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Abstract: The present studies deliver the computational investigations of a 10 MW turbine with a
diameter of 205.8 m developed within the framework of the AVATAR (Advanced Aerodynamic Tools
for Large Rotors) project. The simulations were carried out using two methods with different fidelity
levels, namely the computational fluid dynamics (CFD) and blade element and momentum (BEM)
approaches. For this purpose, a new BEM code namely B-GO was developed employing several
correction terms and three different polar and spatial interpolation options. Several flow conditions
were considered in the simulations, ranging from the design condition to the off-design condition
where massive flow separation takes place, challenging the validity of the BEM approach. An excellent
agreement is obtained between the BEM computations and the 3D CFD results for all blade regions,
even when massive flow separation occurs on the blade inboard area. The results demonstrate that
the selection of the polar data can influence the accuracy of the BEM results significantly, where the
3D polar datasets extracted from the CFD simulations are considered the best. The BEM prediction
depends on the interpolation order and the blade segment discretization.
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1. Motivation and State of the Art

The increased fossil fuel depletion in past decades has led to a shortage in electricity production
causing an increasing need to find alternatives to fossil energy sources [1]. Wind energy has been
identified as one of the most promising sources for the renewable energy industry [2,3]. There are
two main categories of wind turbines according to its rotational axis: Horizontal Axis Wind Turbines
(HAWTs) and Vertical Axis Wind Turbines (VAWTs). The former has been developed significantly
during the last decades in terms of research and commercialization.

Following the successful flight of the Wright Brothers in 1903, researches within the aeronautical
field increase significantly especially in the field of propeller aerodynamics. In 1920, a German
researcher, Betz [4], from Göttingen University, developed a theory for a propeller to drive the airplanes.
Later, this formula becomes the limit for energy extraction from the wind by simply reversing the flow
of the equations that is well known as the Betz limit. This implies that, even for the most ideal wind
turbine, the energy extracted cannot be higher than 59.3%. The performance of the turbine depends
strongly upon the aerodynamic design of the blades, that influences the loads acting on the rotor. It has
been shown from various studies that the lift driven turbine is more efficient compared to the drag
driven turbines [5].

Throughout the years, various aerodynamic modelling approaches for wind turbine simulations
have been developed, ranging from basic method to advanced high fidelity models. The works of
Betz [4] and Glauert [6] have become the founding theory for the famous blade element and momentum
(BEM) approach. This method, since then, has become the most widely used tool in wind turbine
research and industry due to its simplicity and minimal computing requirement. The method allows
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one to perform a complete design of new blades or evaluating existing designs by using the existing
lift and drag polar data of the airfoils constructing the blade, as described for example in [7].

The BEM approach models the turbine as a rotating actuator disc and the acting forces are evaluated
at each blade segment. There is no interaction between the blade segments, and the method is based
on the inviscid approach. As a result, the three-dimensional (3D) effects occurring on the blade cannot
be captured at all by the model. This is especially true near the tip and the root areas. The former
is caused by the flow recirculation resulting in the downwash effect and reduced effective angle of
attack. This effect can be modelled using a simple tip loss correction implemented in the code, for
example by the Prandtl tip loss correction [8], with a relatively good accuracy. On the other hand, the 3D
effect occurring in the root area is harder to be modelled because this involves many factors including
massive flow separation and three-dimensional flow behaviour. The effect is widely known as rotational
augmentation and has been investigated intensively since it was found by Himmelskamp in 1945 [9],
for example by Sörensen [10], Snel et al. [11], Du and Selig [12] and Bangga et al. [1,13–16]. Under the
influence of rotational augmentation, the sectional lift coefficient in the blade root increases compared to
the two-dimensional (2D) conditions causing the stall delay effect. The centrifugal and Coriolis forces
within the blade boundary layer are believed to be the main causes of the phenomena for delaying
the occurrence of separation. Wood [17] suggested an alternative explanation that the inviscid effect is
actually the main cause of the phenomenon, not the viscous effect. Very recently, Bangga [13] found that
both inviscid and viscous effects have their own importance for the 3D rotational augmentation.

With the development of computing performance in the recent years, the use of the high fidelity
computational fluid dynamics (CFD) approach for fully resolved wind turbine rotor becomes possible. This
way, the three-dimensional effects occurring on the rotor blade can be physically captured. Duque et al. [18]
carried CFD computations of the National Renewable Energy Laboratory (NREL) Phase VI blade using a
lifting line code and a CFD code that made use of overset grids and an algebraic turbulence model known
as the Baldwin-Lomax model, showing an improved prediction for the CFD approach compared to the
lifting line model. Pape and Lecanu [19] compared two turbulence models, namely the Wilcox [20] and
shear stress transport (SST) models [21], for wind turbine predictions. The results demonstrated that the
SST model was superior compared to the Wilcox model, but both were failed to accurately simulate the
post-stall behaviour of the turbine blade. Bangga et al. [16,22] performed CFD computations for a small
MEXICO (Model Experiments in Controlled Conditions) rotor [23]. They obtained a good agreement with
experimental data by using the Hybrid Reynolds-Averaged Navier-Stokes (RANS)/Large Eddy Simulation
(LES) approach based on the SST model within the boundary layer area. They observed that the 3D
rotational augmentation is prominent in the root area of the rotor. It was observed that the lift coefficient in
the tip area reduces compared to the 2D condition due to the tip loss effect. The same behaviour was also
observed in [13,15]. With a sufficiently accurate CFD computation, it was possible to reproduce the airfoil
characteristics under rotational augmentation without using empirical stall correction models.

One may think that there is no benefit in using the 3D polar as expensive 3D CFD computations
need to be done in advance. Despite that, this effort is useful when code-to-code comparison shall be
done in the absence of experimental data. Learning from the experience of similar comparison for the
Advanced Aerodynamic Tools for Large Rotors (AVATAR) blade in [24], a significant discrepancy was
obtained between different simulation tools with different fidelity orders. At this point it was difficult
to argue whether the differences are coming from the polar data or the modelling approach. In this
sense, the input polar data at least shall be consistent if one intends to really assess the modelling
behaviour of the method. The use of the 3D polar data is expected to be more beneficial for this
purpose. Schneider et al. [25] documented that the polar data extracted from the 3D CFD simulation of
a 7.5 MW wind turbine enhanced the BEM prediction significantly. A similar conclusion was obtained
very recently by Guma et al. [26] for a 750 kW research turbine. They observed that the origin of the
polars is a crucial input that can make strong difference in the results. The tangential component of
the loads was proven to be harder to reproduce for this case. They further indicated that the results
of BEM may depend on the polar interpolation. BEM codes usually employ the linear interpolation
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approach, for example FAST (Fatigue, Aerodynamics, Structures, and Turbulence) [27] and QBlade [28].
To obtain a good representation of the blade geometry and polar data, a large number of blade elements
need to be specified. This was supported by the work of Heramarwan [29] using the QBlade code,
especially near the tip region. Marten et al. [30] documented that the BEM results linearly interpolated
based on the real airfoil geometry in comparison to the direct polar data can differ depending on the
characteristic of the neighbouring airfoil sections. McCrink and Gregory [31] provided an example for
the BEM calculations based on the polynomial interpolation functions in MATLAB [32]. Despite that,
the results were not compared to the other interpolation approaches.

It becomes clear that the source of the polar data and the type of interpolation used can influence
the blade element method predictions. Indeed these studies have been carried out long ago for wind
turbine applications. However, to the date no literature investigates the highlighted issues for a very
large wind turbine where the rotor diameter is greater than 200 m. The main aim of the present
work is to investigate the consistency of simulation tools with different fidelity levels to predict the
performance of a large 10 MW wind turbine. This becomes increasingly important as wind turbine is
significantly increasing in size nowadays to meet the energy demand. On the other hand, the design is
still based on a simple BEM model. The importance of the usage of 3D polar data and interpolation
order will be demonstrated in the paper. The paper is constructed as follows; the simulation approaches
are described in Section 2, the results are discussed in Section 3 and all the findings are concluded
in Section 4.

2. Simulation Approaches

2.1. Blade Element and Momentum

The blade element and momentum theory has its origins in momentum theory and the development
from this to the useful calculation tool is well explained in many texts [33–35]. The general mathematical
descriptions of this approach will be given in the following discussions, divided into two sections.
The first one is by using the momentum balance on a rotating annular stream tube passing on a turbine
(momentum theory). The second part is by examining the forces acting at the blade elements at various
sections along the blade (blade element theory). These two methods then provide a series of equations
that can be solved iteratively.

2.1.1. One Dimensional Momentum Theory and the Momentum Transfer

The one-dimensional momentum theory that serves as a foundation for the BEM theory is
described in this section. This approach assumes the flow to be steady, inviscid, incompressible and
axisymmetric [1]. The rotor in this case can be modelled as a frictionless permeable actuator disc which
is assumed to impart no rotational velocity to the flow [33]. The momentum theory basically consists
of a control volume for conservation of mass, axial and angular momentum balances, and energy
conservation [36]. This surrounds the actuator disc and is bounded by a stream-tube, with two cross
sections far upstream and far downstream of the disc [33]. A commonly used general assumption for
the BEM theory is that the stream-tube is not interacting with the fluid flow outside of the evaluated
boundary. The modelled actuator disc extracts the energy from the stream-tube by generating an
axial force acting on the disc. The stream-tube enlarges downstream of the rotor plane. This causes
a pressure drop of the fluid flow just downstream of the disc. In the farfield region, the pressure is
usually assumed to reach the ambient atmospheric pressure level. In this sense, the flow velocity must
be smaller than the inflow speed to satisfy the Bernoulli’s equation.

The following equations define the energy equations upstream and downstream of the actuator disc.

pamb +
1
2

ρU2 = pud +
1
2

ρU2
disc (1)
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pdd +
1
2

ρU2
disc = pamb +

1
2

ρU2
1 (2)

where pamb, pud and pdd define the ambient pressure, the pressure just upstream of the disc and
downstream of the disc, respectively. The velocity components U, Udisc and U1 represent the inflow
velocity, the wind speed at the rotor disc and far downstream of the disc, respectively. The axial force
can then easily be obtained based on the pressure drop, between upstream-and-downstream-vicinity
of the actuator disc, derived from Equations (1) and (2) as

Fn =
1
2

ρAdisc

(
U2 −U2

1

)
. (3)

Based on the momentum balance, the difference in the momentum between the upstream and
downstream planes of the disc must be compensated by an acting force in axial direction. In this sense,
the axial force can also be written in form of the flow momentum difference as

Fn = ṁ (U −U1) , (4)

where the mass flow rate can be written as ṁ = ρAdiscUdisc. By comparing Equations (3) and (4),
the wind velocity at the actuator disc location is none other than the average velocity of the far
upstream and downstream the rotor plane. A new parameter a is defined as the fractional reduction in
flow speed between the free-stream and the actuator disc.

a =
U −Udisc

U
. (5)

Then, the velocities at the rotor plane and far downstream of the disc can be redefined as a
function of a. The axial force in Equation (3) then can be rewritten as

Fn = 2ρAdiscU2a (1− a) . (6)

Using the axial induction factor with Equation (3), one may obtain the expression for the
power extraction

P = 2ρAdiscU3a (1− a)2 . (7)

According to one dimensional momentum theory, there is a pressure drop (energy lost) when the
wind flows through the rotor. Some of the energy loss from this axial flow is converted into rotational
momentum of the stream-tube, as a reaction to the rotational torque imparted to the turbine rotor thus
rotating annular stream tube is then introduced [1]

Rotating annular stream tube is shown in Figure 1. Four stations are shown in the diagram, some
way upstream of the turbine (1), just before the blades (2), just after the blades (3) and some way
downstream of the blades (4). As the wind passes between stations 2 and 3, the motion of the turbine
causes the wind to rotate in the wake downstream of the turbine. The blade wake rotates with an
angular velocity ω and the blades rotate with an angular velocity of Ω. Recalling the conservation of
angular momentum, the torque calculation of a rotating annular element of fluid at a radius r can be
written as

dQ = dṁ (ωr) r = ρUdisc2πrdr (ωr) r (8)

by introducing the angular (tangential) induction factor b = ω
2Ω , the elemental torque can then be

rewritten as
dQ = 4b(1− a)ρUΩr2πrdr (9)
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blades

1 2 3

4

Figure 1. Rotating annular stream tube at various streamwise positions. The illustration is redrawn
with modifications based on Ref [7].

2.1.2. Blade Element Theory

The blade element theory divides the rotor blade into several discrete radial elements (airfoils)
as described earlier in Section 2.1. This theory relies on two key assumptions: (1) There are no
aerodynamic interactions between the 2D airfoil elements in different sections, and (2) the forces acting
on the elements are solely determined by the lift and drag characteristics of the airfoils shape and
relative inflow [1].

The definitions of the velocity vector and the lift (L) and drag (D) acting on the blade section are
illustrated in Figure 2. The total angle between the circumferential direction to the relative inflow (V)
is represented by variable φ. This angle is composed by the local angle of attack (α) and the sum of the
pitch and twist angles (θ). The variable U∞ represents the inflow wind speed and Ω is the rotational
speed of the turbine. Please note that U∞ in Figure 2 is the same as U used in Section 2.1.1.

Ωr(1+b)

U
∞
(1

-a
)

V

θ

ϕ 

L

D

ϕ 

L sin ϕ - D cos ϕ

L
 c

o
s
 ϕ

 +
 D

 s
in

 ϕ

Figure 2. Velocity vector and forces acting on the blade element.

The axial force and torque acting on the blade element can be obtained using the relations for lift
and drag, that are represented by the lift (CL) and drag (CD) coefficients assuming the chord length (c)
of the blade element is known from the geometrical model. These are formulated as following

dFA = N
1
2

ρV2c(CL cos φ + CD sin φ)dr (10)

dT = N
1
2

ρV2cr(CL sin φ− CD cos φ)dr. (11)

By introducing a new parameter that represents the ratio of the tangential to the inflow velocity,
λr =

rΩ
U∞

, well known as the local speed ratio, the total flow angle can be redefined as

φ = tan−1
(

U(1− a)
rΩ(1 + b)

)
= tan−1

(
(1− a)

λr(1 + b)

)
. (12)
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2.1.3. B-GO Code Description

A short description of the BEM code B-GO will be presented in the following section. The B-GO
code was written in Python language employing several commonly used packages. B-GO is
constructed by several subroutines that is called in the main calculations. These routines are
read_data, variable_assignment, data_preparation, interpolate_polar, interpolate_radial,
extrapolation, induction_calculation and tip_loss_correction, illustrated in Figure 3.
By writing each main part of the code as a subroutine, the code can be further developed in the
future by simply modifying only the respective functions.

B-GO

variable_assignment

read_data

data_preparation

interpolate_polar

extrapolation

interpolate_radial

induction_calculation

tip_loss_correction

read input

Start

section = 1

initialize a and a'

calculate α

get CL and CD

from polar data

calculate a and a'

Res1 = (ai - ai-1)/ai-1

Res2 = (a'i - a'i-1)/a'i-1

Res < RESTOL ? 

Res = (Res2
1+Res2

2)
0.5 

section > N section++

End

write the results

no

no

yes

yes

Figure 3. List of subroutines constructing the BEM code and the calculation procedure.

The BEM computation is started by reading the input data. First, the axial (a) and tangential (a′)
induction factors are set to a small value (0.0001) to initialize the calculation. The angle of attack is
calculated by applying the following formula

α = φ− θ. (13)
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CL and CD can then be obtained from the polar data of the respective sections. Please note that
interpolation and extrapolation of the polar data are necessary because there is a high probability that
the polar data does not exist for the corresponding angle of attack. The interpolation can be carried
out using one of the three different interpolation options that the user can choose, namely linear-,
quadratic- and cubic-spline interpolations. These can be expressed as:

S1,n(x) =



p1(x) = f0
x−x1
x0−x1

+ f1
x−x0
x1−x0

x ∈ [x0, x1]

p2(x) = f1
x−x2
x1−x2

+ f2
x−x1
x2−x1

x ∈ [x1, x2]
...

pn(x) = fn−1
x−xn

xn−1−xn
+ fn

x−xn−1
xn−xn−1

x ∈ [xn−1, xn]

(14)

S2,n(x) =



p1(x) = a1 + b1x + c1x2 x ∈ [x0, x1]

p2(x) = a2 + b2x + c2x2 x ∈ [x1, x2]
...

pn(x) = an + bnx + cnx2 x ∈ [xn−1, xn]

(15)

S3,n(x) =



p1(x) = a1 + b1x + c1x2 + d1x3 x ∈ [x0, x1]

p2(x) = a2 + b2x + c2x2 + d2x3 x ∈ [x1, x2]
...

pn(x) = an + bnx + cnx2 + dnx3 x ∈ [xn−1, xn]

(16)

where S1,n(x), S2,n(x) and S3,n(x) are the linear, quadratic and cubic continuous functions, respectively,
that interpolate the data constructed by several polynomials p1(x), p1(x), ..., pn(x). The constants
(an, bn, cn, dn) shall be determined on each function for the corresponding dataset range [xn−1, xn]. Most
of BEM codes usually employ the linear interpolation approach. New a and a′ can be calculated using

a =
1

4
Cnσ

Ftip sin2φ + 1
(17)

a′ =
1

4
Ctσ

Ftip sinφ cosφ− 1
, (18)

where

Cn = CL cosφ + CD sinφ (19)

Ct = CL sinφ− CD cosφ (20)

σ =
cB

2πr
. (21)

The Prandtl tip loss correction is given as [8]

Ftip =
2
π

cos−1

(
e−

B(R−r)
√

1+λ2
2R

)
, (22)

where B and R are the number of blades and the rotor radius, respectively. The obtained inductions
are then compared with the inductions from the previous iteration, and the residual is calculated.
The converge is defined when the residual is smaller than the user defined tolerance, that was set
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to 1 × 10−11 for the present studies. Otherwise, 100 iterations were applied. The calculations are
performed for each blade section until the maximum number of blade elements of N. The interpolation
is also applied to refine the evaluated segments in the radial directions, both for the polar and the
blade geometry, using one of the three available interpolation options as mentioned above. This allows
a more accurate computation to be performed.

In case the induction factor is higher than 0.4, the Froude momentum theory is no longer valid.
Spera [37] suggested a correction for the axial induction, if a > ac, as

a = 1 +
1
2

K(1− 2ac)−
1
2

√
(K(1− 2ac) + 2)2 + 4(Ka2

c − 1) (23)

where ac is commonly about 0.2 and K is defined as

K =
4Ftip sin2φ

σCn
. (24)

2.2. Computational Fluid Dynamics

The Computational Fluid Dynamics (CFD) approach is a combination of interdisciplinary fields
such as physics, numerical mathematics and computer sciences to model the physical fluid flow
phenomena. Turbulence is the main concern for accuracy and applicability for flow simulations using
CFD. One way out of this issue is to simplify the solution variables of the Navier-Stokes equations by
the Reynolds-Averaged Navier-Stokes (RANS) approach, which pose the time-averaged form of the
Navier-Stokes equations. The fluid flow variables in the governing equations are subdivided into the
mean and fluctuating components. For compressible flow, it is advocated to use the weighted density
well known as the Favré averaging technique. This is done by using the Reynolds averaging for
density and pressure, yet for velocity, internal energy, enthalpy and temperature the Favré averaging
procedure can be used [38–40]. The Favré averaged equation for velocity is acquired using:

ũi =
1
ρ̄

lim
T→∞

1
T

∫ t+T

t
ρuit.. (25)

The Favré decomposition can be also written as ui = ũi + u′′i . The Reynolds-averaged density
is embodied by ρ̄, the mean velocity is symbolized by ũi, and u′′i stands for the fluctuating part of
the velocity accordingly [38]. The average of the fluctuating part is zero. For correlated quantities,
the averaged product of the two fluctuating quantities is not zero. If the Reynolds averaging is
employed for density and pressure and the Favré averaging to the other flow variables, the average
momentum equation is obtained. This mathematical expression is referred to as the Favré- and
Reynolds-averaged Navier-Stokes equations [13]. In the cartesian tensor form the equations add up to

∂ρ̄

∂t
+

∂

∂xi
(ρ̄ũi) = 0 (26)

∂

∂t
(ρ̄ ũi) +

∂

∂xj

(
ρ̄ũiũj

)
=

∂ p̄
∂xi

+
∂

∂xj

[
µ

(
∂ũi
∂xj

+
∂ũj

∂xi

)]
− ∂

∂xj
τ̃RANS

ij . (27)

The left hand side of Equation (27) accounts for the fluid momentum incorporating the variation
of the mean flow with the time. This is balanced by the mean pressure gradient, viscous stresses and
the apparent stress τ̃RANS

ij , also known as the Reynolds stress (Favré-averaged) on the other side of
the equation. Since the equation cannot directly be solved, the equation is remodeled to close the
equation [13]. The Boussinesq hypothesis is generally taken as an approach to relate the mean velocity
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gradients to the Reynolds stress, for comparison see Hinze [41]. In this model the turbulent viscosity is
expressed in the variable µt [13].

−τ̃RANS
ij = µt

(
∂ũi
∂xj

+
∂ũj

∂xi

)
− 2

3

(
p̄k̃ + µt

∂ũk
∂xk

)
δij (28)

Many turbulence models are developed based on this relation through the modeling of the
turbulent viscosity, commonly referred to as eddy viscosity turbulence models (EVTMs). Examples
of the EVTMs are the Spalart-Allmaras (SA) model and its derivatives (1-equation), k− ε model and
the k − ω model and their derivatives (2-equation), and the Reynolds stress model (RSM) and its
derivatives (7-equation). The shear stress transport (SST) k− ω model according to Menter [21] is
a two-equation model family widely used in industry and research, because the model is able to
deliver reasonable predictions for flows with a strong adverse pressure gradient. The model can be
mathematically expressed as

∂ρk
∂t

+
∂ρujk

∂xj
= P− β∗ρωk +

∂

∂xj

[
(µ + σkµt)

∂k
∂xj

]
(29)

∂ρω

∂t
+

∂ρujω

∂xj
=

γω

νt
P− βρω2 +

∂

∂xj

[
(µ + σωµt)

∂ω

∂xj

]
+ 2 (1− F1)

ρσω2

ω

∂k
∂xj

∂ω

∂xj
. (30)

The parameters used in these equations are determined as

P = τij
ui
xj

(31)

τij = µt

(
2Sij −

2
3

ρ k δij

)
(32)

Sij =
1
2

(
ui
xj

+
uj

xi

)
(33)

µt =
ρ a1 k

max (a1 ω, Ω F2)
. (34)

For the present studies, the generic 10 MW AVATAR blade [42] was chosen. The rotor is designed
based on the DTU 10 MW wind turbine [43] with a larger blade radius of R = 102.9 m. The blade was
constructed by 6 different DU airfoils as presented in Table 1. The airfoils are interpolated along the
blade radius, and the shapes are illustrated in Figure 4. For further detail, the reader is suggested to
refer to [42]. The calculations were performed without tower to avoid the unsteady tower disturbance
effects. A Cartesian coordinate system was adopted in the present studies, where the details are
illustrated in Figure 5. In the rotating (local) coordinate system, x,y and z represent chordwise, normal
and spanwise directions of the blade which rotate together with the rotor.

Table 1. Airfoil sections used for the AVATAR reference blade [15,42].

Airfoil Thickness [t/c] Airfoil Type

60.0% Artificial, based on thickest available DU
40.1% DU 00-W2-401
35.0% DU 00-W2-350
30.0% DU 97-W300
24.0% DU 91-W2-250 (modified for t/c = 24%)
21.0% Based on DU 00-W212, added trailing edge thickness
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x/c

y/
c

Figure 4. Visualization of the sectional airfoils employed in the Advanced Aerodynamic Tools for
Large Rotors (AVATAR) blade.

Figure 5. Surface mesh and detailed cross-section mesh of the blade. Variables x, y and z represent
local coordinate of the blade section in the rotating frame of reference.

The grid for the rotor simulations consist of several components, background (BGm), wake
refinement (Rm), blade (Bm) and nacelle (Nm) meshes as shown in Figure 6. The blade mesh consists of
280 × 128 cells in chordwise and normal directions, respectively. The blade is discretized by 192 cells
along the radius with significant refinement near the root and tip areas. Figure 5 shows the surface
meshes and the sectional mesh of the blade used in the present investigations. The mesh of the blade is
C-H type and was constructed using the commercial grid generator Gridgen [44] with the “automesh”
script developed at the institute. The 3D blade mesh was refined near the wall area satisfying the
non-dimensional wall distance y+ < 1 to resolve the viscous sub-layer. The total resolution for the
complete domain reaches 39 million grid points.

The CFD FLOWer code [45,46] was used to numerically model the fluid flow over the rotor
by solving the Navier-Stokes equations on the structured meshes. A central scheme based on the
Jameson-Schmidt-Turkel (JST) formulation was employed for flux discretization, resulting in a second
order accuracy on smooth meshes. For turbulent closure, the two-equation shear stress transport (SST)
k−ω model according to Menter [21] was used. In the present analysis, fully turbulent computations
were carried out for the 3D rotor. The simulations were performed with the time step size of 0.037 s
which corresponds to two degree blade revolution per physical time step. The time step can be
calculated as ∆t[s] = ∆t[°]/(Ω360°), where ∆t[°] is the azimuthal time step size. Each physical time
step was iterated towards a pseudo steady state using 35 sub-iterations. The simulations have been
carried out for 11 rotor revolutions. The last one revolution was employed for the data extraction
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purpose. The impacts of different rotor revolutions on the extracted data are shown in [13]. The basic
sensitivity of the CFD computations towards the blade grid and time resolutions have been presented
in Ref [15,47], respectively. For a better overview of the grid convergence studies, the results of the
quantified grid convergence index (GCI) according to Celik et al. [48] are presented in Table 2 and the
sectional loads are shown in Figure 7. The coarse blade mesh consists of 136 cells in radial direction
(blade total cells number of 8.1 × 106), medium mesh of 192 cells (10.9 × 106) and fine mesh of 272 cells
(15.9 × 106). The background, wake refinement and nacelle meshes consist of 1.9 × 106, 16.34 × 106

and 3.5 × 106 cells, respectively. The grid convergence index for the fine grid is very small (less than
0.5%), stating that the solutions are spatially converged. It can be seen that the magnitude of power
and thrust for the medium and the fine grids are very close. The extrapolated relative errors are less
than 0.5% in both parameters, while a higher error is observed for the coarse grid due to inaccurate
prediction of the sectional forces in the blade inboard region. This is indicated in the sectional loads
predictions displayed in Figure 7 showing the sectional axial (Fn) and tangential force (Ft) distributions
over the radius. It can be seen clearly that the coarse grid shows a strong underestimation of the
sectional loads in the inboard area at r ≈ 20 m. The main reason is that the rotational augmentation
effects are not well captured by the corresponding grid, that separated flow is stronger. On the other
hand, the medium and fine grids have similar results, indicating grid convergence. Considering the
accuracy and computational effort, the selection of the medium grid for CFD simulations is reasonable.

Figure 6. Grid setup showing blade (purple); spinner and nacelle (red); refinement (yellow) and
background grids (green). Variables X, Y and Z represent coordinate system in the inertial frame
of reference.
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Figure 7. Grid density influence on the sectional loads predictions of the generic 10 MW AVATAR
blade; (a) normal force, (b) tangential force.

Table 2. Grid convergence study for the AVATAR blade using the GCI approach. Data are obtained
from the URANS calculations.

Parameter Power Thrust

Value fine 9.28 × 106 W 1.330 × 106 N
Value medium 9.26 × 106 W 1.328 × 106 N
Value coarse 9.20 × 106 W 1.326 × 106 N
Extrapolated rel. error
-fine 0.12% 0.27%
-medium 0.36% 0.47%
-coarse 1.02% 0.58%
Grid convercence index 0.15% 0.34%

3. Results and Discussion

3.1. 3D CFD and BEM Comparison

This section presents the results of the comparative studies between the expensive fully resolved
CFD with the lower fidelity BEM computations for the AVATAR turbine. The simulations were
conducted at a wind speed of U∞ = 10.5 m/s, rotational speed of n = 9.02 rpm and at zero pitch
angle (αp). This is the standard test case in the code-to-code comparison for the AVATAR project
in [24]. To avoid the necessity for 3D correction in the root area, the 3D polar data extracted from CFD
simulations in Ref [15] were considered in the BEM computations. The term 3D polar means that the
polar data is obtained directly from the 3D CFD simulations of wind turbine. In this sense, all the
3D effects are already included in the polar. To demonstrate that this polar dataset is suitable for the
computations, two different polar datasets, namely the polar obtained from 2D CFD computations
with and without a stall delay model based on [49], are considered for comparison. The same 2D polar
datasets were used in [50]. The comparison is displayed in Figure 8, showing Fn Ft distributions over
the blade radius. Please note that the Prandtl tip loss correction is activated only for the 2D polar
data, with and without the stall delay model. It is clearly shown that the 3D CFD simulations can
only be modelled accurately by the use of the 3D polar dataset, especially in the root area. The pure
2D polar definitely underestimates the loads in the inboard region of the blade as the 3D rotational
effect is missing. The use of the stall delay model improves the BEM prediction at certain regions.
However, the blade forces are overestimated significantly in the extreme root area for r ≤ 20 m.
A slight overestimation is also observed starting for r ≤ 40 m for Fn. The quantified error of the BEM
simulations relative to the 3D CFD results is presented in Table 3. In Figure 9, the effects of the polar
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origin on the CL, CD and α distributions are presented. A large discrepancy between the results is
observed in the grey shaded area in the root region of the blade in comparison with the 3D CFD results
when the 2D polar is employed. The uncorrected 2D polar underestimates CL while the corrected 2D
polar overestimates it. It is interesting to see that an inverse behaviour is shown for α. In terms of
CD, results from the 2D and 2D corrected polars consistently show overpredictive values within this
area. In contrast, the usage of the 3D polar extracted from the 3D CFD simulations yields a consistent
agreement with the 3D CFD data.

Table 3. Error quantification of the sectional loads with respect to the 3D CFD data.

ε Fn [%] ε Ft [%]
r = 15 m r = 60 m r = 90 m r = 15 m r = 60 m r = 90 m

2D Polar 99.01 3.45 2.56 598.24 6.67 6.06
2D Polar + Stall Delay 127.80 3.19 2.56 468.88 6.48 6.06
3D Polar 11.84 3.08 0.24 19.58 4.81 0.33
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Figure 8. Effects of various polar datasets on the accuracy of BEM predictions; (a) normal force,
(b) tangential force.
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Figure 9. Effects of various polar datasets on the accuracy of BEM predictions in terms of (a) CL and
(b) CD and α.
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Despite the usefulness of the 3D polar, there is a limitation of its use. For example, it requires
the expensive 3D simulations to be carried out in advance and the tip loss effect is already present in
the extracted polar results. Regarding the latter, it is an advantage for BEM because this removes the
dependency of the calculations on the employed tip loss model, but is a side effect when a lifting line
approach will be used as the tip loss is calculated directly in the calculation of the induced velocity
itself. Therefore, a simple approach combining the 3D polar dataset with the 2D polar is suggested in
the present studies. The 2D polar, for example, can be applied in the region that is affected by the tip
loss influence. This is expected to arise starting from r ≥ 90 m. The evidence of this can be seen on the
α and CL distributions in Figure 10, indicated by the vertical lines. Figure 11 displays the comparison
of three cases; (1) 3D polar without a tip loss, (2) 3D polar with a tip loss model and (3) hybrid polar
with a tip loss model. It is shown that the 3D polar dataset accuracy in modelling the axial (Figure 11a)
and tangential (Figure 11b) forces near the tip area reduces as the tip loss model is activated. The use
of the hybrid polar is clearly able to minimize this drawback. Despite that, the hybrid polar trend is
clearly different than the 3D CFD results in terms of the induction distributions. Figure 11c shows the
axial induction (a) distributions predicted using different models. It can be seen that the pure 3D and
the hybrid polar datasets predict an increasing axial induction factor near the tip when the tip loss
model is activated. This is caused simply by the modelling behaviour of the Prandtl tip loss factor that
increases the induction term in order to reduce the local effective angle of attack. A similar behaviour
is observed for the tangential induction (a′) distribution shown in Figure 11d, but is less prominent.
The local drop and increase of the tangential induction in the middle and in the root area is hardly
captured by BEM using all polar datasets. This fluctuating behaviour is caused by the trailing vortices
influence within that area as demonstrated in [13,47], that surely cannot be modelled by BEM.

As the polar and the blade geometry has to be interpolated, the use of several interpolation
options in B-GO for BEM predictions is investigated. Figure 12 presents the influence of the linear
and cubic spline interpolations for polar on the BEM results. It can be seen that the effect of polar
interpolation is minimum if the polar data points for a blade section is sufficient. Experience has
shown that if the data points are limited, i.e., the polar has no enough resolution, the interpolation
option can determine the accuracy of the results.

The interpolation order of the blade geometry and the polar in radial direction, however,
can strongly influence the results as demonstrated in Figures 13–16. For linear interpolation in Figure 13,
it can be seen that the number of blade elements strongly influence the accuracy of the prediction
especially in the tip area of the blade. With increasing blade element number, the accuracy of the
computation improves. This is, however, does not hold true for the quadratic interpolation displayed
in Figure 14. A prominent periodic change of the polar trend is shown in the middle part of the blade
even though though the accuracy of the results near the tip improves. Therefore, this interpolation
type is not recommended for further simulations. Figure 15 shows the effects of using the cubic
interpolation approach on the results. It can be seen that the accuracy improves significantly for all
blade regions by increasing the blade elements from 10 to 20. This interpolation type shows a better
prediction than the linear interpolation for the same amount of blade elements. This behaviour is
shown in Figure 16 where the BEM prediction using the cubic interpolation is more accurate than the
linear interpolation especially at the maximum axial force level in Figure 16a. Therefore, the cubic
interpolation is suggested for further studies.
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Figure 10. The effects of tip loss on the 2D polar data; (a) lift coefficient, (b) angle of attack.
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Figure 11. Tip loss model influence on the 3D polar datasets; (a) normal force, (b) tangential force, (c)
axial induction, (d) tangential induction.
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Figure 12. Effects of interpolation order of the polar data on the sectional force distributions along the
blade radius; (a) normal force, (b) tangential force.
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Figure 13. Effects of blade element discretization for radial-linear interpolation on the sectional force
distributions along the blade radius; (a) normal force, (b) tangential force.
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Figure 14. Effects of blade element discretization for radial-quadratic spline interpolation on the
sectional force distributions along the blade radius; (a) normal force, (b) tangential force.
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Figure 15. Effects of blade element discretization for radial-cubic spline interpolation on the sectional
force distributions along the blade radius; (a) normal force, (b) tangential force.
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Figure 16. Effects of the radial interpolation order on the sectional force distributions along the blade
radius; (a) normal force, (b) tangential force.

3.2. Simulations at Various Operating Conditions

In this sections, the influence of various operating conditions on the rotor performance is evaluated.
Figure 17 presents the numerical simulations of the AVATAR rotor for two different wind speeds,
namely U∞ = 10.5 m/s and 20 m/s. The rotational speed and pitch angle are kept constant (n = 9.02 rpm
and αp = 0°). The higher wind speed case is characterized by massive flow separation for most of the
blade sections as the operating angle of attack is high, especially in the inboard area as already shown
in [47]. Despite that, the BEM simulations carried out in the B-GO code are able to mimic the 3D CFD
results with an excellent agreement for the whole blade region. This indicates that the use of the 3D
polar data and cubic interpolation for polar and blade geometry is a suitable approach to be used for
wind turbine simulations at various flow situations.

In Figure 18, the effects of tip speed ratio (λ) and pitch angle of the blade on the rotor performance
are evaluated. The results of the 3D CFD simulations are also presented for comparison. Three
different pitch angles are considered; αp = −5°, 0° and 5°. Please note that positive pitch reduces
the angle of attack. It can be seen that the turbine power coefficient CP is about 0.2 regardless of
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the pitch angle value. This shows that a higher pitch angle than 5° is required to control the turbine
when it is operating at a wind speed higher than 20 m/s, assuming the rotational speed is 9.02 rpm.
With increasing λ, the power coefficient value differs considerably. The smallest pitch angle generates
the most mechanical power as the angle of attack increases. The operating range of the turbine is also
broader, from 2 < λ < 14, that is ideal for the turbine operation. The turbine performance in terms
of the power coefficient reduces accordingly as the pitch angle increases to 0° and 5°. The maximum
power coefficient is, however, located at a similar flow situation for αp = −5° and 0° at λ ≈ 9, while it
occurs at λ ≈ 5.5 for αp = 5°. Despite that, the increased power coefficient for the reduced pitch angle
is not appearing without price. The thrust coefficient CT increases considerably for the lower pitch
value than the higher one. This may be dangerous for the rotor and tower structure and may reduce
the lifetime of the machines.
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Figure 17. Sectional loads predicted by BEM and CFD for two different wind speeds. 3D polar and
cubic-spline interpolation are employed; (a) normal force, (b) tangential force.
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Figure 18. Power (a) and thrust (b) coefficients at various tip speed ratios and pitch angles.
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4. Conclusions

Numerical simulations employing Blade Element and Momentum (BEM) and Computational
Fluid Dynamics (CFD) approaches for a large 10 MW wind turbine have been carried out. The AVATAR
(Advanced Aerodynamic Tools for Large Rotors) turbine with a diameter of 205.8 m developed within
the framework of the AVATAR project was chosen for this purpose.

A careful selection of the polar dataset for BEM computations is important to ensure the accuracy
of the results. It was shown that the 3D polar obtained from fully resolved 3D CFD simulations is the
most accurate dataset. The inability of the 3D polar to use the tip loss correction in BEM or ultimately
in the lifting line approach can be compensated by using the hybrid polar, replacing the area where
the tip loss appear by the 2D polar data. The accuracy of the BEM computations is also influenced
by the discretization of the blade segments and how they are interpolated from the existing polar
dataset. The studies reveal that the cubic-spline interpolation is suitable for the prediction. The linear
interpolation is also suitable for this purpose. However, it requires more number of blade segments to
achieve similar results especially in the tip area. On the other hand, the quadratic-spline interpolation
produces non physical oscillations of the data in the middle blade area. Thus, this is not recommended
to be used for later studies. Considering all the parameters above, the comparison between BEM and
CFD shows an excellent agreement for all blade sections even at a high wind speed case where massive
flow separation takes place in the inboard area. At last, it has been documented that the turbine
performance depends upon the pitch angle and tip speed ratio. The smaller pitch angle increases the
maximum power coefficient and rotor operating range, but the thrust force coefficient enhances as well
as a price. This may put more stress on the structure and can reduce the lifetime of the machine itself.
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