
Citation: Jareño, J.; Bárcena-González,

G.; Castro-Gutiérrez, J.;

Cabrera-Castro, R.; Galindo, P.L.

Enhancing Fish Auction with Deep

Learning and Computer Vision:

Automated Caliber and Species

Classification. Fishes 2024, 9, 133.

https://doi.org/10.3390/

fishes9040133

Academic Editor: Xinjun

Chen

Received: 25 March 2024

Revised: 4 April 2024

Accepted: 11 April 2024

Published: 13 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fishes

Article

Enhancing Fish Auction with Deep Learning and Computer
Vision: Automated Caliber and Species Classification
Javier Jareño 1 , Guillermo Bárcena-González 1,* , Jairo Castro-Gutiérrez 2,3 , Remedios Cabrera-Castro 2,4

and Pedro L. Galindo 1

1 Computer Science Department, School of Engineering, University of Cádiz, Puerto Real, 11519 Cádiz, Spain;
javier.jareno@uca.es (J.J.); pedro.galindo@uca.es (P.L.G.)

2 Biology Department, Faculty of Marine and Environmental Science, Campus Universitario de Puerto Real,
University of Cádiz, Puerto Real, 11510 Cádiz, Spain; jairo.castro@uca.es (J.C.-G.);
reme.cabrera@uca.es (R.C.-C.)

3 Department of Agroforestry Sciences, ETSI School of Engineering, University of Huelva, 21007 Huelva, Spain
4 Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar

(CEIMAR), University of Cádiz, Puerto Real, 11510 Cádiz, Spain
* Correspondence: guillermo.barcena@uca.es

Abstract: The accurate labeling of species and size of specimens plays a pivotal role in fish auctions
conducted at fishing ports. These labels, among other relevant information, serve as determinants
of the objectivity of the auction preparation process, underscoring the indispensable nature of a
reliable labeling system. Historically, this task has relied on manual processes, rendering it vulnerable
to subjective interpretations by the involved personnel, therefore compromising the value of the
merchandise. Consequently, the digitization and implementation of an automated labeling system
are proposed as a viable solution to this ongoing challenge. This study presents an automatic system
for labeling species and size, leveraging pre-trained convolutional neural networks. Specifically,
the performance of VGG16, EfficientNetV2L, Xception, and ResNet152V2 networks is thoroughly
examined, incorporating data augmentation techniques and fine-tuning strategies. The experimental
findings demonstrate that for species classification, the EfficientNetV2L network excels as the most
proficient model, achieving an average F-Score of 0.932 in its automatic mode and an average
F-Score of 0.976 in its semi-automatic mode. Concerning size classification, a semi-automatic model
is introduced, where the Xception network emerges as the superior model, achieving an average
F-Score of 0.949.

Keywords: fish species; fish size; machine learning; deep learning; transfer learning; fish auction;
classification

1. Introduction

The quest for intelligence in the Spanish fish market has become imperative to enhance
and modernize the existing infrastructure. While most auction facilities have digitized their
operations, the current level of digitalization remains limited, primarily concentrating on
photographing products for potential buyers. However, there is room for improvement
in this regard. Expanding the use of these images, particularly in the realm of biological
research, holds significant promise. Therefore, enhancing digital infrastructure can open
doors to broader applications, including in the field of biology, such as technological
advancements in sales traceability [1] and auction processes [2] to augment the value of
fishing along the Spanish coast. In the specific case of the fish markets in Conil de la Frontera
(36°17′44.1′′ N 6°08′16.9′′ W) and Sanlúcar de Barrameda (36°48′12.7′′ N 6°20′12.3′′ W) in
Southwest Spain, an image capture and tagging system is used exclusively to maintain
sales records and for online sales.

During the auction, the seller presents a box of fish of the same species and size, which
is indicated by an integer value [1, n], where n > 1, n ∈ N depending on the species
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(smaller integer indicating larger size). The size of the lot is determined by the physical
characteristics of the catch, which are verified by the auction manager. Once both labels are
manually confirmed, the lot is displayed to potential buyers and offered for auction.

However, despite efforts to ensure objectivity in the labeling process, this task has
relied on manual processes, rendering it vulnerable to subjective interpretations by the in-
volved personnel. Hence, mislabelling may occur. Instances include concealing smaller fish
within larger ones, combining physically similar but differently valued species, mislabeling
catches with smaller sizes to increase their value, and variations in size depending on the
smallest and largest catch of the day. These cases highlight the necessity of implementing
an auxiliary classification system that enables the auction operator to manage sales with
the utmost rigor and accuracy.

The utilization of convolutional neural networks (CNNs) combined with data aug-
mentation techniques is a well-established approach to similar tasks, widely acknowledged
in the scientific community. Previous studies [3–8] that focus on the classification of animal
species have demonstrated the effectiveness of convolutional models. They propose species
classification systems based on pre-trained CNNs such as ResNet-50 [9], VGG16 [10],
AlexNet [11], and GoogleNet [12], utilizing datasets augmented with techniques like ro-
tation, zoom, and shift. Furthermore, these works highlight the improved performance
achieved by combining convolutional models with preprocessing techniques, data augmen-
tation, and fine-tuning during training.

This study investigates the implementation of an automated system for species and
size recognition in fish auctions using convolutional neural networks (CNNs). The main
difference between automatic and semi-automatic models in classification lies in the degree
of human intervention required for their operation and supervision. In this work, we
explore multiple pre-trained models and examine the impact of various image preprocessing
techniques on the performance of an automatic classification system. Additionally, we
propose a semi-automatic model wherein the auction manager is presented with a reduced
set of predicted species based on their probabilities, and the final species label will be chosen.

In most existing publications, specimens are only classified within the image or distin-
guished from other objects in the image, such as trash [6,13–17]. Our research addresses
the critical need for objectivity in fish labeling processes, which are traditionally prone
to subjective errors. This system not only promises to streamline auction operations by
reducing manual errors but also significantly contributes to technological advancement in
the field of biological research and fishery management.

The structure of this paper is as follows: Section 2 presents the images dataset along
with the data augmentation strategy used to handle class imbalance and increase the
robustness of the system to new instances (Section 2.1). The evaluated pre-trained models
are discussed in Section 2.2, followed by the selection of hyperparameters for training
(Section 2.3) and the evaluation of the proposed models (Section 2.4). Subsequently, the
results of the proposed models are discussed in Section 3. Finally, the conclusions and
future work of this study are presented in Section 4.

2. Materials and Methods
2.1. Image Acquisition and Preprocessing

The data set used was collected from sales conducted at the Conil de la Frontera fish
market. Each sold box is associated with an image (800 × 480 px resolution), which is stored
along with auction sales data, including size, weight, and Food and Agriculture Organization
of the United Nations Code (FAO), among other data pertaining to the private data of both
buyers and sellers. Upon examining the captured images of fish in our study, the overlap of
various specimens in several instances is evident. This overlap is not accidental, nor does it
represent a limitation of our methodology. On the contrary, it accurately reflects the natural
and realistic conditions under which the fish capture images have been taken. Example
images of the two most significant species in the Conil de la Frontera fishing port are shown
in Figure 1. The original raw dataset comprises 12,525 images spanning 80 different species
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of sales occurring on 38 distinct days. However, a notable class imbalance is observed, with
several species having fewer than 30 sample images, while more common species such as
those depicted in Figure 1a,b have 1217 and 2167 instances, respectively.

To address the class imbalance issue and ensure an adequate test dataset, we decided
to study those species for which we have more than 200 sales instances. Consequently, the
set of target species is reduced to 19. This set is divided into training (80% of the data for
each species), validation (10%), and testing (10%). The dataset is divided in a manner such
that every species has 80% of their instances in training, 10% for validation, and 10% for
testing, henceforth keeping the balance in all the stages.

(a) (b)

Figure 1. Main species of the fish market at the fishing port of Conil de la Frontera: (a) Pagrus pagrus
and (b) Plectorhinchus mediterraneus.

The 19 species selected according to the criterion are listed in Table 1, resulting in a
total of 10,632 instances. Despite spanning 38 different days and 19 species, all these images
share identical characteristics: intense artificial lighting within a controlled environment,
ensuring no disruption to the day-night cycle during image capture; variable fish counts
per box, allowing for significant overlap; consistent camera and configuration settings
across all shots; each box containing fish of the same species; and use of the same kind of
box (disposable white boxes are used for species with ink, although these instances were
not considered due to insufficient data).

Data augmentation techniques are applied to the training data [18], with the aim of
increasing the number of instances for each species to at least 500. The implementation of
data augmentation significantly enhances the system’s performance, as it allows the network
to learn from variations present in the images, such as the distribution of fish in the box,
different calibers, blood stains, water droplets on the camera distorting the image, and
snow in the boxes. This augmentation process facilitates the extrapolation of the network’s
knowledge to future instances. The original set of images is preserved, and new images are
generated using transformations (Albumentations framework [19]) such as horizontal mirroring
(0.5 probability), vertical mirroring (0.5 probability), image rotation (range from −10º to 10º
in steps of 1º), blur (maximum Gaussian kernel size for blurring the input image set as 1),
optical distortion (distort limit 0.05), and hue saturation (hue shift limit of 5, value shift
limit of 5 and saturation limit in range [0, 30]). Therefore, the resulting dataset consists of
10,632 instances, representing 19 target species, with an average of 640 images per class.
Furthermore, 20% of the dataset is reserved for test and validation purposes. Therefore,
it is divided into training (80%—8505 original instances, 12,095 with data augmentation),
validation (10%—1064 instances), and testing (10%—1063 instances).
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Table 1. Number of instances recorded for each species, alongside their respective scientific names
and identification codes.

Specie ID No. of Instances

Conger conger 1203 292

Pagellus erythrinus 1501 889

Plectorhinchus mediterraneus 1504 2167

Argyrosomus regius 1506 836

Pagrus auriga 1509 1120

Sparus aurata 1510 261

Pagrus pagrus 1515 318

Dentex gibbosus 1519 212

Diplodus sargus sargus 1520 313

Dentex canariensis 1524 761

Diplodus vulgaris 1528 208

Umbrina canariensis 1606 287

Microchirus azevia 1607 233

Phycis phycis 1704 380

Pagrus pagrus 1705 1217

Muraena helena 1803 265

Galeorhinus galeus 1802 241

Mustelus mustelus 1804 335

Diplodus cervinus cervinus 1911 297

2.2. Pre-Trained CNN models

A convolutional neural network is a type of deep learning model specifically designed
to process grid-structured data, such as images or matrix data. Unlike traditional neural
networks, CNNs use a specialized architecture that takes advantage of the spatial cor-
relation of data by applying convolutional filters in successive layers [20]. These filters
automatically learn local features, such as edges, textures, and shapes, and combine them
to build more abstract and meaningful representations as you dig deeper into the network.

One of the main advantages of convolutional neural networks is their ability to extract
features automatically from the input data without prior preprocessing. Instead of having to
design and manually select the relevant features for a particular task, CNNs automatically
and hierarchically learn the most discriminative features as the network is trained. This
makes them extremely powerful for computer vision tasks such as image classification,
object detection, segmentation, and face recognition.

Pre-trained networks are CNN models that have been pre-trained on large datasets,
such as ImageNet, and have become a popular choice in the deep learning community [21].
These pre-trained models, such as ResNet152V2 [22], VGG16 [10], EfficientNetV2L [23],
and Xception [24], have learned to recognize a wide variety of visual features and thus
can be used as a solid foundation for other computer vision tasks. By leveraging the
prior knowledge captured in these models, significant time and resources can be saved by
avoiding training from scratch and obtaining quality results more quickly.

Let the VGG16 CNN architecture shown in Figure 2 work as an example. It cannot be
used without applying transfer learning [20], a technique used to extrapolate pre-trained
CNN models to new classification problems. CNNs can be divided into two main parts:
the convolution layers, where the feature extraction is performed, and the fully connected
layers, where the classification is performed based on the features extracted. Since the
original number of classes is different from ours, the last part of the CNN architecture is
replaced with a new Fully Connected Neural Network (FCNN), which matches our number
of fish species, 19.
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The original feature extraction layers are maintained since they hold the knowledge
learned from the ImageNet dataset. Notwithstanding, the classification layers are replaced
with a GlobalAveragePooling2D layer and a Dense-SoftMax output layer.

Figure 2. VGG16 CNN architecture.

2.3. Model Training

Since the transfer learning technique has been used, the model training is performed
in two phases to improve the performance of the results. First, the convolutional layers of
the model are frozen so that the training will only affect the fully connected (FC) layers.
We use “categorical cross-entropy” as the loss function and the Adam optimizer with its
default hyperparameters of learning rate and decay [20]. The model is trained in 35 epochs
and with a batch size of 64. These parameters have been chosen to properly fit the model in
the shared memory of the GPU to optimize training time. The GPU is an NVIDIA GeForce
RTX 3090Ti with 24 GiB of memory, of which 22.4 GiB is used for model storage.

Once the model has been fully trained with these parameters, a fine-tuning training
phase is performed to adapt the whole network to this specific problem and increase its
performance. In this stage, all the layers are unfrozen so that the training changes all the
weights of the model. However, the learning rate is set as 1 × 10−5. so that the weights are
not changed that much. Moreover, because we are updating all the layers, the size of the
model in the GPU is increased. Therefore, the batch size must be reduced to 16. All these
parameters are shown in Table 2.

Table 2. Summary of Training Hyperparameters: The batch size has been determined based on the
GPU’s memory size limitation. The selection epoch values for both training phases are selected after
an analysis of the learning curves, as depicted in Figure 3, which exhibits signs of overfitting at those
particular points. During the fine-tuning phase, an increase in the number of epochs significantly
impacts the validation error.

Optimizer Loss Function Learning Rate Epochs Batch Size

Frozen Layers
Adam Categorical Cross-entropy

1 × 10−3 35 64

Fine-Tuning 1 × 10−5 5 16
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Figure 3. Training and validation errors during both phases of training. (a) ResNet152V2, learning
curve shows the quick fit to 0.5 error value. (b) VGG16, slow progressive learning curve, training is
prematurely stopped due to the strong fit in its fine-tuning phase. (c) EfficientNetV2L, slow learning
during the first phase, great improvement in fine-tuning. (d) Xception, a quick fit of the validation
error in both phases.

2.4. Model Evaluation

To evaluate the model performance, we delve into the concept of model evaluation
specifically tailored for CNN models. The metrics commonly used to assess the effectiveness
of CNNs in various computer vision tasks will be explored. These metrics offer valuable
insights into the model’s ability to classify objects. Examining and understanding these
evaluation metrics allows for informed decisions regarding model selection, optimization,
and deployment.

The following equations define the metrics employed to measure the performance of
the models, which are Precision, Recall, F1Score, Execution Time, and Confusion Matrix.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1Score = 2 · precision · recall
precision + recall

(3)

where TP stands for True Positives, FP for False Positives and FN as False Negatives. The
confusion matrix allows us to visualize the predicted classes among the real ones, giving an
intuitive way to understand the previous metrics and to see the most common confusion
between the classes.

A semi-automatic model is proposed so that the second most likely class predicted
(second highest value in the one-hot encoding) is taken as a TP, too. This metric is used to
evaluate the model that would be proposed as a product for the fish markets. This model
proposes the most likely predicted class for the fish box but also will show the next n most
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likely species in case the predicted species is wrong. Therefore, this metric evaluates the
final model.

To ensure a robust evaluation of the proposed models, a total of 50 distinct datasets
were meticulously curated. Instead of adhering to the commonly used minimum of
30 iterations, we opted for this approach to account for the considerable variations in the
number of classes and differences among images. This approach allows us to encompass a
wide range of scenarios representing sets of instances that can be input into the network.
Hence, with respect to each of the experiments, the metrics presented are the result of
50 iterations of each model proposed.

3. Results and Discussion

This section presents the results from a series of experiments conducted on multiple
pre-trained models. The study investigates the performance of VGG16, EfficientNetV2L,
ResNet152V2, and Xception, each evaluated independently. To ensure the quality and
accuracy of the analysis, the networks underwent training iterations using diverse training
datasets derived from the original set. This approach enables a comprehensive comparison
among the models under various training conditions.

3.1. Species Classification

The learning curves of the proposed models across the epochs show how the training
stops once the validation loss has achieved a stable value and the training loss is beginning
to overfit (Figure 3). Moreover, the same loss function has been used over the models, and
although they report similar performance in the F-Score metric (as seen in Table 3), they
obtain very different values in their loss functions.

Table 3. F-Score, Precision, and Recall evaluation metrics are presented for the classification of
19 species among 50 different datasets. EfficientNetV2L consistently demonstrates superior per-
formance across all evaluation metrics. The reported mean values of precision and recall align
consistently across various statistical measures, encompassing minimum, maximum, and mean val-
ues. Consequently, the F-Score serves as a reliable and representative indicator of model performance.

VGG16 EfficientNetV2L Xception ResNet152V2

F-Score

Min 0.894 0.911 0.862 0.824

Max 0.946 0.955 0.908 0.877

Mean 0.918 0.932 0.886 0.853

Std (σ) 0.011 0.008 0.01 0.011

Precision

Min 0.899 0.91 0.867 0.826

Max 0.947 0.957 0.908 0.878

Mean 0.923 0.935 0.888 0.855

Std (σ) 0.01 0.008 0.01 0.011

Recall

Min 0.894 0.913 0.862 0.828

Max 0.946 0.955 0.908 0.876

Mean 0.919 0.932 0.886 0.854

Std (σ) 0.011 0.008 0.01 0.012

The metrics obtained from various models are presented in Table 3. The experimental
results highlight the exceptional performance of the EfficientNetV2L network, surpassing
all other models. Although VGG16 produces similar metrics, EfficientNetV2L consistently
achieves superior results across all evaluation metrics. Conversely, both Xception and
ResNet152V2 demonstrate inferior performance compared to the aforementioned models,
as their metric values fall below the minimum values obtained by EfficientNetV2L.

Furthermore, it is noteworthy that the precision and recall mean values reported by
each model coincide across all statistical measures, including minimum, maximum, and
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mean. Thus, the F-Score serves as an accurate representation of the proposed model’s
performance. Illustratively, Figure 4 depicts the confusion matrix derived from one eval-
uation iteration of the EfficientNetV2L network, attaining an impressive F-Score of 0.943.
The matrix effectively exhibits the accurate classification of nearly all instances, which is
evident from the dominant values along the main diagonal.

Nevertheless, it becomes evident that three instances pose considerable challenges in
terms of classification. These instances correspond to species identified as 1515 (Dentón—
Dentex gibbosus), 1524 (Vieja—D. canariensis), and 1705 (P. pagrus). These closely related
species share numerous characteristics, including color, shape, fins, and size. Consequently,
accurate image classification becomes exceedingly difficult if the distinctive features distin-
guishing these species are not clearly discernible in the photographs. For instance, a key
distinguishing characteristic between P. pagrus and D. canariensis lies in the presence of a
red spot on the tail fin of P. pagrus (see Figure 5).

Figure 4. EfficientNetV2L Confusion Matrix reporting a F-Score 0.943, close to the mean values
(shown in Table 3). A distinct diagonal pattern can be seen, highlighting the model’s well-performing
nature. The primary areas of confusion for the model are observed in the comparisons between
1515–1524, 1515–1705, 1705–1524 (True Specie—Predicted Specie) comparisons.

The histogram depicted in Figure 6 illustrates the distribution of values obtained for the
F-Score metric. This histogram is presented due to its significance as the most representative
measure for evaluating the performance of the model. Notably, the histograms show a
Gaussian-like distribution pattern, indicating that the mean value can serve as a statistically
significant indicator of the model’s performance. Furthermore, this observation is reinforced
by the examination of the mean and standard deviation values, as outlined in Table 3,
wherein the standard deviation consistently hovers around the range of 0.01.
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(a) P. pagrus (b) D. canariensis

Figure 5. Difference between P. pagrus (a) and D. canariensis (b). Notice the difference in the intensity
of the red color between the fins of both species, with the P. pagrus being much more saturated than
that of the D. canariensis.

(a) EfficientNetV2L. (b) ResNet152V2.

(c) VGG16. (d) Xception.

Figure 6. Histograms of F-Score for the proposed models among 50 different datasets. (a) Efficient-
NetV2L, (b) ResNet152V2, (c) VGG16 and (d) Xception. The histograms closely align with their
respective mean and standard deviation values (seen in Table 3), therefore serving as significant
indicators of the mean value. In panel (a), it is evident that the mean F-Score values reported for this
model surpass most executions of other models, approaching the performance level achieved by the
model depicted in panel (c).

Histograms of F-Score for the proposed models are presented in these figures. These
histograms closely align with their respective mean and standard deviation values, there-
fore serving as significant indicators of the mean value. In panel (a), it is evident that the
mean F-Score values reported for this model surpass most executions of other models,
approaching the performance level achieved by the model depicted in panel (c).

F-Score, Precision, and Recall evaluation metrics are presented for the classification of
19 species among 50 different datasets. EfficientNetV2L consistently demonstrates superior
performance across all evaluation metrics. The reported mean values of precision and recall
align consistently across various statistical measures, encompassing minimum, maximum,
and mean values. Consequently, the F-Score serves as a reliable and representative indicator
of model performance.
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The study encompassed the analysis of the semi-automatic version of the models, with
the corresponding results shown in Table 4. A careful examination of the table reveals that
EfficientNetV2L consistently outperforms other models in terms of performance. Notably,
VGG16 now demonstrates values that closely approach the performance of EfficientNetV2L.
Furthermore, Xception exhibits a noteworthy improvement in results, approaching the
performance levels of the previously mentioned models. However, despite delivering
acceptable performance, ResNet152V2 does not exhibit notable improvement compared to
the other models.

Table 4. F-Score, Precision, and Recall evaluation metrics are presented for the semi-automatic
classification of 19 species among 50 different datasets. EfficientNetV2L consistently demonstrates
superior performance across all evaluation metrics, while VGG16 exhibits a notable performance
improvement that brings it closely in line with the performance of EfficientNetV2L. Consequently,
both models effectively serve as suitable systems for the semi-automatic classification of species.

VGG16 EfficientNetV2L Xception ResNet152V2

F-Score

Min 0.961 0.966 0.941 0.922

Max 0.983 0.986 0.972 0.957

Mean 0.972 0.976 0.956 0.937

Std (σ) 0.006 0.004 0.007 0.007

Precision

Min 0.962 0.967 0.942 0.923

Max 0.983 0.986 0.972 0.959

Mean 0.973 0.977 0.957 0.938

Std (σ) 0.005 0.004 0.007 0.008

Recall

Min 0.96 0.966 0.941 0.924

Max 0.983 0.986 0.972 0.957

Mean 0.972 0.976 0.956 0.937

Std (σ) 0.006 0.003 0.007 0.007

Of particular interest is the remarkable average F-Score value achieved by Efficient-
NetV2L, coupled with its low standard deviation. This observation further solidifies the
effectiveness of the semi-automatic version of the model. Moreover, an examination of the
histogram depicting the F-Score values for this particular model, as shown in Figure 7, illus-
trates a narrower distribution. Consequently, this indicates a more reliable and consistent
model suitable for deployment in the fishing port setting.

Figure 7. Histogram of EfficientNetV2L semi-automatic model’s F-Score among 50 different datasets.
The minimal deviation and consistently high F-Score values underscore its reliability, substantiating
its suitability for implementation within the auction market.
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3.2. Size Classification

In these experiments, 50 runs of various models were executed, yielding a historical
record of metric outcomes. The species size classification under consideration is that of
P. pagrus, which can assume 5 distinct calibers, where 1 corresponds to the largest and 5 to
the smallest. There are a total of 1217 instances, which are partitioned into training (10%),
validation (10%), and test (10%) sets.

The ensuing results pertain to a semi-automatic model, wherein predictions falling
within a maximum error range of ±1 in comparison to the actual size are considered True
Positives (TP), in extreme cases, 1 is considered valid along with 2, and in case 5, 4 is
considered valid alongside 5. This choice is attributed to the high subjectivity inherent in
the original data annotations. Fishermen, when presenting their catch for sale, propose
an initial caliber for the specimen, which is then verified and annotated by the auction
supervisor, either confirming the original size or making corrections as necessary. The
criteria employed in this process are subjective and contingent upon the number and
size of the daily catches, causing variations in the visual reference system. Consequently,
specimens weighing 1 kg by law may belong to class 3, yet on certain days, they are
categorized as class 2. Moreover, it is not deemed practical to manually review and amend
the data according to an objective criterion, as it does not align with the protocol employed
at the auction house and thus holds no relevance therein. Hence, the approach of permitting
a maximum error of 1 is adopted, therefore affording the operator the option to either
accept the system’s suggestion or modify it by 1.

The metrics obtained from the various models are compiled in Table 5. Within this
table, it is evident that Xception emerges as the most reliable model across all metrics,
slightly surpassing the results achieved by ResNet152V2 and significantly outperforming
VGG16 and EfficientNetV2L. The low standard deviation value indicates that the model
has demonstrated robustness across multiple executions with diverse instances from the
database. This behavior is reflected in all three proposed metrics.

Table 5. F-Score, Precision, and Recall evaluation metrics are presented for the semi-automatic
classification of size among 50 runs. EfficientNetV2L and ResNet152V2 consistently exhibit superior
performance across all evaluation metrics, with Xception being the model that surpasses all other
models in terms of metrics.

VGG16 EfficientNetV2L Xception ResNet152V2

F-Score

Min 0.852 0.547 0.924 0.902

Max 0.948 0.818 0.983 0.975

Mean 0.901 0.702 0.949 0.942

Std (σ) 0.025 0.059 0.017 0.023

Precision

Min 0.9 0.49 0.926 0.906

Max 0.956 0.809 0.984 0.977

Mean 0.926 0.714 0.952 0.945

Std (σ) 0.014 0.075 0.016 0.021

Recall

Min 0.876 0.661 0.926 0.901

Max 0.95 0.868 0.983 0.975

Mean 0.914 0.774 0.949 0.942

Std (σ) 0.02 0.044 0.016 0.023

Furthermore, the alignment between the minimum, maximum, and mean values of
precision and recall metrics establishes the F-Score as an accurate representation of the
proposed model’s performance.

For illustrative purposes, Figure 8 presents a confusion matrix from one of the exe-
cutions of the Xception model, achieving an F-Score of 0.959. It can be observed that the
instances of confusion are minimal, rarely exceeding a value of 2. A specific illustrative case
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is highlighted in which confusion arises between the smallest and largest size categories.
Upon manual verification, it becomes evident that the instances should objectively belong
to class 3, and confusion arises due to the proximity of these specimens to the center of the
camera frame, where distortion is minimal. The fisheye lens effect in the camera introduces
distortion, causing fish located at the edges of the container to appear significantly smaller
than those placed in the center.

Figure 8. Xception Confusion Matrix reporting a F-Score 0.959 close to the mean values (shown at
Table 5). The instances of confusion are minimal, rarely exceeding a value of 2. A specific illustrative
case is highlighted in which confusion arises between the smallest and largest size categories. Upon
manual verification, it becomes evident that the instance should objectively belong to class 3, and
confusion arises due to the proximity of these specimens to the center of the camera frame, where
distortion makes it bigger than it is.

Finally, to provide detailed insight into the experimentation process, manual verifica-
tion of classification errors has been conducted, both in terms of size and species. These
verifications reveal that the model exhibits classification errors in instances where fish
reflect excessive light, in boxes with very few fish positioned at the farthest end of the
camera’s range (resulting in significant distortion), where there is excessive condensation
inside the box (due to cooling systems), when an identifying label obstructs a significant
portion of the fish in the box, or when there are foreign objects present. Conversely, it is
expected that a change in the image acquisition infrastructure will not significantly affect
species classification as long as certain characteristics such as resolution, image quality, dis-
tortion, and distance to the box are maintained. However, in the case of size classification,
adjustments may be necessary to ensure that the aspect ratio and size of the fish are similar
across both cameras, as this factor plays a crucial role in caliber classification.

Nonetheless, it is noteworthy that even when dealing with subjectively annotated
data and substantial image distortion, the semi-automatic Xception model stands out as a
potential candidate for deployment in sales supervision.

4. Conclusions

The experimental results demonstrate the exceptional performance of the Efficient-
NetV2L network compared to other models evaluated in the study regarding species classifi-
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cation. EfficientNetV2L consistently outperformed VGG16, Xception, and ResNet152V2 in
terms of the evaluated metrics, establishing its superiority across all aspects.

The precision and recall mean values reported by each model align consistently across
various statistical measures, corroborating the F-Score as an accurate representation of
the proposed model’s performance. The confusion matrix derived from one evaluation
iteration of the EfficientNetV2L network, with an impressive F-Score of 0.943, vividly
displays the accurate classification of most instances, as demonstrated by the dominant
values along the main diagonal. The histogram analysis of the F-Score metric further
supports the evaluation of model performance.

In contrast, the semi-automatic model, which utilizes the pre-trained EfficientNetV2L
network and is intended for deployment in fishing ports, has exhibited an average F-Score
of 0.98 with a standard deviation of 0.003. These findings substantiate the model’s strength
and readiness for practical implementation for species classification.

This study has provided compelling evidence of the exceptional performance exhib-
ited by the pre-trained EfficientNetV2L network in comparison to the other proposed
networks, encompassing both its automatic and semi-automatic versions. Its consistent
and remarkable performance across evaluations confirms its suitability for practical imple-
mentation. Moreover, an important issue has been identified regarding the classification
of closely related species, necessitating more extensive image-processing techniques for
future investigations.

Regarding the study on size classification, it has examined the classification of species
size, specifically focusing on P. pagrus, which can be categorized into five distinct calibers.
The experiments involved multiple model runs, resulting in a comprehensive historical
record of metrics. Notably, the analysis employed a semi-automatic approach, where
predictions within a maximum error range of ±1 were considered True Positives due to
the inherent subjectivity in the original data annotations, influenced by factors such as
varying catch sizes and fisherman-supervisor interactions. Despite this subjectivity and the
practical impracticality of manually revising the data, the approach allowed for a maximum
error of 1, granting operators the flexibility to accept system suggestions or adjust them
accordingly. The evaluation revealed Xception as the most reliable model, surpassing other
architectures, with low standard deviation indicating robustness across diverse dataset
instances. The alignment of precision and recall metrics demonstrated that the F-Score
accurately represented model performance. An illustrative confusion matrix highlighted
the model’s effectiveness even in cases of distortion, making the semi-automatic Xception
model a promising candidate for sales supervision despite subjectively annotated data and
image distortions.

As for future work, it is proposed to employ a significantly larger database, enabling
the classification of all species handled at the auction house. Regarding the size classification
system for a species, the suggestion is to develop a system based on an objective criterion.
This would involve counting the number of pieces in a container and calculating the weight
of each one, as the total weight of the container is readily available. In this way, it is possible
to obtain average weights and sizes of specimens, information that is crucial both for sales
and of great biological significance for the species, since with long-term data series, it could
be detected whether sizes are decreasing over the years, which can be a clear indication
of resource overexploitation. Furthermore, by using the calibration table that governs the
objective classification, it would be possible to establish an objective classification system
that adheres to the official regulations.
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