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Abstract: Shape memory polymers (SMPs) are soft active materials, their special property is the ability
to hold a temporary shape and when exposed to a suitable trigger, they come back to their original
shape. These external stimuli can be temperature, light or electro-magnetic fields. Amorphous SMPs
are a class of thermally-activated SMPs that rely on glass transition to retain their temporary shape.
Above the glass transition temperature (T > Tg), (amorphous SMPs exhibit finite deformation and
viscoelastic behavior. In this work we develop a model to capture the viscoelastic behavior of the
amorphous SMPs at elevated temperatures. The model uses an approach that was initially developed
to study non-Newtonian viscoelastic fluids. We accomplish this by developing a multi-branch model
based on the theory of multiple natural configurations using the maximization of the rate dissipation
to determine the evolution of the natural configurations. We apply our model to study several
different deformations at an elevated temperature T = 130 ˝C and show that this approach is able to
capture the viscoelastic behavior of these polymers. The predictions of the theory are then compared
with experimental results.
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1. Introduction

Shape memory polymers (SMPs) are soft active materials that can be deformed and fixed in
a temporary shape that remains stable, until exposure to an external stimulus which triggers the
recovery to the permanent shape [1]. The external activating stimuli can be temperature [2,3], light [4,5],
chemical environment [6], electromagnetic field [7,8], or specific solvent [9]. The latter two stimuli
can be thought of as indirect thermally-triggered behavior. In literature, the first generation of SMPs
was thermally-activated [1] and has been widely studied. Compared to shape memory alloys, SMPs
possess many advantageous features, such as being inexpensive, easy to manufacture, and highly
durable [10]. In addition, many SMPs can be made biocompatible and biodegradable by tuning them
chemically [11]. Most significantly, SMPs have the ability to recover their shape even after undergoing
large strains (to the order of 400%) [12]. Based on these advantages, SMPs are finding a wide range
of applications in various fields, such as arterial stents in the biomedical field [13], as actuators and
sensors in microelectromechanical systems (MEMS) [14,15], and in additive manufacturing [16,17],
to name a few.

Amorphous SMPs are a type of SMPs which are thermally triggered, in which the shape fixation
and the shape recovery effect is governed by glass transition. A typical shape memory cycle of
amorphous SMPs is schematically illustrated by Figure 1. When the temperature is above the glass
transition temperature (T > Tg), the undeformed polymer is in an amorphous state and exhibits
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viscoelastic behavior (State 1). Upon deformation, the material, and hence the polymer molecules,
stretch (State 1 to State 2). If the polymer is now cooled below its glass transition temperature, the
polymer molecules will lose their mobility due to glass transition and the modulus of the material
increases dramatically (State 2 to State 3). If the material is now unloaded it will not revert back to its
original shape but stays in a temporary shape (State 3 to State 4). This temporary shape is between
the original shape and deformed shape due to the formation of the glassy phase in the deformed
configuration. On heating above the glass transition temperature the original shape is recovered as the
material regains its molecular mobility (State 4 to State 1). Based on the above description, it can be
seen that in order to characterize the thermo-mechanical behavior of amorphous SMPs it is important
to study their viscoelastic behavior at elevated temperatures (in State 1 to State 2). Furthermore,
there are a number of polymers which behave in a manner similar to these polymers, and the model
developed here can be applied to these types of polymers as well.
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Several different classes of amorphous SMPs have been reported recently, such as acrylate-based
SMPs [13] and epoxy-based SMPs [18]. In this work, we study a class of epoxy-based amorphous
SMPs (Veriflex-E) which have been characterized experimentally by McClung et al. [19,20]. Veriflex-E
is commercially available and can be purchased from Cornerstone Research Group Inc. (CRG).
The glass transition temperature (Tg) of the polymers is 98 ˝C obtained by a dynamic mechanical
analysis (DMA) test. To capture the finite-deformation viscoelastic behavior of this polymer at an
elevated temperature (T = 130 ˝C), we develop a multi-branch model. This model has two sets
of branches: one equilibrium branch for the hyperelastic response and multiple non-equilibrium
branches for the viscoelastic response. We use a Neo-Hookean model for the hyperelastic equilibrium
branch, and the model of the viscoelastic non-equilibrium branch is developed using the theory of
multiple natural configurations [21]. The material response of materials belonging to many different
classes have been modeled using this framework, some of them are: multi-network polymers [22],
metal plasticity [23], viscoelastic liquids [24,25], crystallization in polymers [26–28], crystallizable
SMPs [29–31], and light-activated SMPs [32,33]. Classical elasticity and linear viscous fluids arise as
simple cases within this theory. Though the problem we are tackling is isothermal, we develop the
model in a thermodynamic setting. The amorphous polymer is modeled at elevated temperatures as a
viscoelastic solid and the rate of dissipation is always positive. In this approach we have to choose
forms for the Helmholtz potential and the rate of dissipation. These are then used in the reduced
energy-dissipation equation, which is used to place restrictions on the forms for the stress. We further
assume that the rate of dissipation is maximized, here it is associated with viscoelasticity. An identical
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approach has been used to model a number of materials in which entropy production takes place, for
instance in twinning [21] and viscoelastic fluids [24]. We model amorphous Veriflex-E as a viscoelastic
solid with two relaxation mechanisms. The model developed is used to solve problems of uniaxial
tension, stress relaxation, and loading-relaxation-unloading cycles. The results are then compared
against experiment data. The paper is arranged in the following order. Section 2 presents basic
continuum theories used to derive our model. Section 3 introduces the finite deformation constitutive
model. Section 4 presents the comparisons between the experimental results and the model predictions.

2. Preliminaries

Considering a body B in reference configuration κR, let X denote a typical position of a material
point in κR and κt be the configuration of the body at time t. Then the motion χκR assigns to each
particle in configuration κR a position in the configuration κt at time t, and it is defined as:

x “ χκRpX, tq (1)

We shall assume this motion and all the other quantities defined are sufficiently smooth to make
all the operations meaningful and possible. The deformation gradient FκR is defined as:

FκR “
BχκR

BX
(2)

The left and right Cauchy-Green tensors are defined through:

BκR “ FκR FT
κR

(3)

CκR “ FT
κR

FκR (4)

Any acceptable process has to satisfy the appropriate conservation laws. The conservation
equations appropriate for studying the viscoelastic behavior of glassy SMPs at elevated temperatures
are the conservation of mass, linear and angular momentum, and energy. As the problem we are
studying is an isothermal problem, the energy equation need not be considered. Furthermore, we
assume that the material is incompressible. The conservation of mass for an incompressible material
reduces to:

divpvq “ 0 (5)

where v is the velocity. The conservation of linear momentum is:

ρ

„

Bv
Bt
` r∇vsv



“ divT` ρg (6)

where g is the acceleration due to gravity, ρ is the density, ∇v is the Eulerian velocity gradient and is
sometimes denoted by L and T is the Cauchy stress tensor. For an incompressible material, the stress
tensor T reduces to:

T “ ´pI`TE (7)

where p is the indeterminate part of the stress due to the constraint of incompressibility, and TE

is the constitutively-determined extra stress. The balance of angular momentum for a body in
absence of internal couples requires that the stress tensor be symmetric. In this work, we use the
reduced energy-dissipation equation to place restrictions on the constitutive equations. The reduced
energy-dissipation equation for an isothermal process is:

T ¨ L´ ρ
.
ψ “ ρθξ ” ζ ě 0 (8)



Fluids 2016, 1, 15 4 of 15

where ψ is the Helmholtz potential, ξ is rate of entropy production and ζ is the rate of dissipation.
Both ξ and ζ are constrained to be non-negative for an acceptable process.

3. Model Description

In order to model the viscoelastic behavior of the amorphous SMPs (Veriflex-E) at an elevated
temperature (T = 130 ˝C), a multi-branch model for viscoelastic solids is developed. Here, we assume
that the behavior of the polymer is characterized by two independent relaxation mechanisms but
follows identical viscous flow rules. Thus, we require one equilibrium branch to represent the
hyperelastic behavior of the material and two non-equilibrium branches to represent the viscoelastic
modes of relaxation. The 1D rheological representation of the proposed model is presented by Figure 2.
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Figure 2. 1D rheological representation of the proposed model.

As mentioned above, we use the Neo-Hookean model to simulate the equilibrium hyperelastic
behavior of the polymer. The derivation of the constitutive equations for the stress of non-equilibrium
viscoelastic branch closely follows the work of Rajagopal and Srinivasa [24], which is based on
the theory of evolving natural configurations. In this approach, the Helmholtz potential and the
stress in the materials are determined from the mapping between the tangent spaces of the natural
configuration at a material point to the current configuration occupied by it. In Figure 3, κR is a
reference configuration, κcptq is the configuration currently occupied by the material and κpptq is the
natural configuration associated with the material. The details of the theory and the derivation will be
shown in Section 3.2.
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A key feature of the material that has to be addressed relates to the incorporation of the thermal
dependence into the model. In general we may require more than two non-equilibrium branches to
simulate multiple relaxation mechanisms. The number of relaxation mechanisms of an amorphous
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SMP can be chosen to be equal to the number of Kuhn segments in a macromolecular chain, which
can be evaluated from a limiting stretch experiment [34]. In this work, to simulate the viscoelastic
behavior of the polymers at a specific elevated temperature, two non-equilibrium branches associated
with the two relaxation mechanisms were sufficient. With sufficient experimental data, our model can
be easily extended to a full thermo-mechanically coupled viscoelastic model by incorporating results
from standard time-temperature supposition theories [35,36] as was done in Rao and Rajagopal [28].
In the following paragraphs, we will discuss the details of the models.

3.1. Hyperelsatic Behavior of the Equilibrium Branch

As discussed above, the incompressible Neo-Hookean model is used for the hyperelastic behavior
of the polymers. The Cauchy stress tensor for the incompressible Neo-Hookean material is given by:

Teq “ ´pI` µBκR (9)

where µ is the shear modulus of the elastomer, p is the Lagrange multiplier due to the incompressibility
constraint and is the left Cauchy-Green tensor.

3.2. Viscoelastic Behavior of the Non-Equilibrium Branch

We have assumed that the material has two independent relaxation mechanisms associated with
two non-equilibrium branches. In addition, we assume that the two relaxation mechanisms follow
the same viscous flow rule. This is equivalent to the material possessing two independent natural
configurations, each having the same evolution rule. The representation of the natural configurations
of the material can be shown in Figure 4. κp1ptq and κp2ptq are the two natural configurations, κR is the
original configuration and κcptq is the current configuration. Here we define G1 and G2 to be mapping
between original configuration κR and the natural configurations κp1ptq and κp2ptq, respectively:

Gi “ FκRÑκpiptq “ F´1
κpiptq

FκR , i “ 1, 2 (10)
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Further, we define the velocity gradient, Lκpiptq , and the symmetric part of Lκpiptq , Dκpiptq to be:

Lκpiptq “
.

GiG
´1
i , Dκpiptq “

1
2

´

Lκpiptq ` LT
κpiptq

¯

, i “ 1, 2 (11)
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In this approach, the left Cauchy stretch tensor Bκpiptq plays the role of physically-motivated
internal variables. It can be easily shown (for details see [26]) that:

∇
Bκpiptq “

.
Bκpiptq ´ LBκpiptq ´BκpiptqLT “ ´2Fκpiptq DκpiptqFT

κpiptq
, i “ 1, 2 (12)

where, the inverted triangle denotes the upper convected Oldroyd derivative and the dot is the
material time derivative. Specification of Dκpiptq is tantamount to prescribing the manner in which the
underlying natural configurations change. As the material is incompressible, we shall assume that the
motions associated with each of the natural configurations are isochoric:

tr
´

Dκpiptq

¯

“ 0, i “ 1, 2 (13)

We derive forms for Dκpiptq , i “ 1, 2, using the second law of thermodynamics in form of the
reduced energy-dissipation equation and by requiring that the rate of dissipation be maximized.
We make the following constitutive assumptions on the Helmholtz potential:

ψa “ ψa

´

Bκp1ptq , Bκp2ptq

¯

(14)

where ψa is the Helmholtz potential of the amorphous phase. We further assume that the Helmholtz
potentials associated with the two natural configurations are additive:

ψa “ ψ1

´

Bκp1ptq

¯

`ψ2

´

Bκp2ptq

¯

(15)

Since the amorphous state of the polymer is isotropic, the forms for ψ1 and ψ2 are those of an
isotropic material and have the following forms:

ψi “ ψi pIi, IIiq , i “ 1, 2 (16)

where:
Ii “ tr

´

Bκpiptq

¯

, IIi “ tr
´

B2
κpiptq

¯

, i “ 1, 2 (17)

Since the material is isotropic, we can choose without any loss of generality, configurations κp1ptq
and κp2ptq appropriately rotated such that:

Fκpiptq “ Vκpiptq , i “ 1, 2 (18)

where Vκpiptq , i “ 1, 2, are the right stretch tensors in the polar decomposition. We assume the following
form for the rate of dissipation:

ζ “ ζ1

´

Bκp1ptq , Dκp1ptq

¯

` ζ2

´

Bκp2ptq , Dκp2ptq

¯

(19)

with the additional assumption that the rate of dissipation associated with a natural configuration is
zero when it is not changing:

ζi

´

Bκpiptq , 0
¯

“ 0, i “ 1, 2 (20)

We also assume that the rate of dissipation associated with each natural configuration
is non-negative:

ζi ě 0, i “ 1, 2 (21)
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Substituting Equations (12) and (16) into Equation (8) and using Equation (18), we get:

ˆ

Tneq ´
2
ř

i“1
2ρ

”

Bψi
BIi

Bκpiptq ` 2Bψi
BIIi

B2
κpiptq

ı

˙

¨D

`
2
ř

i“1

´

2ρ
”

Bψi
BIi

Bκpiptq ` 2Bψi
BIIi

B2
κpiptq

ı

¨Dκpiptq

¯

“
2
ř

i“1
ζi

´

Bκpiptq , Dκpiptq

¯

ě 0
(22)

Since the second term of Equation (22) and the right-hand side are independent of D and nothing
that only isochoric motions are permissible, it is sufficient to assume the stress has the form:

Tneq “ ´pI`
2
ÿ

i“1

2ρ
„

Bψi
BIi

Bκpiptq ` 2
Bψi
BIIi

B2
κpiptq



(23)

This assumption is sufficient to ensure that for all motions for which the natural configurations
do not change, the material responds elastically. We also define the partial extra stresses associated
with each of the natural configurations:

Tneq
i “ 2ρ

„

Bψi
BIi

Bκpiptq ` 2
Bψi
BIIi

B2
κpiptq



, i “ 1, 2 (24)

Using Equations (23) and (24), Equation (22) reduces to:

Tneq
1 ¨Dκp1ptq `Tneq

2 ¨Dκp2ptq “ ζ1 ` ζ2 (25)

From the forms chosen for the Helmholtz potential and the rate of dissipation, it is clear that:

Tneq
i ¨Dκpiptq “ ζi, i “ 1, 2 (26)

Equation (26) places restrictions on the tensors Dκpiptq that are achievable. We assume that the
actual value of Dκpiptq , i “ 1, 2 chosen satisfies the constraints given by Equations (13) and (26) and
also corresponds to a maximum for the rate of dissipation. This is enforced using the method of
Lagrange multipliers by maximizing Equation (19) subject to the constraints given by Equations (13)
and (26). On doing this, we obtain the following equations for the determination of Dκpiptq :

Tneq
i ´β1i

Bζi
BDκpiptq

´β2iI “ 0, i “ 1, 2 (27)

where β1i and β2i are Lagrange multipliers.
For the problem under consideration, we assume that the Helmholtz potential associated with

the elastic response of the amorphous phase is that of a Neo-Hookean material:

ψi “
µi
2ρ
pIi ´ 3q, i “ 1, 2 (28)

Additionally, we assume that the rate of dissipation has the form:

ζi “ 2ηiDκpiptq ¨Bκpiptq Dκpiptq , i “ 1, 2 (29)

where the material constant µi is the elastic modulus and the material function ηi is the viscosity of the
material. With these assumptions, Equation (23) reduces to:

Tneq “ ´pI` µ1Bκp1ptq ` µ2Bκp2ptq (30)
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Equation (24) reduces to:
Tneq

i “ µiBκpiptq , i “ 1, 2 (31)

Substituting Equation (29) into Equation (27) and eliminating β1i by using Equations (13) and (26),
we obtain:

Tneq
i “ 2ηiBκpiptq Dκpiptq `β2iI, i “ 1, 2 (32)

From Equations (12), (13), (18), (31) and (32) we obtain:

∇
Bκpiptq “

.
Bκpiptq ´ LBκpiptq ´BκpiptqLT “

µi
ηi

¨

˝

3

tr
´

B´1
κpiptq

¯ I´Bκpiptq

˛

‚, i “ 1, 2 (33)

The relaxation times associated with the two natural configurations are given by:

λi “
ηi
µi

(34)

This completes the development of the model for viscoelastic non-equilibrium branches.

3.3. Model Conclusion

Based on the above discussion, the total Cauchy Stress Tensor of the material is given by:

T “ Teq `Tneq

“ Teq `Tneq
1 `Tneq

2
“ ´pI` µBκR ` µ1Bκp1ptq ` µ2Bκp2ptq

(35)

where the Bκp1ptq and Bκp2ptq are solved from Equation (33) with material parameters µ1, η1 and µ2,
η2 respectively.

4. Applications

In this Section, we simulate the viscoelastic behavior of the material with the proposed model.
We present the numerical procedure of how to solve the viscoelastic equations in Section 4.1.
In Section 4.2, we discuss our approach of identifying the material parameters. Finally, in Section 4.3,
based on the determined parameters we study the mechanical behavior of the material under uniaxial
extension and loading-relaxation-unloading cycles at different strain rates.

4.1. Numerical Procedure

For uniaxial extension at a constant stretch rate, the stretch as a function of time is defined as:

Λptq “ 1` Kt (36)

where K is the stretch rate and K ą 0. For relaxation and unloading process, we use the same equation
but have K “ 0 and K ă 0, respectively. The velocity gradient L then can be given as:

L “ diag
ˆ

K
1` Kt

,´
K

1` Kt
, 0
˙

(37)

Substituting Equation (37) into Equation (33) and by prescribing the stretch rate K we can facilitate
ordinary differential equations (ODEs) for different viscoelastic deformations. To solve these ODEs,
we require material parameters (µi and ηi) and proper initial conditions. The identification of the
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material parameters will be discussed in Section 4.2. For the initial conditions, since the material is
initially amorphous in a stress-free state, the following initial conditions for the tensors Bκpiptq are given:

Bκpiptq

ˇ

ˇ

ˇ

t“0
“ I (38)

With respect to multistep simulations such as stress relaxations after uniaxial extension and
loading-relaxation-unloading cycles, the final state of Bκpiptq , i “ 1, 2 from the last step will be the
initial condition of the next step. With material parameters and proper initial conditions, viscoelastic
ODEs are solved to calculate the stress of the materials. In this work we use ODE45, which is a robust
ODE solver provided by MATLAB, to solve the viscoelastic ODEs. The flowchart of the numerical
procedure is shown in Figure 5.
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Figure 5. Numerical procedure to solve viscoelastic ODEs.

Once the ODEs are solved the Cauchy stress of the materials can be calculated by Equation (35),
and the Hencky strain (true strain) can be obtained through Equation (36).

4.2. Parameter Identification

In this section, we discuss details of our strategy of identifying material parameters. We will
determine the shear modulus of the equilibrium hyperelastic branch first. The shear modulus of the
equilibrium branch is evaluated from experimental data of a uniaxial extension test with a strain rate of
0.0001/s. Since the deformation rate is very slow, and the relaxing speeds of non-equilibrium branches
are relative faster, we assume the load is mainly taken by the equilibrium branch itself. Thus, the
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shear modulus can be evaluated by curve fitting the experimental data with Equation (9). The result is
shown in Figure 6.Fluids 2016, 1, 15 10 of 15 
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Figure 6. Plot of true stress versus Hencky strain for uniaxial extension of SMPs at 130 ˝C with a strain
rate of 0.0001/s.

After getting the shear modulus of the equilibrium branch, we evaluate the shear moduli and
viscosities of the non-equilibrium branches by using the experimental data from the stress relaxation
tests under different preloading rates. Here, we assume two non-equilibrium branches have different
relaxation times. One has a very small relaxation time and can only take loads under high strain rate
loadings (0.01/s), the other has a relative large relaxation time and will take loads under both high
rate (0.01/s) and low rate (0.0001/s) deformations. Here, we suppress the non-equilibrium branch
with small relaxation time first and evaluate the modulus and viscosity of the non-equilibrium branch
with large relaxation time through fitting the experimental data of stress relaxation at low preloading
rate (0.0001/s). The amount of the stress relaxation is decided by the shear modulus of the branch, and
the viscosity affects how fast the stress will be relaxed. We will use the numerical procedure discussed
in Section 4.1 to curve fit the experimental data. The fitting results are shown in Figure 7.
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Figure 7. Plot of change in engineering stress versus time for stress relaxation after a constant
rate extension at 130 ˝C: (a) relaxation at 40% engineering strain; and (b) stress relaxation at 60%
engineering strain. The simulation results are calculated with the equilibrium branch and one
non-equilibrium branch.
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Since the parameters of the branch with a large relaxation time are evaluated by low preloading
rate (0.0001/s) experimental data, the simulation results will not exactly fit the high preloading rate
(0.01/s) experimental data (See Figure 7). Now we will determine the parameters of the branch with
a small relaxation time by compensating for the high preloading rate (0.01/s) experimental data.
This high relaxation time branch will not respond to low rate loadings, thus, it will not have any effects
on the fitted experimental data at the preloading rate of 0.0001/s. By using the numerical procedure
discussed in Section 4.1 and considering both the non-equilibrium branches, we get the curve fitting
results shown in Figure 8. The material parameters of our model are shown in Table 1.
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Figure 8. Plot of change in engineering stress versus time for stress relaxation after a constant
rate extension at 130 ˝C: (a) relaxation at 40% engineering strain; and (b) stress relaxation at 60%
engineering strain. The simulation results are calculated with the equilibrium branch and two
non-equilibrium branches.

Table 1. Model parameters.

Description Parameters Values

Equilibrium Branch Parameter
Shear Modulus (MPa) µ 0.43 ˆ 106

Non-equilibrium Branch Parameters
Shear Modulus of Branch One (MPa) µ1 0.117 ˆ 106

Viscosity of Branch One (MPa¨ s) η1 350 ˆ 106

Shear Modulus of Branch Two (MPa) µ2 0.43 ˆ 106

Viscosity of Branch Two (MPa¨ s) η2 4.3 ˆ 106

4.3. Results and Discussion

After getting all of the material parameters, we implement our model to simulate the uniaxial
extension subjected to higher strain rates (0.001/s and 0.01/s) and loading-relaxation-unloading cycles.
Figures 9 and 10 show the simulation results of uniaxial tension at higher stretch rates of 0.001/s and
0.01/s, respectively. Figures 11 and 12 show strain-stress curves of the loading-relaxation-unloading
cycles. The data clearly shows that, at higher strain rates, the stress in the polymer is higher
(Figures 9 and 10), and for the polymer deformed at a higher strain rate, the stress relaxation is
larger (Figures 11 and 12). Additionally, at higher strain rates the strain at zero stress at the end of a
loading-relaxation-unloading cycle is larger (Figures 11 and 12). All of the results of the models are
able to capture this behavior and match the experiment data well.
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Figure 9. Plot of true stress versus Hencky strain for uniaxial extension of SMPs at 130 ˝C with a strain
rate of 0.001/s.
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Figure 10. Plot of true stress versus Hencky strain for uniaxial extension of SMPs at 130 ˝C with a strain
rate of 0.01/s.
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Figure 11. Plot of engineering stress versus Hencky strain in a loading-relaxation-unloading cycle at
130 ˝C. The material is stretched to 40% engineering strain with a constant strain rate and held for
60 min. After that the material is unloaded with the same strain rate.
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Figure 12. Plot of engineering stress versus Hencky strain in a loading-relaxation-unloading cycle at
130 ˝C. The material is stretched to 60% engineering strain with a constant strain rate and held for 60
min. After that the material is unloaded with the same strain rate.

5. Conclusions

In this work, we have developed a multi-branch model to capture the viscoelastic behavior of a
class of amorphous SMPs at an elevated temperature (above glass transition). The model is developed
within a framework based on the theory of multiple natural configurations and the maximization
of the rate of dissipation to determine the evolution of the natural configurations. The derivation
uses the approach developed by Rajagopal and Srinivasa [15] for non-Newtonian fluids. The model
is applied to simulate the polymer undergoing different deformations. The results of the model are
compared against experimental data collected for a commercially available amorphous SMP, Veriflex-E.
The simulation results match the experimental data well. This work opens the door for future studies
of amorphous SMPs.
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