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Abstract: Selecting the optimal spatiotemporal scale in fishing ground prediction models can maxi-
mize prediction accuracy. Current research on spatiotemporal scales shows that they are symmet-
rically distributed, which may not capture specific oceanographic features conducive to fishing
ground formation. Recent studies have shown that deep learning is a promising research direction for
addressing spatiotemporal scale issues. In the era of big data, deep learning outperforms traditional
methods by more accurately and efficiently mining high-value, nonlinear information. In this study,
taking Ommastrephes bartramii in the Northwest Pacific as an example, we used the U-Net model with
sea surface temperature (SST) as the input factor and center fishing ground as the output factor. We
constructed 80 different combinations of temporal scales and asymmetric spatial scales using data in
1998–2020. By comparing the results, we found that the optimal temporal scale for the deep learning
fishing ground prediction model is 15 days, and the spatial scale is 0.25◦ × 0.25◦. Larger time scales
lead to higher model accuracy, and latitude has a greater impact on the model than longitude. It
further enriches and refines the criteria for selecting spatiotemporal scales. This result deepens our
understanding of the oceanographic characteristics of the Northwest Pacific environmental field and
lays the foundation for future artificial intelligence-based fishery research. This study provides a
scientific basis for the sustainable development of efficient fishery production.

Keywords: asymmetric spatiotemporal scale; center fishing ground; deep learning; Ommastrephes
bartramii; U-Net

Key Contribution: In this study, we proposed an innovative deep learning-based approach for
predicting fishing ground using asymmetric spatiotemporal scales. It enriches the existing research
on spatiotemporal scales and further refines the criteria for selecting these scales.

1. Introduction

Accurately predicting the location of fishing grounds holds significant importance for
increasing fishing yields and saving fuel costs [1]. The distribution of pelagic species’ fishing
grounds is closely related to the climatic and oceanographic environment which they in-
habit [2–4]. Therefore, fishing ground prediction research typically combines oceanographic
remote sensing data to analyze the relationships between marine climate, environmental
factors, and species spatial distribution. Linear or nonlinear models are then established
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for the prediction of fishing grounds. Currently, traditional fishing ground prediction
methods such as generalized additive model [5], habitat suitability index model [6], and
artificial neural network [7] have achieved notable results. However, with the advent of the
big data era in ocean remote sensing and fisheries, traditional methods have struggled to
extract valuable, sparse information accurately and efficiently from complex and extensive
datasets. It has become challenging to establish highly accurate and robust nonlinear mod-
els. Furthermore, the environmental fields that give rise to fishing grounds are complex,
dynamic, comprehensive processes with strong temporal and spatial correlations. The
traditional methods face bottlenecks in handling the complex spatiotemporal relationships
under big data, both in terms of efficiency and accuracy. Deep learning, as an emerging
technology in the field of artificial intelligence in recent years, has demonstrated more
apparent advantages in handling large-scale image data problems compared to traditional
physics-based or statistical information extraction algorithms [8,9]. Moreover, the deep
neural network structure and automatic calculation of node weights enable end-to-end
learning between input and output. Currently, deep learning has yielded promising results
in various applications of the fishery community, such as fish behavior monitoring [10],
automatic fish age determination [11], fishery footprint tracking [12], ocean information
extraction [13], marine ecology applications [14], environmental monitoring [15–17], and
the ecology of animal movement [18].

The problem of fishing ground prediction can be viewed as an issue of semantic seg-
mentation in images, where the spatial correlation between environmental field images and
fishing ground distribution images is examined over a specific time period. The elaborate
U-Net model, first introduced in 2015, was applied to biomedical image segmentation
as a deep learning model [19]. It is a well-established artificial neural network for the
semantic segmentation of images, and excels in processing spatial features. It represents
a convolutional neural network (CNN) that incorporates an encoder–decoder structure,
along with skip connections connecting the encoder and the decoder. This architecture
enables the enhanced extraction of abstract features and facilitates pixelwise prediction [20].
After appropriate modifications, the U-Net model can be used to establish regression rela-
tionships between environmental field images and fishing ground distribution images, thus
facilitating fishing ground prediction. In our previous work [21], we conducted preliminary
research in this regard, confirming that the U-Net model can be employed for fishing
ground prediction, offering an efficient, highly accurate, and stable solution.

In studies concerning spatial distribution relationships, a critical aspect that needs to
be addressed is the rational planning of spatiotemporal scales [22]. In different application
scenarios, the optimal spatiotemporal scales for different model outcomes may vary [23].
It has been demonstrated in research on the abundance of fishery resources and environ-
mental factors that spatiotemporal scales have a significant impact on predictive model
results. Choosing inappropriate spatial scales can lead to significant errors in models.
Optimal spatiotemporal scales for models have already been explored in research involv-
ing the generalized additive model [24,25], habitat suitability index [26], artificial neural
network [27], and other models [28,29]. However, current spatiotemporal scale designs are
based on symmetric distributions. This symmetric spatiotemporal scale design may not
effectively capture dynamic features, particularly irregular spatial distributions of marine
phenomena such as eddies, currents, and fronts, that occur in the ocean. Nonetheless,
investigating asymmetric spatiotemporal scales demands extensive, accurate, and efficient
data processing, making it challenging for traditional approaches to effectively handle
this task. Deep learning, known for its robust data processing and information mining
capabilities, offers a solution. Therefore, we employed deep learning techniques, with
Ommastrephes bartramii in the Northwest Pacific as a case study, to analyze the impact of
asymmetric spatiotemporal scales on fishing ground prediction.

Neon flying squid (Ommastrephes bartramii) holds significant economic value as a
cephalopod species in the Northwest Pacific Ocean [1]. This species is characterized by its
opportunistic nature, typically completing its life cycle within a year. Previous research
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has highlighted the influential role of the marine climatic environment in governing the
distribution and abundance of the neon flying squid [6]. Among the environmental factors
that influence fishing ground variations, sea surface temperature (SST) stands out as one of
the primary factors, frequently employed as a contributing factor in constructing fishing
ground prediction models [30]. Climate events of varying intensities, such as the Pacific
decadal oscillation (PDO) [31] and El Niño-La Niña [32], also regulate the interannual
variability in fishing ground distribution. Information pertaining to these decadal climate
events is encapsulated within the temporal and spatial variations in SST. Hence, in this
study, we utilized SST as the input factor and the distribution of center fishing grounds
as the output factor. We designed 80 different asymmetric spatiotemporal scale cases
using data spanning 23 years from July to November (1998–2020). The fishing ground
prediction model was constructed based on U-Net. By comparing the impacts of different
spatiotemporal scales on the model, we selected the optimal spatiotemporal scale for
the model and analyzed the sensitivity of the model’s performance to different latitudes
and longitudes.

2. Material and Methods
2.1. Data Collection

The commercial fishery data were generously provided by the Chinese Squid-Jigging
Technology Group, affiliated with Shanghai Ocean University. The study area encompasses
the traditional fishing grounds of Ommastrephes bartramii in the Northwest Pacific Ocean,
bounded by coordinates 36◦ N to 48◦ N and 145◦ E to 165◦ E (Figure 1). This dataset
includes detailed information such as fishing dates and locations specified by longitude
and latitude at a spatial scale of 0.01◦, the numbers of fishing vessels, and the total daily
catch (ton). The time range for these records spans the primary fishing season from July to
November, covering the years from 1998 to 2020.

Fishes 2024, 9, 64 3 of 17 
 

 

Neon flying squid (Ommastrephes bartramii) holds significant economic value as a 

cephalopod species in the Northwest Pacific Ocean [1]. This species is characterized by its 

opportunistic nature, typically completing its life cycle within a year. Previous research 

has highlighted the influential role of the marine climatic environment in governing the 

distribution and abundance of the neon flying squid [6]. Among the environmental factors 

that influence fishing ground variations, sea surface temperature (SST) stands out as one 

of the primary factors, frequently employed as a contributing factor in constructing fishing 

ground prediction models [30]. Climate events of varying intensities, such as the Pacific 

decadal oscillation (PDO) [31] and El Niño-La Niña [32], also regulate the interannual 

variability in fishing ground distribution. Information pertaining to these decadal climate 

events is encapsulated within the temporal and spatial variations in SST. Hence, in this 

study, we utilized SST as the input factor and the distribution of center fishing grounds 

as the output factor. We designed 80 different asymmetric spatiotemporal scale cases 

using data spanning 23 years from July to November (1998–2020). The fishing ground 

prediction model was constructed based on U-Net. By comparing the impacts of different 

spatiotemporal scales on the model, we selected the optimal spatiotemporal scale for the 

model and analyzed the sensitivity of the model’s performance to different latitudes and 

longitudes. 

2. Material and Methods 

2.1. Data Collection 

The commercial fishery data were generously provided by the Chinese Squid-Jigging 

Technology Group, affiliated with Shanghai Ocean University. The study area 

encompasses the traditional fishing grounds of Ommastrephes bartramii in the Northwest 

Pacific Ocean, bounded by coordinates 36° N to 48° N and 145° E to 165° E (Figure 1). This 

dataset includes detailed information such as fishing dates and locations specified by 

longitude and latitude at a spatial scale of 0.01°, the numbers of fishing vessels, and the 

total daily catch (ton). The time range for these records spans the primary fishing season 

from July to November, covering the years from 1998 to 2020. 

 

Figure 1. Distribution of Ommastrephes bartramii fishing ground in the Northwest Pacific Ocean. 

The SST data used in this study were sourced from the National Oceanic and 

Atmospheric Administration (NOAA, https://oceanwatch.pifsc.noaa.gov/, accessed on 7 

October 2022). These SST data are available at a temporal scale of 1 day and a spatial scale 

of 0.05°. 

  

Figure 1. Distribution of Ommastrephes bartramii fishing ground in the Northwest Pacific Ocean.

The SST data used in this study were sourced from the National Oceanic and At-
mospheric Administration (NOAA, https://oceanwatch.pifsc.noaa.gov/, accessed on
7 October 2022). These SST data are available at a temporal scale of 1 day and a spatial
scale of 0.05◦.

2.2. Data Preprocessing
2.2.1. Definition of the Center Fishing Ground

The resource abundance index of the fishery data was matched with SST data into
various spatiotemporal scale cases using the interpolation method (Figure 2). Temporal
scales were set at five intervals: 3 days, 6 days, 10 days, 15 days, and 30 days. Spatial scales

https://oceanwatch.pifsc.noaa.gov/
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were set at four intervals: 0.05◦, 0.1◦, 0.25◦, and 0.5◦. A total of 80 cases were created by
combining asymmetric latitude and longitude scales. Following on from previous research
results [21], the catch index [33] for each specific time period within each year was matched
with the corresponding SST range, serving as an environmental indicator characterizing the
center fishing ground. The SST range of the fishing grounds was defined as the maximum
and minimum values observed across all years from 1998 to 2020.
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Figure 2. Case design of different asymmetric temporal and spatial scales.

The catch index of the fishing ground has a large degree of dispersion, and the high
values of the catch index are relatively concentrated. According to this characteristic,
we used the quartile method to classify the fishing ground types according to the SST
range corresponding to the catch index of each period. The SST range with index values
greater than the upper quartile defines the center fishing ground, labeled 1; otherwise, the
non-center fishing ground, labeled 0.

2.2.2. Normalization and Invalid Value Handling

In order to enhance the fitting efficiency of the deep learning model, the SST data were
subjected to a normalization process within the range of 0–1. This normalization procedure
was performed using the following equation:

x =
xi − xmin

xmax − xmin
(1)

where x represents the normalized value of the sample, xi is the original value, and xmax
and xmin correspond to the maximum and minimum values observed within the sample
dataset, respectively. All values that were found to be invalid were consistently replaced
with −1 during this normalization process.

2.3. Prediction Model and Case Design

The fishing ground prediction model, as illustrated in Figure 3, is based on the U-
Net model [20]. The U-Net model features a fully convolutional design, comprising two
pathways: encoding and decoding. The encoding pathway is responsible for diminishing
spatial dimensions while extracting high-level feature data, essential for precise classifica-
tion. It includes a series of convolutional layers with rectified linear unit (ReLU) activation
functions, along with max-pooling operations. The decoding pathway serves to merge ab-
stracted and high-resolution features through a sequence of upsampling and concatenation
processes [34]. This segment consists of upsampling operations and convolutional layers
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with ReLU activation. The model concludes with pixel-level predictions, enabling both
classification and regression tasks. As delineated in Figure 3, the model incorporates four
upsampling layers, four max-pooling layers, two dropout layers, and four skip connections.
The max-pooling and convolution layers employ strides of 2 and 1, respectively. The
application of max-pooling effectively reduces the computational load, expands the recep-
tive field of convolutions, facilitates feature learning at multiple scales, and enhances the
model’s resilience to noise and clutter. Notably, our preliminary experiments exposed sub-
stantial overfitting issues, necessitating a specific remedy. To address this, we introduced
the SpatialDropout2D layer [35] to the fourth and fifth convolutional layers. The utilization
of this layer proved effective in regulating overfitting. In this study, the dropout rate for
the SpatialDropout2D layer is set at 0.75. Considering the model’s binary classification
objective, distinguishing center fishing ground from non-center fishing ground, the final
convolutional layer utilizes sigmoid activation. Correspondingly, the model employs a
binary cross-entropy loss function for the same purpose.

Fishes 2024, 9, 64 5 of 17 
 

 

2.3. Prediction Model and Case Design 

The fishing ground prediction model, as illustrated in Figure 3, is based on the U-Net 

model [20]. The U-Net model features a fully convolutional design, comprising two 

pathways: encoding and decoding. The encoding pathway is responsible for diminishing 

spatial dimensions while extracting high-level feature data, essential for precise 

classification. It includes a series of convolutional layers with rectified linear unit (ReLU) 

activation functions, along with max-pooling operations. The decoding pathway serves to 

merge abstracted and high-resolution features through a sequence of upsampling and 

concatenation processes [34]. This segment consists of upsampling operations and 

convolutional layers with ReLU activation. The model concludes with pixel-level 

predictions, enabling both classification and regression tasks. As delineated in Figure 3, 

the model incorporates four upsampling layers, four max-pooling layers, two dropout 

layers, and four skip connections. The max-pooling and convolution layers employ strides 

of 2 and 1, respectively. The application of max-pooling effectively reduces the 

computational load, expands the receptive field of convolutions, facilitates feature 

learning at multiple scales, and enhances the model’s resilience to noise and clutter. 

Notably, our preliminary experiments exposed substantial overfitting issues, 

necessitating a specific remedy. To address this, we introduced the SpatialDropout2D 

layer [35] to the fourth and fifth convolutional layers. The utilization of this layer proved 

effective in regulating overfitting. In this study, the dropout rate for the SpatialDropout2D 

layer is set at 0.75. Considering the model’s binary classification objective, distinguishing 

center fishing ground from non-center fishing ground, the final convolutional layer 

utilizes sigmoid activation. Correspondingly, the model employs a binary cross-entropy 

loss function for the same purpose. 

 

Figure 3. Architecture of the fishing ground prediction model Examples are a spatial scale of 0.05° 

× 0.05° and a temporal scale of 3 days. In the figure, conv stands for convolution, and ReLU stands 

for the rectified linear unit. 

Figure 3. Architecture of the fishing ground prediction model Examples are a spatial scale of 0.05◦ × 0.05◦

and a temporal scale of 3 days. In the figure, conv stands for convolution, and ReLU stands for the
rectified linear unit.

We devised a total of 80 different combinations involving varying temporal and
asymmetric spatial scales and subsequently conducted a comparative analysis (Figure 2).
It is important to note that a larger spatial scale results in a reduced sample size, while a
longer temporal scale corresponds to a smaller number of samples. To maintain a sufficient
number of training samples, we imposed restrictions such that the temporal scale does not
exceed 30 days and the spatial scale does not exceed 0.5◦. As an illustration, consider the
following case involving a spatial scale of 0.05◦ × 0.05◦ and a temporal scale of 3 days: this
configuration yields a sample size of 192 × 320 and a total of 1100 samples (Figure 3).

Following the encoding and decoding processes, the sample size remains unaltered,
and the model effectively extracts image features. This feature-rich model is then equipped
to provide pixel-level predictions, effectively transforming marine environmental data
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into detailed fishing ground forecasts. It is imperative to emphasize that this model was
specifically tailored for predicting the fishing grounds of the neon flying squid within the
Northwest Pacific Ocean [21].

2.4. Case Implementation and Evaluation

In order to assess the model’s performance, we employed several key metrics. The
overall accuracy (OA), which is a fundamental indicator, quantifies the ratio of accurately
predicted pixels to the total number of pixels. Furthermore, to comprehensively evaluate the
model, we calculated the precision, recall, and F1 score of the prediction results. Precision
signifies the proportion of correct predictions among all the pixels identified as fishing
ground. Recall quantifies the proportion of actual center fishing ground pixels that were
correctly predicted. Since there is often a trade-off relationship between precision and recall,
we introduce the F1 score, which is the harmonic mean of both precision and recall. These
metrics, in accordance with previous research [20], are calculated as follows:

Overall accuracy : OA =
NTP + NTN

NTP + NTN + NFP + NFN
× 100% (2)

Precision : P =
NTP

NTP + NFP
(3)

Recall : R =
NTP

NTP + NFN
(4)

F1 =
2PR

P + R
=

2NTP

2NTP + NFP + NFN
(5)

where NTP (TP stands for true positive) represents the number of correctly predicted pixels
corresponding to center fishing ground; NTN (TN stands for true negative) represents the
number of correctly predicted pixels corresponding to non-center fishing ground; NFP (FP
stands for false positive) represents the number of falsely predicted pixels corresponding
to center fishing ground; and NFN (FN stands for false negative) represents the number of
falsely predicted pixels corresponding to non-center fishing ground.

The fishing ground prediction model was implemented using TensorFlow 2.4.1 within
a Python 3.7 environment. The model’s execution was conducted on the NVIDIA GeForce
RTX 2080 Ti graphics processing unit, and the operating system employed was Ubuntu. To
commence the model, we utilized sea surface temperature (SST) data spanning the region
of 36◦ to 48◦ N and 145◦ to 165◦ E in the Northwest Pacific Ocean for the years 1998 to
2020. These SST data were paired with the corresponding ground truth data for the center
fishing ground, thereby establishing a one-to-one correspondence. Subsequently, a dataset
accommodating various temporal and spatial scales was carefully constructed. Within this
dataset, we designated samples from the years 1998 to 2019 for training purposes. These
training samples underwent a random split, dividing them into training and validation
sets at a ratio of 4:1. The fishing ground prediction model was then trained on the dedi-
cated training set, with the optimal parameters for model fitting determined through an
iterative process utilizing the validation set. Lastly, the model’s performance evaluation
was executed on the samples from 2020, which constituted the testing set.

3. Results
3.1. Model Results in Different Spatiotemporal Scales

In the different spatiotemporal scale cases, we obtained the following results. The
minimum loss range for the training set is 0.03 to 0.25. For the validation set, the minimum
loss range is 0.08 to 0.27, with an average of 0.19 (Figure 4). The optimal accuracy range for
the validation set is 86.94% to 97.01%, with an average of 91.82% (Figure 5). An epoch refers
to one complete pass through the entire training dataset during the training of a neural
network. The loss curves of the training and validation sets reveal that all model cases,
across different temporal and spatial scenarios, achieved a satisfactory fit within the 300-
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epoch limit. Additionally, the inclusion of two layers of SpatialDropout2D regularization
helped mitigate model overfitting.

1 
 

  

  

 
 
  

Figure 4. Loss curves of the training and validation sets of the fishing ground prediction model
in different temporal and spatial scales. Train and Valid in the figure represent the training and
validation sets, respectively.
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 Figure 5. Overall accuracy curves of the training and validation set of the fishing ground prediction

model in different temporal and spatial scales. In the figure, OA stands for overall accuracy, and
Train and Valid stand for the training and validation set, respectively.

3.2. Spatiotemporal Scale Variability Evaluation

To assess the performance of the fishing ground prediction model under different
temporal and spatial scales, it was tested on the testing set using OA and F1 score as
evaluation metrics. The best performing case, with a spatial scale of 0.25◦ × 0.25◦ and a
temporal scale of 15 days, achieved an OA of 89.90% and an F1 score of 0.9050, whereas the
worst performing case, with a spatial scale of 0.1◦ × 0.1◦ and a temporal scale of 3 days,
attained an OA of 79.56% and an F1 score of 0.7789. On average, the OA was 85.21% with
a standard deviation of 2.12%, while the average F1 score was 0.8460 with a standard
deviation of 0.03. Although the evaluation results varied, the overall performance was
satisfactory (Figure 6). The findings indicated that a larger temporal scale leads to relatively
better model performance. The influence of latitude in the spatial scale is more pronounced
compared to longitude.



Fishes 2024, 9, 64 9 of 17
Fishes 2024, 9, 64 9 of 17 
 

 

 
Figure 6. Performance evaluation on the testing set of the fishing ground prediction model in 
different temporal scales. 

3.3. Prediction Performance of the Best Case 
The best prediction performance was achieved in the first half of September, with an 

OA of 95.60% and an F1 score of 0.9600 (Table 1). During this period, the outline of the 
center fishing ground appeared smooth, and the prediction accuracy of the center fishing 
ground along the edge of the SST front at 44° to 48° N was high (Figure 7). Conversely, 
the worst prediction performance occurred in the second half of November, with an OA 
of 82.14% and an F1 score of 0.8355 (Table 1). In this period, the outline of the center fishing 
ground appeared relatively rough, and the correct prediction of the center fishing ground 
to the north of 44° N was challenging, particularly in the area of 145° to 150° E and 42° to 
46° N. Overall, apart from November, the testing results for each period were satisfactory, 
confirming the model’s high stability over different periods. The fishing ground 
prediction model successfully extracted and predicted two significant pieces of 
information (Figure 7): the contour of the center fishing ground and the latitudinal change 
at different periods. However, the prediction results in November were not as accurate. 
The predicted center fishing grounds exhibited smoother outlines than the ground truth, 
and certain fine structures were not well predicted [36]. Furthermore, the prediction 
showed a southward shift compared to the ground truth, with higher SST values, which 
constituted the primary source of error. 

Figure 6. Performance evaluation on the testing set of the fishing ground prediction model in different
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3.3. Prediction Performance of the Best Case

The best prediction performance was achieved in the first half of September, with an
OA of 95.60% and an F1 score of 0.9600 (Table 1). During this period, the outline of the
center fishing ground appeared smooth, and the prediction accuracy of the center fishing
ground along the edge of the SST front at 44◦ to 48◦ N was high (Figure 7). Conversely,
the worst prediction performance occurred in the second half of November, with an OA
of 82.14% and an F1 score of 0.8355 (Table 1). In this period, the outline of the center
fishing ground appeared relatively rough, and the correct prediction of the center fishing
ground to the north of 44◦ N was challenging, particularly in the area of 145◦ to 150◦ E
and 42◦ to 46◦ N. Overall, apart from November, the testing results for each period were
satisfactory, confirming the model’s high stability over different periods. The fishing
ground prediction model successfully extracted and predicted two significant pieces of
information (Figure 7): the contour of the center fishing ground and the latitudinal change
at different periods. However, the prediction results in November were not as accurate. The
predicted center fishing grounds exhibited smoother outlines than the ground truth, and
certain fine structures were not well predicted [36]. Furthermore, the prediction showed a
southward shift compared to the ground truth, with higher SST values, which constituted
the primary source of error.

Table 1. The testing results of the fishing ground prediction model in the best spatiotemporal scale
case in each period.

Period Overall
Accuracy(OA, %) Precision Recall F1 Score

July (1st half) 91.72 0.9427 0.9441 0.9434
July (2nd half) 88.75 0.9322 0.9160 0.9240

August (1st half) 94.51 0.9183 0.9974 0.9562
August (2nd half) 93.80 0.8810 0.9990 0.9360

September (1st half) 95.60 0.9390 0.9830 0.9600
September (2nd half) 87.55 0.9280 0.8910 0.9090

October (1st half) 90.55 0.8920 0.8610 0.8760
October (2nd half) 90.83 0.9229 0.8563 0.8883

November (1st half) 83.57 0.8553 0.7884 0.8205
November (2nd half) 82.14 0.9130 0.7701 0.8355

Mean ±
Standard deviation

89.90 ±
4.25

0.9125 ±
0.0265

0.9005 ±
0.0782

0.9050 ±
0.0465
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Figure 7. Visual evaluation of the performance of the center fishing ground model in the best case.
Jul (1), Jul (2), . . ., and Nov (2) represent the first half of July, the second half of July, . . ., and the
second half of November, respectively. In the ground truth, the center fishing ground and non-center
fishing ground are shown in white and black, respectively. In the prediction, the correctly predicted
center fishing ground and non-center fishing ground are shown in white and black, respectively;
the falsely predicted center fishing ground and non-center fishing ground are shown in blue and
red, respectively.

4. Discussion
4.1. Impact of Asymmetric Spatiotemporal Scales on the Model

By examining the performance of models under various asymmetric spatial and
temporal scale cases (Figure 6), significant differences in model performance are evident.
Regarding temporal scales, the trends in OA and F1 are generally consistent. A larger
temporal scale corresponds to better model performance (Figure 8). Concerning spatial
scales, the influence of longitude and latitude on model performance is asymmetric. Cases
with a longitude of 0.5◦ and a latitude of 0.05◦ are unfavorable for model results. When
examining the dispersion across different spatial scales, it is observed that model per-
formance exhibits greater dispersion in the latitude direction. This could be attributed
to the fact that center fishing grounds are defined based on SST ranges, and changes in
the latitude direction are more pronounced than in the longitude direction. Models with
longitudes of 0.05◦ and 0.1◦ display more outliers in terms of dispersion. This could be
due to the irregular distribution of center fishing grounds in the longitude direction, which
does not conform to a normal distribution (Figure 8). Since both temporal and asymmetric
spatial scales jointly influence model performance, the optimal case is determined to be
15 days for the temporal scale and 0.25◦ × 0.25◦ for the spatial scale. Previous studies
have suggested optimal spatial scales ranging from 0.25◦ to 0.5◦ [25] and optimal temporal
resolutions of 30 days [37]. The slight disparities between our results and previous research
can be attributed to differences in data sources and models, along with the finding that a
latitude of 0.5◦ yields better results, whereas a longitude of 0.5◦ yields poorer results in our
study. Therefore, the previously established conclusion of a 0.5◦ optimal spatial scale might
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be influenced by the greater contribution of the latitude direction to model performance.
The design of asymmetric spatial scales can better identify the most reasonable design
case and enhance our understanding of distinct environmental characteristics in different
marine regions.
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Figure 8. Dispersion and trend of model performance at different temporal and spatial scales
(longitude and latitude).

Although there are substantial differences among various cases, the overall OA re-
mains above 78%. Compared to traditional methods, the model has shown improvements
in both accuracy and stability [1]. We believe this is because deep learning is more adept
at handling the spatiotemporal distribution of fishing grounds compared to traditional
methods, as evidenced by the U-Net model’s strong adaptability in pixel-level image seg-
mentation. While the optimal spatiotemporal scale identified in this study is specific to
Ommastrephes bartramii in the Northwest Pacific, other pelagic species may have different
requirements for spatiotemporal scale (e.g., a minimum spatial scale of 0.5◦ for tuna [5]).
However, the method proposed in this study does not rely on information specific to
Ommastrephes bartramii. In other words, the concept of asymmetric spatiotemporal scale
design presented in this paper can be extended to other species and may reveal different
patterns of change in latitude, longitude, and temporal scales.

4.2. Impact of SST at Different Spatiotemporal Scales

SST is the most critical oceanic environmental factor affecting the distribution of pelagic
commercial species [38–42]. The suitable SST range for Ommastrephes bartramii exhibits clear
seasonal variation [1], characterized by an initial increase followed by a decrease, with the
highest SST temperatures occurring in August and September. Examining the changes in
the SST range of the center fishing grounds at different temporal scales (Figure 9), it becomes
evident that with larger temporal scales, the SST range fluctuations of the center fishing
grounds become smoother. This may lead to a better coupling between the environmental
field and the center fishing grounds during model training, resulting in improved model
performance. From a machine learning perspective, smaller temporal scales may offer a
larger dataset for more comprehensive model training. However, from a fishery standpoint,
the degree of matching between the environmental field and the fishing grounds also
determines the model’s results.
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Figure 9. Variation in the sea surface temperature (SST) range in the center fishing ground of Ommas-
trephes bartramii in different temporal scale cases (an example is a spatial scale of 0.05◦ × 0.05◦).

Because the center fishing grounds are delineated based on the SST range, the distri-
bution of center fishing grounds primarily exhibits a zonal pattern in the latitude direction.
This results in a more pronounced impact of latitude on the model compared to longitude
(Figure 10). The fishing ground of Ommastrephes bartramii is dominated by two western
boundary currents, the Kuroshio Current characterized as a warm and nutrient-poor current
and the Oyashio Current characterized as a cold and nutrient-rich current. The Kuroshio–
Oyashio transition zone with high biological productivity is an important feeding ground
for many commercially important marine species including Ommastrephes bartramii [43,44].
Due to the influence of the Kuroshio Current, the Oyashio Current, and their associated
eddies on the longitudinal distribution of SST in the center fishing grounds [45], the model
results are affected. In the study results, the adverse impact of the 0.5◦ longitude cases
on the model outcomes may be attributed to the significant spacing between longitudes,
which could lead to the neglect of oceanographic features, especially currents and eddies.
On the other hand, the unfavorable effect of the 0.05◦ latitude cases on the model results
could be due to the excessively small latitude scale, resulting in less noticeable variations
in SST that fail to align well with the latitudinal changes in the center fishing grounds.
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4.3. Application Evaluation of the Optimal Model

The U-Net model is widely recognized as one of the standard benchmarking methods
for deep learning-based pixel-level image classification. Its defining feature is a fully con-
volutional structure, which eliminates the conventional fully connected layer and employs
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deconvolution layers to restore image resolution. This architectural choice significantly
enhances the model’s training efficiency and accuracy when dealing with pixel-level image
classification tasks. In other words, the deep learning model based on U-Net outperforms
traditional convolutional models with fully connected layers in terms of suitability and
efficiency, particularly in pixel-level fishing ground prediction [46].

In this study, actual catch data were used for model testing. The fishing grounds
predicted by the model with optimal temporal and spatial scales on the 2020 testing dataset
were compared with the actual catch data (Figure 11). Two metrics were employed to
evaluate the model’s performance. First, the site coverage rate is defined as the ratio of the
number of catch sites in fishing ground covered by the predicted fishing ground to the total
catch sites. Second, the catch coverage rate is defined as the ratio of the catch value at the
sites covered by the predicted fishing ground to the total catch value. The results (Table 2)
showed that in the prediction, the site coverage rate for the first half of August is 98.57%,
and the catch coverage rate is 99.81%; for the second half of August, the site coverage rate
is 99.68%, and the catch coverage rate is 99.95%; and for the first half of November, the
site coverage rate is 94.38%, and the catch coverage rate is 93.62%. Except for these three
periods and the first half of July where no actual catch data are available, the site coverage
rate and catch coverage rate for the other periods are 100%, indicating excellent application
performance. Particularly in the first half of October, this period exhibits more sites with
high catch values compared to other periods. Although the predicted center fishing ground
during this period is relatively narrow, the application performance remains excellent,
demonstrating the model’s robustness and reliability. Compared to the predicted fishing
ground distribution in traditional methods, deep learning places greater emphasis on the
application effectiveness of the test set in predicting results. This better reflects the deep
learning approach’s ability to learn the mechanisms of fishing ground changes, and the
model exhibits greater stability.
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Table 2. Application evaluation of the center fishing ground prediction model on the testing set with
actual catch data.

Period Site Coverage Rate (%) Catch Coverage Rate (%)

July (1st half) / /
July (2nd half) 100.00 100.00

August (1st half) 98.57 99.81
August (2nd half) 99.68 99.95

September (1st half) 100.00 100.00
September (2nd half) 100.00 100.00

October (1st half) 100.00 100.00
October (2nd half) 100.00 100.00

November (1st half) 94.38 93.62
November (2nd half) 100.00 100.00

The impressive application performance of the deep learning-based model can be
attributed to the following main reasons. (1) The definition of the center fishing ground
based on the upper quartile effectively encompasses actual catch sites, even those with
lower catch values. This method of defining the center fishing ground, tailored to the
data characteristics of fishing grounds, is not only feasible but also reliable. It facilitates
the successful application of deep learning to fishing ground prediction. (2) The U-Net
model possesses distinctive characteristics within its convolutional layers, including weight
sharing and local connectivity. These features help reduce the complexity of the image
feature extraction network. The U-Net model strikes a delicate balance between extracting
deep features for semantic classification and preserving high resolution. Consequently,
it excels in handling pixel-level image classification tasks, enabling it to fully exploit the
multiscale information embedded in SST data. This results in accurate and reliable pixel-
level fishing ground predictions. Moreover, the SST distribution map and the center fishing
ground map exhibit varying scales of features, such as the large-scale spatial distribution of
the center fishing ground, the fine-scale bending of isotherms at the edges, and north–south
shifts in the center fishing ground. The U-Net model effectively extracts and captures these
features. This study provides a scientific basis for the high-quality development of distant-
sea fisheries and the accurate predicting of fishing ground. It also offers technological
support for the sustainable development of fishery resources in the Northwest Pacific.

However, this study still has some limitations. (1) Fishing ground changes are in-
fluenced not only by environmental factors such as SST but also by other anthropogenic
factors, including the captain’s experience, decisions made by fishing enterprises, and the
fishing equipment on the vessels. These factors will be taken into consideration in subse-
quent research. (2) Only one influencing factor, SST, was selected as the input factor, which
may result in an excessively large area for the center fishing ground. Subsequent research
will incorporate multiple factors and analyze the impact of asymmetric spatiotemporal
scales on the model under the combination of multiple environmental factors.

5. Conclusions

In this study, we proposed an innovative deep learning-based approach for predicting
fishing ground using asymmetric spatiotemporal scales, contributing to the refinement
of existing research on this topic. The research lays the groundwork for the development
of precise and stable models tailored to the specific spatiotemporal scales of a particular
marine species within a defined region.

Through an analysis of results obtained from various combinations of temporal and
asymmetric spatial scale cases, we found the optimal model parameters: a temporal scale of
15 days and a spatial scale of 0.25◦ × 0.25◦. Larger temporal scales were found to enhance
model accuracy, with latitude exerting a greater impact than longitude, likely influenced
by the specific oceanographic characteristics of the Northwest Pacific.
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The asymmetric spatiotemporal scale analysis deepens our understanding of how
environmental factors influence fishing ground distribution. It is important to note that
this study considered only SST as an influencing factor, and future research will explore the
impact of integrating multiple environmental factors. The methods and insights presented,
although specific to the Ommastrephes bartramii fishing ground, can be extended and applied
to research involving fishing grounds of other species.
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