gillnet 
Gabon 62 32.8 27.0 38.0 Gillnet; Purse seine 

Senegal 187 41.8 30.4 61.0 Handline; Purse seine 

2.2. Otoliths Image Processing and Shape Analysis 
For imaging, otoliths were photographed individually using a digital video camera 

mounted on a binocular microscope (Nikon SMZ1270, Tokyo, Japan) under reflected light 
and dark field. Each otolith was oriented with the sulcus side facing up and the rostrum 
pointing to the left. In some cases, to improve the image quality of the otoliths, the 
software ImageJ 1.53 t was used [52]. All images were stored in JPEG format with file sizes 
ranging from 107 to 790 kb. The images were imported into the “shapeR" package [52] for 
R[53], and were analyzed under the same threshold level (0.2) to generate the otolith 
morphometrics including length, width, area, and perimeter (Figure 1). 
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Figure 1. Original and processed images of two little tunny sagittal otolith from Portugal—58.9 cm 
SFL (A,B) and Côte d’Ivoire—67.9 cm SFL (C,D). 

2.3. Preliminary Data Analysis 
Preliminary analyses were carried out comparing otolith shapes collected in coastal 

waters of different countries. To examine and compare the variation in otolith outline of 
each country, the mean shape was plotted using the “shapeR" package [54]. Standardized 
wavelet coefficients represented the otolith shape. Standardization of the wavelet 
coefficient uses the straight fork length of the fish to remove the allometric effect of growth 
on the otolith, but is unable to correct any ontogenetic changes which an otolith may 
experience across sizes/ages [25]. This adjustment for allometric relationships with fish 
length is also implemented in the “shapeR” package [52]. The standardized wavelet 
coefficients were visually inspected for normality before further statistical analyses. 
Canonical Analysis of Principal Coordinates (CAP) was conducted using the “capscale” 
function of the “vegan” package [55] on standardized wavelet coefficients. 

Hierarchical cluster analysis was performed to evaluate the similarity and diversity 
of country samples based on the averages of the CAP ordination and the mean of six 
otolith morphological indices (Figure 2A). For cluster analysis, Euclidean distance 
measures and Ward linkage were used. The six common shape indices calculated using 
the otolith morphometrics were: Circularity, Roundness, Rectangularity, Form Factor, 
Aspect Ratio, and Ellipticity (Table 2). 

The ordination of the averages in each country area was visually assessed using the 
first two canonical axes (CAP1 and CAP2) (Figure 2B). Finally, the average shape outline 
of otoliths for each country area was plotted to explore the relationship between otolith 
shape and country [56] (Figure 2C). 
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Figure 2. Hierarchical clustering based on the averages of CAP ordination and the otolith 
morphological indices (A). Canonical analysis of principal coordinates of the Wavelet coefficients 
for six country areas. CAP1 and CAP2 are the first and second discriminant axis, respectively. The 
group centroids represent the mean canonical value for each country samples analyzed (B). Average 
shape outline of otoliths for each country area. The numbers 0, 90, 180, and 270 represent angle in 
degrees (°) (C). 
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The preliminary analysis statistically separated two groups that corresponded to 
distinct spatial areas. The similarities obtained between individuals captured in nearby 
areas highlighted the clear differentiation between two groups. The first group included 
samples collected in the Northeast Temperate Atlantic and the Mediterranean Sea 
(Portugal, Spain, and Malta) called the NETAM Area (n = 164) and the second group 
included samples collected in the Eastern Tropical Atlantic coast of Africa (Senegal, Côte 
d’Ivoire, and Gabon), which was called the ETA Area (n = 340) (Table 1; Figure 3). 

Table 2. Otolith morphological indices calculated from the measurement data. OA = otolith area 
(mm2), OL = otolith length (mm), OP = otolith perimeter (mm), OW = otolith width (mm). 

Morphological Index Formula 

Aspect ratio 
𝑂𝑂  

Circularity 
𝑂𝑂  

Ellipticity 
𝑂 –𝑂𝑂 𝑂  

Form-Factor 
4𝜋𝑂𝑂  

Rectangularity 
𝑂𝑂 ∗ 𝑂  

Roundness 
4𝑂𝜋𝑂  

 
Figure 3. Map showing area where little tunny individuals were collected. The two distinct groups 
identified in the preliminary analysis (in black and red) correspond to samples collected in the 
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Northeast Temperate Atlantic and Mediterranean Sea (NETAM Area) and in the Eastern Tropical 
Atlantic (ETA Area) respectively. 

2.4. Data Analysis 
In light of the existence of two statistically distinct groups, specific analyses were 

carried out to compare them. A univariate analysis of variance (ANOVA) was used to test 
for differences in the shape indices between individuals of two delimited areas (NETAM 
and ETA). Additionally, a t-test analysis was used to assess the differences in Wavelet 
coefficients between samples from both areas. 

The variation in otolith shape was examined by plotting the mean shape of each area. 
To estimate which part of the otolith outline contributed most to the difference between 
the potential groups, the mean and standard deviation of the coefficients were plotted 
against the angle using “plotCI” function from the “gplots” package [57] as recommended 
by Libungan et al. (2016) [58]. The proportion of variation within groups along the outline 
was summarized with intraclass correlation (ICC). Canonical Analysis of Principal 
coordinates (CAP) was performed on the standardized wavelet coefficients to explore the 
relationships between otolith shape and geographical area. The ordination of the averages 
in each group area (NETAM and ETA) was graphically examined along the first two 
canonical axes (CAP1 and CAP2). The canonical scores were further tested for significance 
(α = 0.05) using ANOVA-like permutation tests with 1000 permutations. 

3. Results 
The one-way ANOVA test used to compare shape indices between the delimited 

areas revealed differences (Table 3). In effect, examination of the mean otolith shape 
demonstrated that there were dissimilarities among both areas in the study. In this work, 
the differences were observed for four shape indices. The sagittae otoliths from the 
NETAM Area were significantly different from those from the ETA Area in Circularity, 
Roundness, Rectangularity, and Form-Factor (p-value < 0.05). In contrast, Aspect Ratio 
and Ellipticity were not significantly different. Among shape indices analyzed in this 
work, Circularity, Form-Factor, Roundness, and Rectangularity were the most efficient 
variables in distinguishing both delimited areas. 

Table 3. One-way analyses of variance (ANOVA) to test differences in otolith shape indices between 
Northeast Temperate Atlantic together with the Mediterranean Sea (NETAM Area) and Eastern 
Tropical Atlantic (ETA Area) samples of Euthynnus alletteratus. 

Morphological Index Mean ± NETAM Mean ± ETA F-Value p-Value 
Aspect ratio 0.39 ± 0.04 0.39 ± 0.03 0.9 0.349 
Circularity 30.86 ± 2.75 27.65 ± 2.28 190.9 <0.001 
Ellipticity 0.44 ± 0.04 0.44 ± 0.03 0.6 0.425 
Form-Factor 0.41 ± 0.04 0.46 ± 0.04 187.2 <0.001 
Rectangularity 0.76 ± 0.03 0.80 ± 0.02 336.3 <0.001 
Roundness 2.50 ± 0.29 2.65 ± 0.20 44.6 <0.001 

The results of ANOVA-like permutation test using the Wavelet distances 
demonstrated significant differences between areas (p < 0.05). These differences were 
mainly at the excisura, rostrum, and postrostrum projections (Figure 4), which was further 
confirmed by examining variability in the mean Wavelet coefficients and the proportion 
of variation between both groups summarized with the ICC (Figure 5). Furthermore, 
almost 60% of the Wavelet coefficients revealed significant differences (Supplementary 
Figure S1). The otoliths from little tunnies captured in the ETA Area were less indented at 
the level of the excisura compared to those captured in the NETAM Area, but largest at 
the level of the postrostrum. This comparison of the otolith shape showed a large variation 
along the outline of the otolith at 0–40°, 120–210°, and 330–360° angles. 
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Figure 4. Average shape of otoliths for the two sampling areas in the study. The numbers 0, 90, 180, 
and 270 represent the angle in degrees (°) on the outline which correspond to Figure 5. Northeast 
Temperate Atlantic and Mediterranean Sea (NETAM Area). Eastern Tropical Atlantic (ETA Area). 
The central crossmap indicates the position of the otoliths: anterior (A); dorsal (D); posterior (P); 
ventral (V). 

 
Figure 5. Mean and standard deviation (dots and whiskers) of the Wavelet coefficients for all 
combined otoliths and the proportion of variance within groups for the intraclass correlation (ICC, 
black solid line). 

Analyzing the canonical scores for both areas revealed the largest differences between 
areas. The first two discriminating axes of the CAP analysis based on the Wavelet 
coefficients explained 36.6% of the variation between the two species group (CAP 1: 11.6%, 
CAP 2: 25%), demonstrating a clear difference between NETAM and ETA (Figure 6). 
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Figure 6. Canonical analysis of principal coordinates of the Wavelet coefficients for the two sampled 
areas. CAP1 and CAP2 are the first and second discriminant axis, respectively. The group centroids 
represent the mean canonical value for each area analyzed. Northeast Temperate Atlantic and 
Mediterranean Sea (NETAM Area). Eastern Tropical Atlantic (ETA Area). 

4. Discussion 
Otolith shape analysis statistical differences between the two groups provided a clear 

indication of the differentiation between these two spatial units of Euthynnus alletteratus 
present in the Atlantic Ocean. The most significant variation was observed in the shape-
related morphometric indices, such as Circularity, Roundness, Rectangularity, and Form-
Factor, which effectively differentiated the samples from NETAM and ETA areas (Table 
3). The divergence was further evident along the rostrum, postrostrum, and excisura of 
the generated otolith outlines, as shown in Figure 4. These results were also supported by 
the proportion of variance within groups for the intraclass correlation (Figure 5). 

This discreteness can be attributed to genetic isolation as well as the differences in 
environmental conditions between two delimited regions [59,60] creating 
phylogeographical breaks [61]. Another possible explanation for the differentiation of the 
species could be due to latitudinal isolation due to lack of migration patterns, geographic 
distance, and differences in oceanographic characteristics [62,63], which would also prove 
the pattern observed in the genus Euthynnus in the Atlantic [44]. This situation can lead to 
a biological specialization, which is linked to a differentiation in growth, reproductive, 
and morphological aspects [64]. 

Biological differences between both areas analyzed in this work have been poorly 
documented. In the genetic aspect, differentiating results could indicate the presence of 
separate species [65,66]. Olle et al. (2022) observed that the mtDNA CR divergence 
between the two areas studied of E. alletteratus was nearly 20 times larger than the CR 
divergence between E. lineatus (Pacific Ocean) and E. affinis (Indian Ocean), and similar to 
the distance that separates E. alletteratus respectively from E. affinis and from E. lineatus 
[65]. Regarding growth, almost all the works published so far come from very specific 
areas and mostly from the Mediterranean [39,40,42,43]. However, comparing one of the 
few studies in progress developed in the ETA area, specifically on the coast of Senegal 
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[67], and comparing the length at age information with the values of other individuals in 
the Mediterranean Sea, differences are observed. For the same age, the values from 
Senegal presented smaller lengths compared to those from the Mediterranean and the 
Western Atlantic [41,44,68]. Similarly, reproduction has been poorly analyzed in this 
species. If the existing information between ETA and NETAM areas is compared, in a 
study carried out in the ETA area, a very extensive spawning period is observed, which 
occupies practically the whole year [47]. However, in the Mediterranean Sea, the period 
is quite seasonal and limited, coinciding with the warmer period, between the months of 
June and August [49–51,69]. However, both biological aspects must be studied in depth 
in the future. On the other hand, morphometric differences were observed between 
individuals from the Tunisian coast compared to others from the ETA area [70]. This 
evidence agrees with the spatial structure we propose in this study. Similarly, species 
differentiation along Atlantic Ocean have been documented for several fish genera such 
as Lepidopus spp. (Ward et al. 2008), Auxis spp. [71,72], Thunnus spp. [73], Scomber spp. 
[74,75], Trachurus spp. [76], Zeus spp. [77], and Diplodus spp. [78]. 

There is abundant scientific literature that applies otolith shape analysis as a stock 
differentiator or population structure descriptor [79–84]. This technique has also been 
widely used for the differentiation between species [85–91], demonstrating that it is an 
efficient technique for this type of analysis [28]. The shape of the otolith is known to vary 
depending on the ecological, evolutionary, and phylogenetic characteristics of each 
species [92]. This variation is particularly evident in coastal species that inhabit dynamic 
environments, such as E. alletteratus, and can be observed in the morphometry of their 
otoliths. The high differentiation and classification rates observed for our research-
collected otoliths indicate that, as previously confirmed by genetic analyses, it follows that 
there are clear otolith shape differences between the Northeast Temperate Atlantic 
together with the Mediterranean Sea and Eastern Tropical Atlantic areas with a high 
degree of confidence. A pattern that is repeated in this type of study in the differentiation 
of species from shape otoliths, which is also fulfilled in our work, is that at least three 
otolith morphological descriptors analyzed show significant variations between the 
groups of individuals analyzed and 25% of the otolith outlines present great divergences 
[85–91]. Perhaps these are results to consider when carrying out an analysis of this type 
for the differentiation between species. This may indicate certain isolation among 
localities that are nearby each other geographically or that there are natural environmental 
barriers that prevent mixing between both areas [93]. This situation is not common in 
pelagic fish species and even less in tuna, since they tend to migrate over medium or long 
distances, both along coastal areas and on open sea [94–97]. There are cases of restricted 
geographic expansion in some tuna species in the Atlantic waters, such as Thunnus 
atlanticus, which is distributed exclusively in tropical and subtropical waters of the 
Western Atlantic Ocean, ranging from the mid-Atlantic region of the United States east 
coast to northern Brazil, including the Gulf of Mexico [98]. In the same way, Auxis thazard, 
although it can be found throughout the Atlantic Ocean, is not distributed along the 
Mediterranean Sea, where Auxis rochei is dominant [71]. However, there are records 
mainly from the Strait of Gibraltar, the area where water masses interchanges between the 
Atlantic Ocean and the Mediterranean Sea [72]. 

From the analysis in the paper, the differentiation results are similar to other 
previously published results for different species of one same genus [27,91,99–101]. Some 
studies have been carried out using otolith shape analysis in tunas and small tunas, mainly 
for stock delimitation [29–31]. To our knowledge, however, this is the first published 
study to use otolith shape to validate tuna spatial units’ differentiation that might 
correspond to different species. This could be applied to other genera with several species 
(e.g., Thunnus spp. or Auxis spp.) and would help to improve the accuracy of fisheries 
monitoring and facilitate re-classification of previously collected samples where the 
identification to the species level is problematic. Applying the technique to observer-



Fishes 2023, 8, 317 11 of 16 
 

 

sourced otolith collections would also improve confidence in datasets for analyses of the 
biological and ecological differences between species [102]. 

Otolith shape analysis complements the genetics study already published on stock 
structure of this species [65]. The findings from our research on little tunny in the Eastern 
Atlantic have unveiled a new perspective. There are clear indications of a species-level 
segregation between two distinct regions, which are presently regarded as a single 
species, challenging the existing geographic division at the stock level proposed by ICCAT 
[35]. This discovery holds significant implications for both the collection of scientific data 
and commercial fishing data, necessary for fisheries management. Furthermore, future 
investigations should focus on exploring new biological parameters, such as reproduction 
and growth, in both defined areas. A comparative analysis of these parameters could 
provide valuable insights into potential species-specific differences [103,104]. Moreover, 
to enhance our understanding of this phenomenon, additional samples are needed to 
gather comprehensive information from intermediate zones such as the waters of 
Morocco and Mauritania, as well as unexplored regions such as the Eastern 
Mediterranean and the Northeastern Atlantic. 

5. Conclusions 
This study demonstrates that the fish otolith shape can be utilized to validate the 

differentiation of tuna species. In addition to the limited literature available on the shape 
otoliths in tunas, no reports have been found regarding otolith asymmetries in these 
species. To address this issue, it is important to conduct a comprehensive comparative 
analysis of asymmetry in the left and right pairs of sagittal otoliths in the future. This 
analysis would greatly contribute to our understanding of this aspect and help fill this 
knowledge void. It is manifest that the pattern presented in this work does not comply 
with the current single accepted species Euthynnus alletteratus distributed along the 
Atlantic Ocean. A revised classification, considering the observed genetic and 
morphological evidence, should rather characterize the species of genus Euthynnus 
occupying the Atlantic Ocean, distinguishing Eastern Tropical Atlantic individuals as a 
new species of little tunny. To enhance the analysis in the future, it is crucial to include 
individuals from previously unexplored regions, such as the Eastern Mediterranean or 
the Western Atlantic, as well as unanalyzed intermediate zones such as the coasts of 
Mauritania or Morocco. By expanding the geographical scope to encompass these regions, 
we could gain valuable insights into little tunny populations and their distribution in 
previously understudied areas. It is imperative to approach this issue rigorously, as it can 
lead to significant consequences for fisheries management. 
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https://www.mdpi.com/article/10.3390/fishes8060317/s1, Figure S1: Median (white bar) and inter-
quartile bounds (box) of Wavelet descriptors for the Northeast Temperate Atlantic together with the 
Mediterranean Sea (NETAM Area) and the Eastern Tropical Atlantic (ETA Area) of little tunny 
samples analyzed. Significant differences of t-test analysis between areas by descriptors are 
included in each graph. 
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