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Abstract: Selecting the optimal spatiotemporal scale in fishing ground prediction models can 
maximize prediction accuracy. Current research on spatiotemporal scales shows that they are 
symmetrically distributed, which may not capture specific oceanographic features conducive to 
fishing ground formation. Recent studies have shown that deep learning is a promising research 
direction for addressing spatiotemporal scale issues. In the era of big data, deep learning 
outperforms traditional methods by more accurately and efficiently mining high-value, nonlinear 
information. In this study, taking Ommastrephes bartramii in the Northwest Pacific as an example, we 
used the U-Net model with sea surface temperature (SST) as the input factor and center fishing 
ground as the output factor. We constructed 80 different combinations of temporal scales and 
asymmetric spatial scales using data in 1998–2020. By comparing the results, we found that the 
optimal temporal scale for the deep learning fishing ground prediction model is 15 days, and the 
spatial scale is 0.25° × 0.25°. Larger time scales lead to higher model accuracy, and latitude has a 
greater impact on the model than longitude. It further enriches and refines the criteria for selecting 
spatiotemporal scales. This result deepens our understanding of the oceanographic characteristics 
of the Northwest Pacific environmental field and lays the foundation for future artificial 
intelligence-based fishery research. This study provides a scientific basis for the sustainable 
development of efficient fishery production. 

Keywords: asymmetric spatiotemporal scale; center fishing ground; deep learning; Ommastrephes 
bartramii; U-Net 

Key Contribution: In this study, we proposed an innovative deep learning-based approach for 
predicting fishing ground using asymmetric spatiotemporal scales. It enriches the existing research 
on spatiotemporal scales and further refines the criteria for selecting these scales. 
 

1. Introduction 
Accurately predicting the location of fishing grounds holds significant importance 

for increasing fishing yields and saving fuel costs [1]. The distribution of pelagic species’ 
fishing grounds is closely related to the climatic and oceanographic environment which 
they inhabit [2–4]. Therefore, fishing ground prediction research typically combines 
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oceanographic remote sensing data to analyze the relationships between marine climate, 
environmental factors, and species spatial distribution. Linear or nonlinear models are 
then established for the prediction of fishing grounds. Currently, traditional fishing 
ground prediction methods such as generalized additive model [5], habitat suitability 
index model [6], and artificial neural network [7] have achieved notable results. However, 
with the advent of the big data era in ocean remote sensing and fisheries, traditional 
methods have struggled to extract valuable, sparse information accurately and efficiently 
from complex and extensive datasets. It has become challenging to establish highly 
accurate and robust nonlinear models. Furthermore, the environmental fields that give 
rise to fishing grounds are complex, dynamic, comprehensive processes with strong 
temporal and spatial correlations. The traditional methods face bottlenecks in handling 
the complex spatiotemporal relationships under big data, both in terms of efficiency and 
accuracy. Deep learning, as an emerging technology in the field of artificial intelligence in 
recent years, has demonstrated more apparent advantages in handling large-scale image 
data problems compared to traditional physics-based or statistical information extraction 
algorithms [8,9]. Moreover, the deep neural network structure and automatic calculation 
of node weights enable end-to-end learning between input and output. Currently, deep 
learning has yielded promising results in various applications of the fishery community, 
such as fish behavior monitoring [10], automatic fish age determination [11], fishery 
footprint tracking [12], ocean information extraction [13], marine ecology applications [14], 
environmental monitoring [15–17], and the ecology of animal movement [18]. 

The problem of fishing ground prediction can be viewed as an issue of semantic 
segmentation in images, where the spatial correlation between environmental field 
images and fishing ground distribution images is examined over a specific time period. 
The elaborate U-Net model, first introduced in 2015, was applied to biomedical image 
segmentation as a deep learning model [19]. It is a well-established artificial neural 
network for the semantic segmentation of images, and excels in processing spatial features. 
It represents a convolutional neural network (CNN) that incorporates an encoder–decoder 
structure, along with skip connections connecting the encoder and the decoder. This 
architecture enables the enhanced extraction of abstract features and facilitates pixelwise 
prediction [20]. After appropriate modifications, the U-Net model can be used to establish 
regression relationships between environmental field images and fishing ground 
distribution images, thus facilitating fishing ground prediction. In our previous work [21], 
we conducted preliminary research in this regard, confirming that the U-Net model can 
be employed for fishing ground prediction, offering an efficient, highly accurate, and 
stable solution. 

In studies concerning spatial distribution relationships, a critical aspect that needs to 
be addressed is the rational planning of spatiotemporal scales [22]. In different application 
scenarios, the optimal spatiotemporal scales for different model outcomes may vary [23]. 
It has been demonstrated in research on the abundance of fishery resources and 
environmental factors that spatiotemporal scales have a significant impact on predictive 
model results. Choosing inappropriate spatial scales can lead to significant errors in 
models. Optimal spatiotemporal scales for models have already been explored in research 
involving the generalized additive model [24,25], habitat suitability index [26], artificial 
neural network [27], and other models [28,29]. However, current spatiotemporal scale 
designs are based on symmetric distributions. This symmetric spatiotemporal scale design 
may not effectively capture dynamic features, particularly irregular spatial distributions 
of marine phenomena such as eddies, currents, and fronts, that occur in the ocean. 
Nonetheless, investigating asymmetric spatiotemporal scales demands extensive, 
accurate, and efficient data processing, making it challenging for traditional approaches 
to effectively handle this task. Deep learning, known for its robust data processing and 
information mining capabilities, offers a solution. Therefore, we employed deep learning 
techniques, with Ommastrephes bartramii in the Northwest Pacific as a case study, to 
analyze the impact of asymmetric spatiotemporal scales on fishing ground prediction. 
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Neon flying squid (Ommastrephes bartramii) holds significant economic value as a 
cephalopod species in the Northwest Pacific Ocean [1]. This species is characterized by its 
opportunistic nature, typically completing its life cycle within a year. Previous research 
has highlighted the influential role of the marine climatic environment in governing the 
distribution and abundance of the neon flying squid [6]. Among the environmental factors 
that influence fishing ground variations, sea surface temperature (SST) stands out as one 
of the primary factors, frequently employed as a contributing factor in constructing fishing 
ground prediction models [30]. Climate events of varying intensities, such as the Pacific 
decadal oscillation (PDO) [31] and El Niño-La Niña [32], also regulate the interannual 
variability in fishing ground distribution. Information pertaining to these decadal climate 
events is encapsulated within the temporal and spatial variations in SST. Hence, in this 
study, we utilized SST as the input factor and the distribution of center fishing grounds 
as the output factor. We designed 80 different asymmetric spatiotemporal scale cases 
using data spanning 23 years from July to November (1998–2020). The fishing ground 
prediction model was constructed based on U-Net. By comparing the impacts of different 
spatiotemporal scales on the model, we selected the optimal spatiotemporal scale for the 
model and analyzed the sensitivity of the model’s performance to different latitudes and 
longitudes. 

2. Material and Methods 
2.1. Data Collection 

The commercial fishery data were generously provided by the Chinese Squid-Jigging 
Technology Group, affiliated with Shanghai Ocean University. The study area 
encompasses the traditional fishing grounds of Ommastrephes bartramii in the Northwest 
Pacific Ocean, bounded by coordinates 36° N to 48° N and 145° E to 165° E (Figure 1). This 
dataset includes detailed information such as fishing dates and locations specified by 
longitude and latitude at a spatial scale of 0.01°, the numbers of fishing vessels, and the 
total daily catch (ton). The time range for these records spans the primary fishing season 
from July to November, covering the years from 1998 to 2020. 

 
Figure 1. Distribution of Ommastrephes bartramii fishing ground in the Northwest Pacific Ocean. 

The SST data used in this study were sourced from the National Oceanic and 
Atmospheric Administration (NOAA, https://oceanwatch.pifsc.noaa.gov/, accessed on 7 
October 2022). These SST data are available at a temporal scale of 1 day and a spatial scale 
of 0.05°. 
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2.2. Data Preprocessing 
2.2.1. Definition of the Center Fishing Ground 

The resource abundance index of the fishery data was matched with SST data into 
various spatiotemporal scale cases using the interpolation method (Figure 2). Temporal 
scales were set at five intervals: 3 days, 6 days, 10 days, 15 days, and 30 days. Spatial scales 
were set at four intervals: 0.05°, 0.1°, 0.25°, and 0.5°. A total of 80 cases were created by 
combining asymmetric latitude and longitude scales. Following on from previous 
research results [21], the catch index [33] for each specific time period within each year 
was matched with the corresponding SST range, serving as an environmental indicator 
characterizing the center fishing ground. The SST range of the fishing grounds was 
defined as the maximum and minimum values observed across all years from 1998 to 2020. 

 
Figure 2. Case design of different asymmetric temporal and spatial scales. 

The catch index of the fishing ground has a large degree of dispersion, and the high 
values of the catch index are relatively concentrated. According to this characteristic, we 
used the quartile method to classify the fishing ground types according to the SST range 
corresponding to the catch index of each period. The SST range with index values greater 
than the upper quartile defines the center fishing ground, labeled 1; otherwise, the non-
center fishing ground, labeled 0. 

2.2.2. Normalization and Invalid Value Handling 
In order to enhance the fitting efficiency of the deep learning model, the SST data 

were subjected to a normalization process within the range of 0–1. This normalization 
procedure was performed using the following equation: 𝑥 =  𝑥௜ − 𝑥୫୧୬𝑥୫ୟ୶ − 𝑥୫୧୬ (1)

where x represents the normalized value of the sample, 𝑥௜ is the original value, and 𝑥୫ୟ୶ 
and 𝑥୫୧୬ correspond to the maximum and minimum values observed within the sample 
dataset, respectively. All values that were found to be invalid were consistently replaced 
with −1 during this normalization process. 
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2.3. Prediction Model and Case Design 
The fishing ground prediction model, as illustrated in Figure 3, is based on the U-Net 

model [20]. The U-Net model features a fully convolutional design, comprising two 
pathways: encoding and decoding. The encoding pathway is responsible for diminishing 
spatial dimensions while extracting high-level feature data, essential for precise 
classification. It includes a series of convolutional layers with rectified linear unit (ReLU) 
activation functions, along with max-pooling operations. The decoding pathway serves to 
merge abstracted and high-resolution features through a sequence of upsampling and 
concatenation processes [34]. This segment consists of upsampling operations and 
convolutional layers with ReLU activation. The model concludes with pixel-level 
predictions, enabling both classification and regression tasks. As delineated in Figure 3, 
the model incorporates four upsampling layers, four max-pooling layers, two dropout 
layers, and four skip connections. The max-pooling and convolution layers employ strides 
of 2 and 1, respectively. The application of max-pooling effectively reduces the 
computational load, expands the receptive field of convolutions, facilitates feature 
learning at multiple scales, and enhances the model’s resilience to noise and clutter. 
Notably, our preliminary experiments exposed substantial overfitting issues, 
necessitating a specific remedy. To address this, we introduced the SpatialDropout2D 
layer [35] to the fourth and fifth convolutional layers. The utilization of this layer proved 
effective in regulating overfitting. In this study, the dropout rate for the SpatialDropout2D 
layer is set at 0.75. Considering the model’s binary classification objective, distinguishing 
center fishing ground from non-center fishing ground, the final convolutional layer 
utilizes sigmoid activation. Correspondingly, the model employs a binary cross-entropy 
loss function for the same purpose. 

 
Figure 3. Architecture of the fishing ground prediction model Examples are a spatial scale of 0.05° 
× 0.05° and a temporal scale of 3 days. In the figure, conv stands for convolution, and ReLU stands 
for the rectified linear unit. 
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We devised a total of 80 different combinations involving varying temporal and 
asymmetric spatial scales and subsequently conducted a comparative analysis (Figure 2). 
It is important to note that a larger spatial scale results in a reduced sample size, while a 
longer temporal scale corresponds to a smaller number of samples. To maintain a 
sufficient number of training samples, we imposed restrictions such that the temporal 
scale does not exceed 30 days and the spatial scale does not exceed 0.5°. As an illustration, 
consider the following case involving a spatial scale of 0.05° × 0.05° and a temporal scale 
of 3 days: this configuration yields a sample size of 192 × 320 and a total of 1100 samples 
(Figure 3). 

Following the encoding and decoding processes, the sample size remains unaltered, 
and the model effectively extracts image features. This feature-rich model is then 
equipped to provide pixel-level predictions, effectively transforming marine 
environmental data into detailed fishing ground forecasts. It is imperative to emphasize 
that this model was specifically tailored for predicting the fishing grounds of the neon 
flying squid within the Northwest Pacific Ocean [21]. 

2.4. Case Implementation and Evaluation 
In order to assess the model’s performance, we employed several key metrics. The 

overall accuracy (OA), which is a fundamental indicator, quantifies the ratio of accurately 
predicted pixels to the total number of pixels. Furthermore, to comprehensively evaluate 
the model, we calculated the precision, recall, and F1 score of the prediction results. 
Precision signifies the proportion of correct predictions among all the pixels identified as 
fishing ground. Recall quantifies the proportion of actual center fishing ground pixels that 
were correctly predicted. Since there is often a trade-off relationship between precision 
and recall, we introduce the F1 score, which is the harmonic mean of both precision and 
recall. These metrics, in accordance with previous research [20], are calculated as follows: Overall accuracy: 𝑂𝐴 = 𝑁୘୔ + 𝑁୘୒𝑁୘୔ + 𝑁୘୒ + 𝑁୊୔ + 𝑁୊୒ × 100%  (2)

Precision: 𝑃 = 𝑁୘୔𝑁୘୔ + 𝑁୊୔ (3)

Recall: 𝑅 = 𝑁୘୔𝑁୘୔ + 𝑁୊୒ (4)

𝐹1 = 2𝑃𝑅𝑃 + 𝑅 = 2𝑁୘୔2𝑁୘୔ + 𝑁୊୔ + 𝑁୊୒ (5)

where 𝑁୘୔  (TP stands for true positive) represents the number of correctly predicted 
pixels corresponding to center fishing ground; 𝑁୘୒  (TN stands for true negative) 
represents the number of correctly predicted pixels corresponding to non-center fishing 
ground; 𝑁୊୔  (FP stands for false positive) represents the number of falsely predicted 
pixels corresponding to center fishing ground; and 𝑁୊୒  (FN stands for false negative) 
represents the number of falsely predicted pixels corresponding to non-center fishing 
ground. 

The fishing ground prediction model was implemented using TensorFlow 2.4.1 
within a Python 3.7 environment. The model’s execution was conducted on the NVIDIA 
GeForce RTX 2080 Ti graphics processing unit, and the operating system employed was 
Ubuntu. To commence the model, we utilized sea surface temperature (SST) data 
spanning the region of 36° to 48° N and 145° to 165° E in the Northwest Pacific Ocean for 
the years 1998 to 2020. These SST data were paired with the corresponding ground truth 
data for the center fishing ground, thereby establishing a one-to-one correspondence. 
Subsequently, a dataset accommodating various temporal and spatial scales was carefully 
constructed. Within this dataset, we designated samples from the years 1998 to 2019 for 
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training purposes. These training samples underwent a random split, dividing them into 
training and validation sets at a ratio of 4:1. The fishing ground prediction model was then 
trained on the dedicated training set, with the optimal parameters for model fitting 
determined through an iterative process utilizing the validation set. Lastly, the model’s 
performance evaluation was executed on the samples from 2020, which constituted the 
testing set. 

3. Results 
3.1. Model Results in Different Spatiotemporal Scales 

In the different spatiotemporal scale cases, we obtained the following results. The 
minimum loss range for the training set is 0.03 to 0.25. For the validation set, the minimum 
loss range is 0.08 to 0.27, with an average of 0.19 (Figure 4). The optimal accuracy range 
for the validation set is 86.94% to 97.01%, with an average of 91.82% (Figure 5). An epoch 
refers to one complete pass through the entire training dataset during the training of a 
neural network. The loss curves of the training and validation sets reveal that all model 
cases, across different temporal and spatial scenarios, achieved a satisfactory fit within the 
300-epoch limit. Additionally, the inclusion of two layers of SpatialDropout2D 
regularization helped mitigate model overfitting. 
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Figure 4. Loss curves of the training and validation sets of the fishing ground prediction model in 
different temporal and spatial scales. Train and Valid in the figure represent the training and 
validation sets, respectively. 

 
Figure 5. Overall accuracy curves of the training and validation set of the fishing ground prediction 
model in different temporal and spatial scales. In the figure, OA stands for overall accuracy, and 
Train and Valid stand for the training and validation set, respectively. 

3.2. Spatiotemporal Scale Variability Evaluation 
To assess the performance of the fishing ground prediction model under different 

temporal and spatial scales, it was tested on the testing set using OA and F1 score as 
evaluation metrics. The best performing case, with a spatial scale of 0.25° × 0.25° and a 
temporal scale of 15 days, achieved an OA of 89.90% and an F1 score of 0.9050, whereas 
the worst performing case, with a spatial scale of 0.1° × 0.1° and a temporal scale of 3 days, 
attained an OA of 79.56% and an F1 score of 0.7789. On average, the OA was 85.21% with 
a standard deviation of 2.12%, while the average F1 score was 0.8460 with a standard 
deviation of 0.03. Although the evaluation results varied, the overall performance was 
satisfactory (Figure 6). The findings indicated that a larger temporal scale leads to 
relatively better model performance. The influence of latitude in the spatial scale is more 
pronounced compared to longitude. 
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Figure 6. Performance evaluation on the testing set of the fishing ground prediction model in 
different temporal scales. 

3.3. Prediction Performance of the Best Case 
The best prediction performance was achieved in the first half of September, with an 

OA of 95.60% and an F1 score of 0.9600 (Table 1). During this period, the outline of the 
center fishing ground appeared smooth, and the prediction accuracy of the center fishing 
ground along the edge of the SST front at 44° to 48° N was high (Figure 7). Conversely, 
the worst prediction performance occurred in the second half of November, with an OA 
of 82.14% and an F1 score of 0.8355 (Table 1). In this period, the outline of the center fishing 
ground appeared relatively rough, and the correct prediction of the center fishing ground 
to the north of 44° N was challenging, particularly in the area of 145° to 150° E and 42° to 
46° N. Overall, apart from November, the testing results for each period were satisfactory, 
confirming the model’s high stability over different periods. The fishing ground 
prediction model successfully extracted and predicted two significant pieces of 
information (Figure 7): the contour of the center fishing ground and the latitudinal change 
at different periods. However, the prediction results in November were not as accurate. 
The predicted center fishing grounds exhibited smoother outlines than the ground truth, 
and certain fine structures were not well predicted [36]. Furthermore, the prediction 
showed a southward shift compared to the ground truth, with higher SST values, which 
constituted the primary source of error. 
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Figure 7. Visual evaluation of the performance of the center fishing ground model in the best case. 
Jul (1), Jul (2), …, and Nov (2) represent the first half of July, the second half of July, …, and the 
second half of November, respectively. In the ground truth, the center fishing ground and non-
center fishing ground are shown in white and black, respectively. In the prediction, the correctly 
predicted center fishing ground and non-center fishing ground are shown in white and black, 
respectively; the falsely predicted center fishing ground and non-center fishing ground are shown 
in blue and red, respectively. 

Table 1. The testing results of the fishing ground prediction model in the best spatiotemporal scale 
case in each period. 

Period 
Overall Accuracy 

(OA, %) Precision Recall F1 Score 

July (1st half) 91.72 0.9427 0.9441 0.9434 
July (2nd half) 88.75 0.9322 0.9160 0.9240 

August (1st half) 94.51 0.9183 0.9974 0.9562 
August (2nd half) 93.80 0.8810 0.9990 0.9360 

September (1st half) 95.60 0.9390 0.9830 0.9600 
September (2nd half) 87.55 0.9280 0.8910 0.9090 

October (1st half) 90.55 0.8920 0.8610 0.8760 
October (2nd half) 90.83 0.9229 0.8563 0.8883 

November (1st half) 83.57 0.8553 0.7884 0.8205 
November (2nd half) 82.14 0.9130 0.7701 0.8355 

Mean േ  
Standard deviation 

89.90 േ  
4.25 

0.9125 േ  
0.0265 

0.9005 േ  
0.0782 

0.9050 േ  
0.0465 
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4. Discussion 
4.1. Impact of Asymmetric Spatiotemporal Scales on the Model 

By examining the performance of models under various asymmetric spatial and 
temporal scale cases (Figure 6), significant differences in model performance are evident. 
Regarding temporal scales, the trends in OA and F1 are generally consistent. A larger 
temporal scale corresponds to better model performance (Figure 8). Concerning spatial 
scales, the influence of longitude and latitude on model performance is asymmetric. Cases 
with a longitude of 0.5° and a latitude of 0.05° are unfavorable for model results. When 
examining the dispersion across different spatial scales, it is observed that model 
performance exhibits greater dispersion in the latitude direction. This could be attributed 
to the fact that center fishing grounds are defined based on SST ranges, and changes in 
the latitude direction are more pronounced than in the longitude direction. Models with 
longitudes of 0.05° and 0.1° display more outliers in terms of dispersion. This could be 
due to the irregular distribution of center fishing grounds in the longitude direction, 
which does not conform to a normal distribution (Figure 8). Since both temporal and 
asymmetric spatial scales jointly influence model performance, the optimal case is 
determined to be 15 days for the temporal scale and 0.25° × 0.25° for the spatial scale. 
Previous studies have suggested optimal spatial scales ranging from 0.25° to 0.5° [25] and 
optimal temporal resolutions of 30 days [37]. The slight disparities between our results 
and previous research can be attributed to differences in data sources and models, along 
with the finding that a latitude of 0.5° yields better results, whereas a longitude of 0.5° 
yields poorer results in our study. Therefore, the previously established conclusion of a 
0.5° optimal spatial scale might be influenced by the greater contribution of the latitude 
direction to model performance. The design of asymmetric spatial scales can better 
identify the most reasonable design case and enhance our understanding of distinct 
environmental characteristics in different marine regions. 

 
Figure 8. Dispersion and trend of model performance at different temporal and spatial scales 
(longitude and latitude). 

Although there are substantial differences among various cases, the overall OA 
remains above 78%. Compared to traditional methods, the model has shown 
improvements in both accuracy and stability [1]. We believe this is because deep learning 
is more adept at handling the spatiotemporal distribution of fishing grounds compared to 
traditional methods, as evidenced by the U-Net model’s strong adaptability in pixel-level 
image segmentation. While the optimal spatiotemporal scale identified in this study is 
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specific to Ommastrephes bartramii in the Northwest Pacific, other pelagic species may have 
different requirements for spatiotemporal scale (e.g., a minimum spatial scale of 0.5° for 
tuna [5]). However, the method proposed in this study does not rely on information 
specific to Ommastrephes bartramii. In other words, the concept of asymmetric 
spatiotemporal scale design presented in this paper can be extended to other species and 
may reveal different patterns of change in latitude, longitude, and temporal scales. 

4.2. Impact of SST at Different Spatiotemporal Scales 
SST is the most critical oceanic environmental factor affecting the distribution of 

pelagic commercial species [38–42]. The suitable SST range for Ommastrephes bartramii 
exhibits clear seasonal variation [1], characterized by an initial increase followed by a 
decrease, with the highest SST temperatures occurring in August and September. 
Examining the changes in the SST range of the center fishing grounds at different temporal 
scales (Figure 9), it becomes evident that with larger temporal scales, the SST range 
fluctuations of the center fishing grounds become smoother. This may lead to a better 
coupling between the environmental field and the center fishing grounds during model 
training, resulting in improved model performance. From a machine learning perspective, 
smaller temporal scales may offer a larger dataset for more comprehensive model training. 
However, from a fishery standpoint, the degree of matching between the environmental 
field and the fishing grounds also determines the model’s results. 

 
Figure 9. Variation in the sea surface temperature (SST) range in the center fishing ground of 
Ommastrephes bartramii in different temporal scale cases (an example is a spatial scale of 0.05° × 0.05°). 

Because the center fishing grounds are delineated based on the SST range, the 
distribution of center fishing grounds primarily exhibits a zonal pattern in the latitude 
direction. This results in a more pronounced impact of latitude on the model compared to 
longitude (Figure 10). The fishing ground of Ommastrephes bartramii is dominated by two 
western boundary currents, the Kuroshio Current characterized as a warm and nutrient-
poor current and the Oyashio Current characterized as a cold and nutrient-rich current. 
The Kuroshio–Oyashio transition zone with high biological productivity is an important 
feeding ground for many commercially important marine species including Ommastrephes 
bartramii [43,44]. Due to the influence of the Kuroshio Current, the Oyashio Current, and 
their associated eddies on the longitudinal distribution of SST in the center fishing 
grounds [45], the model results are affected. In the study results, the adverse impact of the 
0.5° longitude cases on the model outcomes may be attributed to the significant spacing 
between longitudes, which could lead to the neglect of oceanographic features, especially 
currents and eddies. On the other hand, the unfavorable effect of the 0.05° latitude cases 
on the model results could be due to the excessively small latitude scale, resulting in less 
noticeable variations in SST that fail to align well with the latitudinal changes in the center 
fishing grounds. 
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Figure 10. Temporal changes in SST and the corresponding center fishing grounds. 

4.3. Application Evaluation of the Optimal Model 
The U-Net model is widely recognized as one of the standard benchmarking methods 

for deep learning-based pixel-level image classification. Its defining feature is a fully 
convolutional structure, which eliminates the conventional fully connected layer and 
employs deconvolution layers to restore image resolution. This architectural choice 
significantly enhances the model’s training efficiency and accuracy when dealing with 
pixel-level image classification tasks. In other words, the deep learning model based on 
U-Net outperforms traditional convolutional models with fully connected layers in terms 
of suitability and efficiency, particularly in pixel-level fishing ground prediction [46]. 

In this study, actual catch data were used for model testing. The fishing grounds 
predicted by the model with optimal temporal and spatial scales on the 2020 testing 
dataset were compared with the actual catch data (Figure 11). Two metrics were employed 
to evaluate the model’s performance. First, the site coverage rate is defined as the ratio of 
the number of catch sites in fishing ground covered by the predicted fishing ground to the 
total catch sites. Second, the catch coverage rate is defined as the ratio of the catch value 
at the sites covered by the predicted fishing ground to the total catch value. The results 
(Table 2) showed that in the prediction, the site coverage rate for the first half of August is 
98.57%, and the catch coverage rate is 99.81%; for the second half of August, the site 
coverage rate is 99.68%, and the catch coverage rate is 99.95%; and for the first half of 
November, the site coverage rate is 94.38%, and the catch coverage rate is 93.62%. Except 
for these three periods and the first half of July where no actual catch data are available, 
the site coverage rate and catch coverage rate for the other periods are 100%, indicating 
excellent application performance. Particularly in the first half of October, this period 
exhibits more sites with high catch values compared to other periods. Although the 
predicted center fishing ground during this period is relatively narrow, the application 
performance remains excellent, demonstrating the model’s robustness and reliability. 
Compared to the predicted fishing ground distribution in traditional methods, deep 
learning places greater emphasis on the application effectiveness of the test set in 
predicting results. This better reflects the deep learning approach’s ability to learn the 
mechanisms of fishing ground changes, and the model exhibits greater stability. 
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Figure 11. Actual catch data superimposed onto the predicted results (the predicted center fishing 
ground is illustrated in white, the predicted non-center fishing ground in black, and the actual catch 
data as colored dots.). 

Table 2. Application evaluation of the center fishing ground prediction model on the testing set with 
actual catch data. 

Period Site Coverage Rate (%) Catch Coverage Rate (%) 
July (1st half) / / 
July (2nd half) 100.00 100.00 

August (1st half) 98.57 99.81 
August (2nd half) 99.68 99.95 

September (1st half) 100.00 100.00 
September (2nd half) 100.00 100.00 

October (1st half) 100.00 100.00 
October (2nd half) 100.00 100.00 

November (1st half) 94.38 93.62 
November (2nd half) 100.00 100.00 

The impressive application performance of the deep learning-based model can be 
attributed to the following main reasons. (1) The definition of the center fishing ground 
based on the upper quartile effectively encompasses actual catch sites, even those with 
lower catch values. This method of defining the center fishing ground, tailored to the data 
characteristics of fishing grounds, is not only feasible but also reliable. It facilitates the 
successful application of deep learning to fishing ground prediction. (2) The U-Net model 
possesses distinctive characteristics within its convolutional layers, including weight 
sharing and local connectivity. These features help reduce the complexity of the image 
feature extraction network. The U-Net model strikes a delicate balance between extracting 
deep features for semantic classification and preserving high resolution. Consequently, it 
excels in handling pixel-level image classification tasks, enabling it to fully exploit the 
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multiscale information embedded in SST data. This results in accurate and reliable pixel-
level fishing ground predictions. Moreover, the SST distribution map and the center 
fishing ground map exhibit varying scales of features, such as the large-scale spatial 
distribution of the center fishing ground, the fine-scale bending of isotherms at the edges, 
and north–south shifts in the center fishing ground. The U-Net model effectively extracts 
and captures these features. This study provides a scientific basis for the high-quality 
development of distant-sea fisheries and the accurate predicting of fishing ground. It also 
offers technological support for the sustainable development of fishery resources in the 
Northwest Pacific. 

However, this study still has some limitations. (1) Fishing ground changes are 
influenced not only by environmental factors such as SST but also by other anthropogenic 
factors, including the captain’s experience, decisions made by fishing enterprises, and the 
fishing equipment on the vessels. These factors will be taken into consideration in 
subsequent research. (2) Only one influencing factor, SST, was selected as the input factor, 
which may result in an excessively large area for the center fishing ground. Subsequent 
research will incorporate multiple factors and analyze the impact of asymmetric 
spatiotemporal scales on the model under the combination of multiple environmental 
factors. 

5. Conclusions 
In this study, we proposed an innovative deep learning-based approach for 

predicting fishing ground using asymmetric spatiotemporal scales, contributing to the 
refinement of existing research on this topic. The research lays the groundwork for the 
development of precise and stable models tailored to the specific spatiotemporal scales of 
a particular marine species within a defined region. 

Through an analysis of results obtained from various combinations of temporal and 
asymmetric spatial scale cases, we found the optimal model parameters: a temporal scale 
of 15 days and a spatial scale of 0.25° × 0.25°. Larger temporal scales were found to enhance 
model accuracy, with latitude exerting a greater impact than longitude, likely influenced 
by the specific oceanographic characteristics of the Northwest Pacific. 

The asymmetric spatiotemporal scale analysis deepens our understanding of how 
environmental factors influence fishing ground distribution. It is important to note that 
this study considered only SST as an influencing factor, and future research will explore 
the impact of integrating multiple environmental factors. The methods and insights 
presented, although specific to the Ommastrephes bartramii fishing ground, can be 
extended and applied to research involving fishing grounds of other species. 
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