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Abstract: A fully coupled pressure-based algorithm and finite-volume framework for the simulation
of the acoustic cavitation of bubbles in polytropic gas–liquid systems is proposed. The algorithm is
based on a conservative finite-volume discretization with collocated variable arrangement, in which
the discretized governing equations are solved in a single linear system of equations for pressure
and velocity. Density is described by the polytropic Noble–Abel stiffened-gas model and the interface
between the interacting bulk phases is captured by a state-of-the-art algebraic Volume-of-Fluid (VOF)
method. The new numerical algorithm is validated using representative test-cases of the interaction
of acoustic waves with the gas–liquid interface as well as pressure-driven bubble dynamics in infinite
and confined domains, showing excellent agreement of the results obtained with the proposed
algorithm compared to linear acoustic theory, the Gilmore model and high-fidelity experiments.
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1. Introduction

Acoustic cavitation describes the pressure-driven behavior of bubbles in a liquid environment,
where an externally introduced change in pressure, e.g., by an ultrasound transducer or through
laser-induced optical breakdown, causes a radial bubble motion that can range from moderate bubble
oscillations to a strong inertial bubble collapse that emits shock waves in the liquid, concentrating large
amounts of acoustic energy [1]. In many engineering applications, ranging from fast-running ship
propellers to artificial heart valves, hydrodynamic cavitation, where the pressure difference is induced by
an acceleration of the flow, is associated with considerable negative effects on its environment and is,
therefore, undesirable. Acoustic cavitation, however, was found to be useful for a large number of
engineering applications, including ultrasonic cleaning [2], for ultrasonic contrast agents in medical
imaging [3], to actuated microbubbles that act as micropumps [4], and to facilitate self-organization of
microbubbles into crystals and arrays [5].

Since Lord Rayleigh first derived a model for the pressure-driven collapse of an empty cavity in
an incompressible liquid in 1917 [6], substantial research efforts have been dedicated to understanding
and mathematically describing the pressure-driven behavior of bubbles [1,7]. Plesset [8] extended
the model of Rayleigh to account for the gas phase inside the bubble, which led to the famous
Rayleigh–Plesset (RP) equation, a second-order differential equation, which has since been extended
to include liquid compressibility [9,10], among other mechanisms. The RP equation and its subsequent
extensions have been the basis for most subsequent research on cavitation. However, RP equations are
based on strongly simplifying assumptions: the bubble is spherical and the gas density is assumed
to be much smaller than the liquid density. Alleviating these limitations requires computation of
the fully resolved flow field and interface dynamics of the gas–liquid system, by solving the full
set of governing conservation laws describing the behavior of two-phase flows using appropriate
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numerical methods, such as finite-volume or finite-element methods. Such numerical methods have
been recently applied to study a broad range of cavitation phenomena, including laser-induced
cavitation bubbles [11,12], the bubble-collapse-driven penetration of a biomaterial surrogate [13],
shock-driven bubble collapse [14,15] or the dynamics of cavitation bubbles in viscoelastic media [16].

Describing the interacting fluids by a polytropic equation of state is a popular choice when
modeling the pressure-driven behavior of bubbles [7,12]. In a polytropic fluid, the density ρ is
a function of only the pressure p, as defined by the polytropic relationship, given for an ideal
gas as ρ = Kp1/κ , where κ is the polytropic exponent and K > 0 is a fluid-dependent constant.
From a mathematical and numerical viewpoint, the most appealing feature of flows of polytropic
fluids is that pressure does not depend on temperature and the energy equation becomes redundant,
simplifying the mathematical analysis of these flows as well as the design and implementation of
the associated numerical methods. Describing the gas inside bubbles as a polytropic fluid is one
of the founding assumptions of the RP equation [17] and using polytropic fluid models has been
demonstrated to be suitable even for the prediction of complex bubble behavior, such as wall-bounded
cavitation [12].

Pressure-based algorithms, in which the density is described by a suitable equation of state
and the continuity equation serves as an equation for pressure, are particularly suited to model
acoustic cavitation, due to the broad range of Mach numbers occurring in cavitating gas–liquid
systems. To this end, an important aspect of pressure-based algorithms is that changes in pressure are
finite in all Mach number regimes and that the vanishing density differences at low Mach numbers
do not present a problem [18]. Pressure-based algorithms for compressible and incompressible
flows are traditionally founded on a predictor-corrector procedure, e.g., projection methods [19,20]
or the SIMPLE method [21]. Previously proposed pressure-based finite-volume algorithms using
polytropic fluid models dedicated to the prediction of bubble dynamics and cavitation are also
founded on such segregated algorithms [12,22,23]. Over the past decade, research efforts dedicated to
pressure-based algorithms have increasingly focused on fully coupled methods [18,24–29], whereby
the discretized governing equations are solved simultaneously in a single system of equations, which
have been shown to yield performance benefits for incompressible flows [24] and an improved
stability for two-phase flows [26]. Furthermore, fully coupled algorithms do not require any form of
underrelaxation to reach a converged solution, even for compressible flows with strong shocks [29],
contrary to segregated pressure-based algorithms. Recent work by Denner and co-workers [15,30] has
demonstrated the utility of fully coupled pressure-based algorithms for interfacial flows at all Mach
numbers, including bubble dynamics and collapse. Despite the demonstrated versatility, robustness
and increasing maturity of fully coupled pressure-based algorithms, such an algorithm has not yet
been proposed for two-phase flows of polytropic fluids.

In this article, a novel fully coupled pressure-based algorithm for the prediction of acoustic
cavitation is proposed, based on a conservative finite-volume framework and a Volume-of-Fluid
(VOF) method to represent the interacting bulk phases. The discretized continuity and momentum
equations are solved simultaneously in a single linear system of equations for pressure and velocity,
with density defined based on pressure by a polytropic fluid model. Each term of the linearized
and discretized governing equations makes an implicit contribution to pressure and/or velocity,
leading to a robust pressure-velocity coupling. The proposed numerical framework is validated by
representative test-cases, including the propagation of acoustic waves, as well as the Rayleigh collapse
and the wall-bounded cavitation of a bubble.

The governing equations are presented in Section 2, the polytropic closure model is presented in
Section 3, the numerical framework is described in Section 4 and the interface treatment is presented
in Section 5. The results of the various test-cases considered to validate the numerical framework are
presented in Section 6. The article is concluded and summarized in Section 7.
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2. Governing Equations

The conservation laws governing the flow of a polytropic fluid are the conservation of mass

∂ρ

∂t
+

∂ρui
∂xi

= 0 (1)

and the conservation of momentum

∂ρuj

∂t
+

∂ρuiuj

∂xi
= − ∂p

∂xj
+

∂τji

∂xi
, (2)

where t is the time, u is the velocity vector, p is the pressure and ρ is the density. The stress tensor τ

for the considered Newtonian fluids is given as

τji = µ

(
∂uj

∂xi
+

∂ui
∂xj

)
− 2

3
µ

∂uk
∂xk

δij, (3)

where µ is the dynamic viscosity.
The Volume-of-Fluid (VOF) method [31] is applied to distinguish the interacting bulk phases

and model the motion of the fluid interface. Both bulk phases are represented by an indicator function
ζ(x), with

ζ(x) =

{
0 if x ∈ Ωa

1 if x ∈ Ωb
(4)

where Ω = Ωa ∪Ωb is the computational domain, where Ωa and Ωb are the subdomains occupied
by fluids a and b, respectively. Neglecting mass transfer between the bulk phases, the fluid interface
propagates with the flow and, therefore, the material derivative of ζ is

Dζ

Dt
=

∂ζ

∂t
+ ui

∂ζ

∂xi
= 0. (5)

In the interest of clarity but without loss of generality, surface tension and gravity are neglected
in the following, to focus on the novel aspects of the proposed algorithm. However, the extension of
the proposed algorithm to include surface tension and gravity is straightforward, following the work
of Denner and van Wachem [26].

3. Polytropic Closure

The governing Equations (1) and (2) are closed by defining the density based on pressure, using
the Noble–Abel stiffened-gas (NASG) model [32]. The NASG model combines the Noble–Abel gas
model (also often called co-volume gas model) [33] and the stiffened-gas model [34] to obtain a simple
gas model that accounts for molecular repulsion and attraction. The thermal equation of state of
the NASG model is defined as [32]

p(v, T) = (γ− 1)
cv T

v− b
−Π, (6)

where γ = cp/cv is the heat capacity ratio, cv is the specific isochoric heat capacity, cp is the specific
isobaric heat capacity, v = 1/ρ is the specific volume, b is the co-volume and Π is a pressure constant
that accounts for the attraction between molecules. Based on the isentropic relationship for such an
NASG fluid [32], a polytropic fluid model can be derived as

ρ

1− ρb
= K(p + Π)Γ, (7)
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where Γ = 1/κ and κ is the polytropic exponent, from which the density follows as

ρ =
K(p + Π)Γ

1 + b K(p + Π)Γ . (8)

The polytropic constant K is defined based on the predefined reference density ρ0

and the predefined reference pressure p0 as

K =
ρ0

(p0 + Π)Γ(1− b ρ0)
. (9)

The polytropic NASG model reduces to the polytropic description of an ideal-gas model for Π = 0,
b = 0, of a Noble–Abel gas model for Π = 0, b > 0, and of a stiffened-gas model for Π > 0 and b = 0.

4. Numerical Framework

The proposed numerical framework is predicated on a fully coupled pressure-based algorithm
with a conservative finite-volume discretization of the governing equations and a collocated variable
arrangement [18], with a spatial and temporal convergence that is consistent with the employed
second-order schemes [18,30]. The momentum-weighted interpolation used to define the fluxes at
cell faces is the only source of numerical dissipation, leading to a small error in kinetic energy that
converges with third order under mesh refinement [18,35]. The numerical framework presented in
the following assumes a rectilinear mesh, without skewness or non-orthogonality. Corrections for mesh
skewness and non-orthogonality may be included in the presented discretization following the work
of Denner et al. [18].

4.1. Finite-Volume Discretization

The BDF2 scheme, also known as Second-Order Backward Euler scheme, is used to discretize
the transient terms of the governing equations, which is defined for the transient term of a general
fluid variable, φ, at cell P as [18]

˚
V

∂φ

∂t
dV ≈ ∂φ

∂t

∣∣∣∣
P

VP =

[(
1

∆t1
+

1
∆τ

)
φP −

(
1

∆t1
+

1
∆t2

)
φ
(t−∆t1)
P +

∆t1

∆t2∆τ
φ
(t−∆τ)
P

]
VP, (10)

with ∆τ = ∆t1 + ∆t2, where V is the volume of the mesh cell, ∆t1 is the current time-step
and ∆t2 is the previous time-step. The superscripts (t − ∆t1) and (t − ∆τ) denote the values of
the previous and previous-previous time-level, respectively. For consistency, the transient terms of
both the continuity Equation (1) and the momentum Equation (2) are discretized with the same scheme.

Applying the divergence theorem and the midpoint rule, the advection terms of the governing
equations are discretized as

˚
V

∂ρuiφ

∂xi
dV ≈∑

f
ρ̃ f ϑ f φ̃ f A f , (11)

where subscript f denotes the mesh face shared by cell P and its neighbor cell Q, as illustrated in
Figure 1, ϑ f = u f · n f is the advecting velocity at face f , presented in detail in Section 4.2, A f is the area
of mesh face f and n f is the unit normal vector of face f , which points out of cell P. The advected
variable φ̃ f is interpolated using a TVD formulation, given as [36]

φ̃ f ≈ φU + ξ f
|x f − xU |

∆x f
(φD − φU) , (12)
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where φU and φD are the values of the advected variable at the upwind and downwind cells,
respectively, xU is the position of the center of the upwind cell U, x f is the position of the center
of face f , ∆x f is the distance between the cell centers adjacent to face f , and ξ f is the flux limiter.

n f

P Qf

Figure 1. Illustration of mesh cell P and its neighbor cell Q, with their shared face f and its unit normal
vector n f (pointing out of cell P).

Applying the divergence theorem, the viscous stress term of the momentum Equation (2)
is given as

˚
V

∂τji

∂xi
dV ≈∑

f
µ∗f

 ∂uj

∂xi

∣∣∣∣
f
+

∂ui
∂xj

∣∣∣∣∣
f

− 2
3

∂uk
∂xk

∣∣∣∣∣
f

 ni, f A f , (13)

where � denotes linear interpolation from the adjacent cell centers and µ∗f is the face viscosity
determined by harmonic interpolation from the adjacent cell centers. The face-centered gradient
of the primary velocity component, uj, is discretized as

∂uj

∂xi

∣∣∣∣
f

ni, f ≈
uj,Q − uj,P

∆x f
. (14)

4.2. Advecting Velocity

The advecting velocity, ϑ f = u f · n f , is discretized based on a momentum-weighted interpolation
(MWI) [37]. The MWI provides a robust coupling between pressure and velocity for flows at low Mach
numbers [35] and avoids pressure-velocity decoupling as a result of the applied collocated variable
arrangement. The advecting velocity ϑ f at face f is given as [35]

ϑ f = u f · n f − d̂ f

[
pQ − pP

∆x f
− ρ∗f

(
1− lP f

ρP

∂p
∂xi

∣∣∣∣
P
+

lP f

ρQ

∂p
∂xi

∣∣∣∣
Q

)
ni, f

]

+ d̂ f
ρ
∗(t−∆t1)
f

∆t1

(
ϑ
(t−∆t1)
f − u(t−∆t1)

i, f · ni, f

)
,

(15)

where the face density ρ∗f is determined by harmonic interpolation from the cell centers adjacent to

face f . The coefficient d̂ f is defined based on the applied time-step as well as the velocity coefficients
associated with the advection and shear stress terms of the discretized momentum equations [35].
The density weighting applied to the cell-centered pressure gradient has been shown to yield robust
results for flows with large and abrupt changes in density [35], demonstrated for incompressible
interfacial flows with a density ratio of up to 1024 [26,38]. The transient term of Equation (15) is critical
for a correct representation of pressure waves and ensures that the MWI is time-step independent [35].

4.3. Discretized Governing Equations

Applying the discretization schemes described above, the discretized continuity Equation (1) is
given at cell P as

∂ρ

∂t

∣∣∣∣
P

VP + ∑
f

ρ̃
(n+1)
f ϑ

(n+1)
f A f = 0 (16)



Fluids 2020, 5, 69 6 of 16

and the discretized momentum Equation (2) are given at cell P as

∂ρuj

∂t

∣∣∣∣
P

VP + ∑
f

ρ̃
(n+1)
f ϑ

(n+1)
f ũ(n+1)

j, f A f = −∑
f

p(n+1)
f nj, f A f

+ ∑
f

µ∗f

u(n+1)
j,Q − u(n+1)

j,P

∆x f
+

∂ui
∂xj

∣∣∣∣∣
(n)

f

ni, f −
2
3

∂uk
∂xk

∣∣∣∣∣
(n)

f

ni, f

 A f ,

(17)

where superscript n is the iteration counter of the nonlinear iterations conducted to solve the discretized
governing equations in each time-step, see Section 4.4. To this end, superscript (n + 1) denotes
the solution that is sought implicitly and superscript (n) stands for the most recent available solution.
A Newton linearization is applied to linearize both governing equations [29]. The linearization of
the advection term of the continuity equation as well as the transient term of the momentum equations
is defined as

φ
(n+1)
1 φ

(n+1)
2 ≈ φ

(n)
1 φ

(n+1)
2 + φ

(n+1)
1 φ

(n)
2 − φ

(n)
1 φ

(n)
2 (18)

and the linearization of the advection term of the momentum equations is defined as

φ
(n+1)
1 φ

(n+1)
2 φ

(n+1)
3 ≈ φ

(n)
1 φ

(n)
2 φ

(n+1)
3 + φ

(n)
1 φ

(n+1)
2 φ

(n)
3 + φ

(n+1)
1 φ

(n)
2 φ

(n)
3 − 2 φ

(n)
1 φ

(n)
2 φ

(n)
3 , (19)

where φ1, φ2 and φ3 are generic fluid variables. This linearization facilitates an implicit treatment of all
terms in the governing equations that depend on pressure and velocity, which has previously been
shown to improve the stability and performance of the solution algorithm for flows in all Mach number
regimes [29,39,40]. It also provides the implicit pressure-velocity coupling necessary to robustly predict
flows with low Mach numbers.

The implicit treatment of the density at cell centers is given by reformulating Equation (8) as an
implicit function of the cell-centered pressure, given as

ρ
(n+1)
P =

K
(

p(n)P + Π
)Γ−1

1 + bK
(

p(n)P + Π
)Γ

(
p(n+1)

P + Π
)

(20)

and the implicit treatment of the advecting velocity is given by the semi-implicit formulation

ϑ f = u(n+1)
f · n f − d̂ f

 p(n+1)
Q − p(n+1)

P

∆x f
− ρ
∗(n)
f

1− lP f

ρ
(n)
P

∂p
∂xi

∣∣∣∣(n)
P

+
lP f

ρ
(n)
Q

∂p
∂xi

∣∣∣∣(n)
Q

 ni, f


+ d̂ f

ρ
∗(t−∆t1)
f

∆t1

(
ϑ
(t−∆t1)
f − u(t−∆t1)

i, f · ni, f

)
.

(21)

4.4. Solution Procedure

The linear system of discretized governing equations, Aφ = b, is solved simultaneously
for the pressure p and the velocity vector u ≡ (u, v, w)T . Considering a three-dimensional
computational mesh with N cells, this linear system of equations then follows as

Aρ,p Aρ,u Aρ,v Aρ,w

Aρu,p Aρu,u Aρu,v Aρu,w

Aρv,p Aρv,u Aρv,v Aρv,w

Aρw,p Aρw,u Aρw,v Aρw,w

 ·


φp

φu

φv

φw

 =


bρ

bρu

bρv

bρw

 , (22)

whereAη,χ are the coefficient submatrices of size N×N, where η denotes the conserved quantity and χ

denotes the primary solution variable associated with a given governing equation. The subvectors
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φχ with length N contain the solution of the primary solution variable χ and the subvectors bη with
length N contain all contributions from boundary conditions, previous nonlinear iterations as well
as previous time-levels. The solution procedure conducts nonlinear iterations to solve the system of
discretized Equations (22), in which (22) is preconditioned by the Block-Jacobi preconditioner and then
solved using the BiCGSTAB solver of the software library PETSc [41–43], as discussed in detail by
Denner et al. [18].

5. Interface Treatment

The discretized governing equations are extended to interfacial flows using an interface advection
method (see Section 5.1) in conjunction with an appropriate definition of the fluid properties
(see Section 5.2). In order to represent the two interacting fluids discretely, the indicator function ζ

translates into a color function ψ, defined for cell P as

ψP =
1

VP

˚
V

ζ dV. (23)

5.1. Interface Advection

To advect the fluid interface between two fluids, Equation (5) is integrated in each cell, which
gives the following transport equation for the color function ψ, Equation (23),

∂ψ

∂t
+

∂uiψ

∂xi
− ψ

∂ui
∂xi

= 0, (24)

which is discretized using an algebraic VOF method [30]. Discretizing the transient term using
the Crank–Nicolson scheme, the semi-discretized form of Equation (24) is given as

ψP − ψ
(t−∆tψ)
P

∆tψ
VP + ∑

f

ψ f + ψ
(t−∆tψ)

f

2
ϑ f A f −

ψP + ψ
(t−∆tψ)
P

2 ∑
f

ϑ f A f = 0, (25)

where ∆tψ is the applied VOF time-step. The same advecting velocity ϑ f that is used for all advection
terms of the discretized governing equations is applied to advect the color function. The face value ψ f
is discretized using the CICSAM scheme [44], which accounts for the available flux volume as well
as the orientation of the interface. To retain a sharp interface, a relatively small time-step ∆tψ is used,
satisfying a Courant number of Coψ = ∆tψ |u|/∆x ≤ 0.05, and a dual time-stepping method [45] is
applied for a better computational performance. The time-step ∆tψ applied to solve the VOF advection
equation is generally smaller than the time-step ∆t1 applied to solve Equation (22). The fluid time-step
∆t1, thus, has to be an integer multiple of the VOF time-step ∆tψ to ensure a consistent advection of
the color function.

This algebraic VOF method captures volume changes of the bulk phases with second-order
accuracy [30] and has been used successfully for studies of bubble dynamics in compressible [15,30]
and incompressible [46] interfacial flows. Nevertheless, the presented pressure-based algorithm is not
limited to the employed algebraic VOF method; other methods to represent the bulk phases or advect
the interface may equally be applied.

5.2. Fluid Properties

The treatment of density at fluid interfaces is based on the acoustically conservative interface
discretization (ACID) method [30]. The primary assumption of the ACID method is that all cells in
the finite-volume stencil of a given cell are assigned the same color function value, i.e., the color
function is assumed to be constant in the entire finite-volume stencil. Density, which is discontinuous
at the interface, is then evaluated based on this locally constant color function field, which recovers
the contact discontinuity represented by the interface [33,47]. Denner et al. [30] reported robust
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and accurate results for acoustic and shock waves in interfacial flows, supporting the notion that
the interface discretization indeed conserves the acoustic features of the flow.

Under the assumptions made by the ACID method, the density interpolated to face f of cell P is
given as

ρ̃ f = ρ?U + ξ f
|x f − xU |

∆x f
(ρ?D − ρ?U) . (26)

The density ρU at the upwind cell U of face f and the density ρD at the downwind cell D of face f
are defined based on the color function value of cell P, ψP, as

ρ?U = (1− ψP) ρa,U + ψP ρb,U (27)

ρ?D = (1− ψP) ρa,D + ψP ρb,D, (28)

where the partial densities ρa and ρb associated with fluids a and b are given by Equation (8).
The densities at previous time-levels are evaluated similarly, based on ψP, following as

ρ
(t−∆t1)
P = (1− ψP) ρ

(t−∆t1)
a,P + ψP ρ

(t−∆t1)
b,P (29)

and analogously for ρ
(t−∆τ)
P .

In order to treat the density implicitly, as given in Equation (20), the coefficient of the implicit
pressure value is defined as

K
(

p(n) + Π
)Γ−1

1 + bK
(

p(n) + Π
)Γ = (1− ψ)

Ka

(
p(n) + Πa

)Γa−1

1 + baKa
(

p(n) + Πa
)Γa

+ ψ
Kb

(
p(n) + Πb

)Γb−1

1 + bbKb
(

p(n) + Πb
)Γb

(30)

and the pressure constant Π as

K
(

p(n) + Π
)Γ−1

1 + bK
(

p(n) + Π
)Γ Π = (1− ψ)

Ka

(
p(n) + Πa

)Γa−1

1 + baKa
(

p(n) + Πa
)Γa

Πa + ψ
Kb

(
p(n) + Πb

)Γb−1

1 + bbKb
(

p(n) + Πb
)Γb

Πb, (31)

with the polytropic constants Ka and Kb given by Equation (9) based on the reference pressure
and reference density of the respective bulk phase.

The viscosity µ in cell P is defined by a linear interpolation based on the color function, given as

µ = (1− ψ) µa + ψ µb. (32)

6. Results

The proposed algorithm is validated for the simulation of acoustic cavitation using test-cases
representative of this kind of flow. The propagation of acoustic waves presented in Section 6.1 tests
the accurate treatment of acoustic effects and the Rayleigh collapse in Section 6.2 tests the correct
prediction of the entire pressure-driven bubble dynamics. Lastly, the wall-bounded cavitation of a
bubble for a broad range of bubble stand-off distances in Section 6.3 scrutinizes the reliable prediction
of complex cavitation events, also in comparison to experiments. For this validation, four different
fluids are considered, with the fluid properties given in Table 1. While the Tait model of water is
frequently used to simulate cavitation events in water, using the full NASG model of water provides an
alternative description. The JA2 propellant gas is considered to be an alternative gas, to demonstrate
the prediction of acoustic effects in a Noble–Abel gas.
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Table 1. Properties of the considered fluids.

Fluid κ b [m3 kg−1] Π [Pa]

Air 1.400 0 0
JA2 propellant gas [48] 1.225 1.00× 10−3 0
Water Tait [23] 7.150 0 3.046× 108

Water NASG [32] 1.187 6.61× 10−4 7.028× 108

6.1. Acoustic Waves

Reproducing the interaction between acoustic waves and fluid interfaces correctly is a basic
requirement for the accurate prediction of acoustic cavitation. Given a small perturbation to the flow,
with the amplitude of the velocity perturbation ∆u0 � a0, the resulting acoustic wave propagates with
the speed of sound a0, given for a general NASG fluid as

a0 =

√
κ

p0 + Π
ρ0 (1− b ρ0)

, (33)

with a pressure wave of amplitude ∆p0 = ρ0a0∆u0 [47]. For all considered cases, the unperturbed
flow velocity is u0 = 1 m s−1 and the ambient pressure is p0 = 105 Pa. The computational domain is
represented with a mesh spacing of ∆x = 2× 10−3 m.

First, the propagation of acoustic waves in a single-phase flow is considered. The acoustic
waves are generated by a periodically changing velocity at the domain inlet, which is defined as
uin = u0 + ∆u0 sin(2π f t), where ∆u0 = 0.01 u0 is the amplitude of the velocity perturbation and f is
the excitation frequency given in Table 2. Figure 2 shows the pressure profiles of acoustic waves in each
fluid shortly before the waves reach the domain outlet at x = 1.0 m. The wavelength λ and pressure
amplitude ∆p predicted by the proposed algorithm for these acoustic waves are given in Table 2.
For all cases λ and ∆p are in excellent agreement with the theoretical values λ0 and ∆p0 according to
linear acoustic theory, also given in Table 2.

Table 2. The excitation frequency f of the acoustic waves, the reference density ρ0 and the associated
speed of sound a0 at the reference pressure of p0 = 105 Pa, the wavelength λ0 and pressure amplitude
∆p0 of the acoustic waves given by linear acoustic theory, and the wavelength λ and the pressure
amplitude ∆p of the acoustic waves predicted by the proposed algorithm.

Fluid f [s−1] ρ0 [kg m−3] a0 [m s−1] λ0 [m] ∆p0 [Pa] λ [m] ∆p [Pa]

Air 1750 1.157 347.85 0.199 4.025 0.199 4.019
JA2 propellant gas [48] 1750 0.997 350.70 0.200 3.496 0.201 3.492
Water Tait [23] 7500 1000 1476.0 0.197 14, 760 0.198 14, 741
Water NASG [32] 7500 1000 1568.8 0.209 15, 688 0.210 15, 673

The propagation of a single acoustic wave in gas–liquid flows is simulated to demonstrate
the accurate prediction of the interaction of acoustic waves with fluid interfaces. The acoustic wave is
initiated in the left phase by a Gaussian pressure pulse as

p(x) = p0 + ∆p0 e−
1
2

(
x−x0

σ

)2

, (34)
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where ∆p0 and x0 are the initial amplitude and the initial position of the pressure pulse, respectively.
Based on linear acoustic theory [47], the pressure pulse reflected in the left phase at the fluid interface
should have a pressure amplitude of

∆preflected
L,0 =

∆pincident
L,0

2 ZR

ZR − ZL
− 1

, (35)

with the pressure amplitude of the incident pulse given as ∆pincident
L,0 = ∆p0, and the pressure amplitude

of the pulse transmitted to the right phase should be ∆ptransmitted
R,0 = pincident

L,0 + ∆preflected
L,0 , where

subscripts L and R denote the left and right phases, respectively, and Z = ρa is the characteristic
acoustic impedance. The pressure profiles of the pulses are shown in Figure 3 for two air–water
systems, after the pressure pulse interacted with the fluid interface. Figure 3a shows the pressure
pulse, initialized in the gas phase with ∆p0 = 10 Pa and σ = 0.03 at x0 = 0.2 m, in an air–water
system, with water described using the properties of Water NASG given in Table 1. The pressure
amplitude of the reflected and transmitted pulses are both in excellent agreement with linear acoustic
theory. Similarly, the pressure amplitudes of the reflected and transmitted pulses are also in excellent
agreement with linear acoustic theory for the case shown in Figure 3b, where the pressure pulse is
initialized in the liquid phase with ∆p0 = 1000 Pa and σ = 0.1 at x0 = 0.6 m, and with water described
using the properties of Water Tait given in Table 1.
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(a) Air at t = 2.5× 10−3 s
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(b) JA2 propellant gas at t = 2.5× 10−3 s
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(c) Water Tait at t = 6.0× 10−4 s
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]

(d) Water NASG at t = 6.0× 10−4 s

Figure 2. Pressure profiles of acoustic waves in different fluids obtained using the proposed algorithm.
The pressure amplitudes based on linear acoustic theory, ±∆p0, are shown as a reference.
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Figure 3. Profiles of pressure pulses in different air–water systems obtained using the proposed
algorithm. The amplitudes of the pressure pulses reflected and transmitted at the fluid interface
based on linear acoustic theory are shown as a reference. (a) Air–water (Water NASG) system at
t = 1.5 × 10−3 s. The pressure pulse is initialized with ∆p0 = 10 Pa, x0 = 0.2 m and σ = 0.03.
The air–water interface is located at xΣ = 0.5. (b) Water-air (Water Tait) system at t = 1.0× 10−3 s.
The reflected pressure pulse in water and the transmitted pressure pulse in air are shown in separate
graphs, due to their very different amplitudes. The pressure pulse is initialized with ∆p0 = 1000 Pa,
x0 = 0.6 m and σ = 0.1. The air–water interface is located at xΣ = 1.5.

6.2. Rayleigh Collapse

The behavior of a spherical bubble collapsing as a result of an initial overpressure in the liquid
compared to the pressure in the gas bubble is considered, the so-called Rayleigh collapse [49],
to scrutinize the prediction of pressure-driven bubble dynamics by the proposed algorithm.
The Gilmore model [9], which is an extension of the classical RP model, for the dynamic behavior of a
spherical gas bubble in a compressible liquid is used as a reference solution. The solution of the Gilmore
model is, therefore, regarded as the exact solution of the dynamic bubble behavior under consideration.
The dissipation due to both viscous stresses and acoustic radiation is included in these simulations,
leading to a complex interplay of the hydrodynamics, e.g., viscous dissipation, and thermodynamics,
e.g., energy dissipation due to the emission of the shock wave formed at the end of the collapse,
which directly influences the evolution of the bubble radius. In particular, the accurate prediction of
the bubble radius after multiple collapse-expansion cycles using finite-volume methods is known to
be difficult to achieve [23,50].

The initial pressure inside the bubble is pb = 4× 103 Pa and the initial pressure of the liquid
is pl(R) = p∞ + (pb − p∞)R0/R, with p∞ = 105 Pa. The gas is modeled as air by the ideal-gas
model with the properties given in Table 1 and a reference density of ρ0,air = 1.2 kg m−3, and a
viscosity of µair = 1.82× 10−5 Pa s. The liquid is taken to be water described by the Tait model
with the properties given for Water Tait in Table 1 and a reference density ρ0,water = 1000 kg m−3,
and a viscosity of µwater = 10−3 Pa s. The reference pressure is p0 = p∞ for both gas and liquid.
Figure 4 shows the dimensionless bubble radius R/R0, normalized by the initial radius R0 (which
also corresponds to the maximum radius in this case), as a function of the dimensionless time
t/tc, normalized by the Rayleigh collapse time tc = 0.915 R0

√
ρ0,water/p∞, obtained with different

spatial and temporal resolutions, compared against the solution obtained using the Gilmore model.
Excellent agreement between the evolution of the bubble radius R predicted by the proposed algorithm
and the Gilmore solution is observed in Figure 4, even after multiple collapse-expansion cycles, with
the simulation results converging to the solution of the Gilmore model for sufficiently large spatial
and temporal resolution.
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Figure 4. Rayleigh collapse of a spherical bubble. Dimensionless radius R/R0 as a function of
dimensionless time t/tc, where R0 is the initial radius and tc = 0.915 R0

√
ρ0,water/p∞ is the Rayleigh

collapse time, computed using (a) different time-steps ∆t on a mesh with ∆x = R0/400 and (b) on
meshes with different mesh spacings ∆x and a time-step of ∆t = 10−4 tc, compared against the solution
of the Gilmore model [9].

6.3. Wall-Bounded Cavitation

The wall-bounded collapse of a laser-induced cavitation bubble is simulated to test the fidelity
of the proposed algorithm in predicting a complex pressure-driven cavitation process. The bubble
is initialized with a radius of R0 = 50µm and a pressure pb > p∞ to achieve a maximum radius
of the upper hemisphere of the bubble of Rmax ≈ 390µm. The bubble is situated in water with
an ambient pressure of p∞ = 105 Pa at a distance `0 from the wall, as illustrated in Figure 5a.
The reference density at p0 = p∞ for air and water is ρ0,air = 1.2 kg m−3 and ρ0,water = 1000 kg m−3,
respectively. Water is modeled using the properties of Water NASG given in Table 1 and has a
viscosity of µwater = 10−3 Pa s. Air is modeled as an ideal gas, using the properties given in
Table 1, and has a viscosity of µair = 1.82 × 10−5 Pa s. Apart from the bottom wall illustrated
explicitly in Figure 5, all boundaries of the computational domain are situated at a distance of 0.25 m
from the bubble inception site, so that acoustic waves cannot reach the boundaries within the time
span considered in the simulations. The computational domain is resolved with a mesh spacing of
∆x = 2µm and a gradually refined mesh resolution near the wall, with a minimum mesh spacing
of ∆xmin = 0.05µm. The mesh is rapidly coarsened outside the region that the bubble occupies.
The time-step is chosen to satisfy the Courant number Co = ∆t |u|/∆x ≤ 0.8.

` 0

R 0

(a) (b) (c) (d)

Figure 5. Wall-bounded cavitation. (a) Simulation setup. (b–d) Instantaneous bubble shape and velocity
contours of a bubble with γ = 0.59 and Rmax = 388µm at times t = 39.0µs, t = 70.5µs and t = 85.0µs,
respectively. The wall is explicitly illustrated in all figures.
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Figure 5b–d show the instantaneous bubble shape and contours of the velocity component
perpendicular to the wall of a bubble with γ = `0/Rmax = 0.59 and Rmax = 388µm at times t = 39.0µs,
t = 70.5µs and t = 85.0µs, respectively. As the bubble initially grows and then collapses, a thin liquid
film forms between the bubble and the wall, which can be clearly seen in Figure 5b–d and which has
also previously been observed and measured in experiments [51]. Furthermore, the characteristic
fast-moving liquid jet directed towards the wall that pierces the bubble during its collapse can be seen
in Figure 5d. Figure 6a shows the minimum thickness, `min, of the liquid film separating the bubble
and the wall at the time when the jet pierces through the bubble, i.e., the thickness of the small
gap between the bubble and the wall seen in Figure 5d, predicted by the simulations for different
dimensionless initial stand-off distances γ, in comparison with the experimental measurements of
Reuter and Kaiser [51]. The fit of the correlation has a coefficient of determination of R2 = 0.94 based
on 91 experiments for bubbles with Rmax = 385− 410µm in the range γ = 0.47− 1.07 [51]. Excellent
agreement between the simulations and the experiments is observed, demonstrating the accuracy with
which the proposed algorithm can predict such a complex cavitation process. The evolution of the
peak shear stress and peak pressure at the wall are shown in Figure 6b,c, respectively, for selected
initial stand-off distances. The pressure signal exhibits two peaks during the collapse of the bubble [52];
the first peak is caused by the pressure pulse emitted as the liquid jet impinges on the lower side of
the bubble interface and the second peak is associated with the shock wave emitted at the end
of the collapse, when the bubble (at this point having a toroidal shape) assumes its minimum
volume. The results are in good agreement with previous studies regarding the order of magnitude
of the generated wall shear stress [11,12] and the pressure amplitude of the shock wave formed as
a result of the collapse [53,54] of a laser-induced bubble, with wall shear stresses exceeding 100 kPa
for bubbles collapsing close to a wall.
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m
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(b)
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(c)

Figure 6. Wall-bounded cavitation. (a) Results of the minimum liquid film thickness `min as a function
of the dimensionless stand-off distance γ = `0/Rmax obtained with the proposed algorithm, compared
against the correlation `min = 29.2µm γ4.86 + 4.74µm obtained by experimental measurements in
the range γ = 0.47− 1.07 [51]. (b,c) Evolution of the maximum wall shear stress τw and maximum
wall pressure pw, respectively, for selected stand-off distances γ.

7. Conclusions

A fully coupled pressure-based algorithm for the simulation of the acoustic cavitation of bubbles
in polytropic gas–liquid systems has been proposed. The algorithm is based on a conservative
finite-volume discretization with a collocated variable arrangement [18], whereby the discretized
governing conservation laws are solved simultaneously in a single linear system of equations
for pressure and velocity, with density described by a polytropic assumption using the Noble–Abel
stiffened-gas model [32]. The interface separating the interacting bulk phases is captured by a
state-of-the-art algebraic VOF method [30].
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The proposed numerical framework has been validated by representative test-cases, including
the propagation and interface interaction of acoustic waves, as well as the Rayleigh collapse
and the wall-bounded cavitation of a bubble. The propagation of acoustic waves demonstrates
the accurate prediction of acoustic effects, whereas the excellent comparison of the bubble radius of
the Rayleigh collapse against the Gilmore model demonstrates the correct prediction of the entire
pressure-driven bubble dynamics. In particular, the demonstrated accurate prediction of the bubble
radius after multiple collapse-expansion cycles compared to the theoretical solution, in this case given
by the Gilmore model, is known to be difficult to achieve [23,50]. The considered wall-bounded
cavitation of a bubble shows the reliable prediction of complex cavitation events. Especially
the predicted thickness of the thin liquid film, which separates the bubble from the wall, is in very
good agreement with recent experimental measurements [51] for a broad range of bubble stand-off
distances, further establishing the reliable prediction of acoustic cavitation by the proposed algorithm.
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