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Abstract: Heat and mass transfer due to a magneto micropolar fluid flow along a semi-infinite ver-

tical plate bounded by a porous medium are investigated in presence of induced magnetic field. In 

case of cooling flow, heat and mass fluxes from the plate are subjected to be constant under the 

action of a constant heat sink. Mathematical model related to the problem is developed from the 

basis of studying magnetohydrodynamics (MHD) for both lighter and heavier particles. Dimension-

less model of momentum, microrotation, induction, energy and concentration equations are solved 

simultaneously by the explicit scheme of finite difference technique. According to the obtained sta-

bility and convergence criteria of this transient flow, very negligible time step (Δt = 0.002) compared 

to the existing works has been taken to perform the numerical computation. Quantities of chief 

physical interest of the flow as shear stress, couple stress, current density, Nusselt number and Sher-

wood number are also studied here. The numerically computed results are compared with pub-

lished results of available research works. Interestingly an excellent agreement is found with finite 

difference solutions in both explicit and implicit schemes. In order to discuss the physical aspects of 

the problem, the flow variables for different values of associated parameters are illustrated in 

graphs. Finally, important findings of the study are listed as concluding remarks. 

Keywords: MHD; heat and mass transfer; micropolar fluid; induced magnetic field;  

finite difference method; heat absorption 

 

1. Introduction 

The behaviors of fluid that contain suspended, metal or dust particles in many prac-

tical situations are first observed by the micropolar fluid theory of Eringen [1] with inter-

nal structures in which coupling between the spin of each particle and the macroscopic 

velocity field is taken into account. Physically, the micropolar fluids contain dilute sus-

pension of small, rigid, cylindrical macromolecules with individual motion and are influ-

enced by spin inertia. The theory is used to investigate the flow character of polymeric 

fluids, colloidal suspension, human and animal blood, liquid crystal, exotic lubricants etc. 

Micropolar fluid dynamic has attracted the attention of a large number of scientists due 

to its diverse applications at the present time. The thermo-micropolar fluid theory of Er-

ingen [2] is developed by extending the theory of micropolar fluid. 

The free convective micropolar fluid flow induced by the simultaneous action of 

buoyancy forces is of great interest in nature and in many industrial applications as dry-

ing processes, solidification of binary alloy as well as in astrophysics, geophysics and 

oceanography. Jena and Mathur [3] have obtained a similarity solution for laminar free 

convective flow of thermo-micropolar fluid from a non-isothermal vertical flat plate. A 

numerical boundary layer solution for a steady free convective micropolar fluid flow from 

a vertical isothermal plate is computed by Gorla et al. [4]. 

Many engineering applications such as condensation, extraction, drying of solid ma-

terials, evaporation, rectification, distillation and absorption of fluids are affected by the 
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combined heat and mass transfer processes. A free convection with mass transfer flow for 

a micropolar fluid bounded by a vertical surface under the action of a transverse magnetic 

field is analyzed by El-Amin [5]. The unsteady free convective heat and mass transfer mi-

cropolar fluid flow through a vertical infinite porous medium under the action of a trans-

verse magnetic field taking into account a constant heat source with constant heat and 

mass fluxes has been studied numerically by Haque et al. [6]. Effects of thermal radiation 

on micropolar fluid flow was observed by Bhattacharyya et al. [7]. Safaei et al. [8] analyzed 

a boundary layer heat transfer flow of water/FMWCNT (functionalized multi-walled car-

bon nanotube) nanofluids along a flat plate. Convective flows of different types of fluid 

due to stretching sheet/surface have been analyzed by the authors in the references [9–15]. 

Gaffar et al. [16] have developed a mathematical model to investigate the free convective 

flow in a third-grade viscoelastic micropolar fluid from a vertical isothermal inverted 

cone. Scholars in the references [17–21] have studied convective flows along plate embed-

ded in a porous medium. Recently, Karvelas et al. [22] have used a micropolar fluid model 

to study the auto rotation effect of human blood′s microstructure on its flow. 

A strong magnetic field due to a force of the field radiating from the poles of the mag-

net induces a new magnetic field known as induced magnetic field which is applied in 

many astrophysical and geophysical problems. From the point of natural and industrial 

applications, several numbers of investigators have given a special attraction to observe the 

induced magnetic field effect on the flow problems. Concerning this, investigators in the 

references [23–25] analyzed the induced magnetic field effect on combined heat and 

mass transfer one/two dimensional flows. The micropolar fluid behavior on magnetohy-

drodynamics (MHD) heat transfer unsteady flow through an infinite porous plate with 

induced magnetic field has studied by Sultana et al. [26]. In a rotating system, a numerical 

simulation with stability analysis on MHD natural convective heat and mass transfer un-

steady flow with induced magnetic field was finished by Haque et al. [27]. A MHD stag-

nation point flow of nanofluid with induced magnetic field is observed by Ibrahim [28]. 

The influence of magnetic field on blood flow has studied numerically by Hossain and 

Haque [29]. The micromagnetorotation (MMR) effect on a micropolar fluid flow is studied 

by Aslani et al. [30]. In order to control the cooling rate and achieve the desired quality of 

industrial products, researchers in the references [31–33] have investigated the flow char-

acteristics in the presence of induced magnetic field under different environments. 

Recently, Baruah and Hazarika [34] have investigated a heat and mass transfer un-

steady flow of micripolar fluid over a stretching sheet under the action of a transverse 

magnetic field. The magnetic Reynolds number in the study was taken as small enough 

to neglect the induced magnetic field. The flow problem becomes more complicated 

when it is affected by an induced magnetic field, heat absorbing source, constant heat and 

mass fluxes as well as a vertical plate instead of stretching sheet. Hence the research efforts 

in the present work are devoted to study the effects of induced magnetic field on the tran-

sient heat and mass transfer magneto micropolar fluid flow past a semi-infinite vertical 

plate surrounded by a porous medium in the presence of a constant heat sink. These types 

of fluid flows have special importance in geophysical fluid dynamics and play a decisive 

role in a number of industrial applications. 

2. Flow Model of the Physical Problem 

A natural convective heat and mass transfer unsteady flow of an electrically con-

ducting incompressible viscous micropolar fluid past an electrically non-conducting 

semi-infinite vertical plate embedded in a porous medium is considered here. The fluid 

flow is generated due to the gravitational acceleration and the pressure gradient along the 

normal direction of the plate. A strong magnetic field has also been applied near to the plate 

so that the plate becomes magnetized. An induced magnetism is produced by the force of 

the field radiating from the poles of the magnet. In this case, heat and mass transfer due to 

the micropolar fluid flow is affected by an induced magnetic field. 
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In geometrical concept, the Cartesian coordinate system is chosen in such way that 

the x-axis is measured along the plate in upward direction and y-axis is normal to the 

plate. The appropriate physical configuration of the flow with coordinate system is dis-

played in Figure 1. 

 

Figure 1. Physical Configuration with Coordinate System. 

At the beginning of this research work, the system with magneto micropolar fluid is 

kept at uniform temperature  T and species concentration  C 
. In addition, the anal-

ysis is based on the following assumptions: 

i. All the physical properties of fluid are considered to be constant but the influence 

of density variation with temperature is assumed only in the body force term, in 

accordance with the well-known Boussinesq’s approximation. 

ii. Since the plate is of semi-infinite extent and the fluid motion is unsteady so all 

the flow variables will depend upon the distance variable along the plate x, dis-

tance variable normal to the plate y and the time variable .  

iii. The microrotation vector of the form  0, 0, G  is considered here. 

iv. The viscous dissipation and joule heating terms in the energy equation have been 

assumed for high speed flow as well as a constant heat sink 
sh  is used for heat 

absorption [35]. 

v. The level of concentration of foreign mass has been taken very high for observing 

the thermal diffusion effect on flow. The mass diffusion effect has also been studied 

here. 

vi. The magnetic Reynolds number is taken to be large enough so that the induced 

magnetic field vector of the form  , ,0x yH HH  is applicable. The divergence 

equation of Maxwell’s equation 0.H   for the magnetic field gives 
yH   con-

stant 
0H  (say). 

Within the framework of the above stated assumptions, the equations relevant to the 

heat generating free convective heat and mass transfer unsteady flow of micropolar fluid 

with induced magnetic field are governed by the following system of coupled non-linear 

partial differential equations under the boundary-layer approximations, 
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Continuity Equation, 

0
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x y

 
 

 
 

Momentum Equation, 
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Microrotation Equation, 

2
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2
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x y j j yy

 

  
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Magnetic Induction Equation, 

2

0 2

1x x x x
x

e

H H H Hu u
u v H H

x y x y y  

    
    
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Energy Equation, 

 
2 22 2

2 2

1 1x m T s

p p p s p p

H D hT T T T u C
u v T T

x y c c y c y c c cy y
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
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
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            
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Concentration Equation, 

2 2

2 2

m T
m

m

DC C C C T
u v D

x y Ty y





    
   
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Since the heat and mass fluxes from the plate to fluid through porous medium are 

constant, hence the initial conditions becomes, 

0, 0, 0, 0, 0, , everywherexu v H T T C C           

and the appropriate boundary conditions are as follows, 

0, 0, 0, 0, 0, , at 0xu v H T T C C x            

, , ,0, 0, at 0
x w

m

S u T Q C m
H H

y y y D
u v y



     
    

  
    

0, 0, 0, 0, , asxu v H T T C C y           

3. Mathematical Formulation 

Mathematical model of the magneto micropolar fluid flow is a system of coupled 

non-linear partial differential equations. To solve this flow problem, the model must be 

dimensionless. Hence the following non-dimensional quantities have been taken to 

make the governing equations dimensionless; 

0 ,
xU

X


 0 ,
yU

Y



0

,
u

U
U


0

,
v

V
U


2
0 ,

U
t






2
0

,
U


 

0

,e xH
H

U






 0U T T
T

Q






  and 

 0
.

mD U C C
C

m


  

 

After simplification the following nonlinear coupled partial differential equations in 

terms of non-dimensional variables are obtained, 

Dimensionless Continuity Equation, 

0
U V

X Y

 
 

 
 

Dimensionless Momentum Equation, 
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 
2

2
1r m a

U U U U H
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t X Y Y YY
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Dimensionless Microrotation Equation, 

2

2
2

U
U V

t X Y YY


      
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Dimensionless Magnetic Induction Equation, 

2

2

1

m
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U V H M
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Dimensionless Energy Equation, 
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Dimensionless Concentration Equation, 
2 2

2 2

1
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c
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U V S
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   
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and the corresponding initial and boundary conditions become, 

0, 0, 0, 0, 0, 0, 0t U V H T C                      everywhere

0, 0, 0, 0, 0, 0, 0t U V H T C                     at 0X   

 0, 0, , 1 say , 1, 1
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2
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m
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o
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S
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

 
  and T

f

s p
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D

Q c c

 


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The quantities of chief physical interest of the flow near at the plate such as the skin 

friction coefficients, current density, heat transfer rate and mass transfer rate are also stud-

ied here. In order to obtain the numerical values of those quantities, it is arbitrarily chosen 

that the length of the semi-infinitely extended plate is  m ax 10 0X   and the length of 

the boundary layer thickness is  max 25Y   as corresponding to Y which lies very 

well outside the boundary layers. Hence the flow region within the boundary layer is 

found as a rectangle with sides maxX  and maxY . 

One of the skin friction coefficients is shear stress so the local and average shear stress 

at the plate  0Y   are proportional to 
0Y

U

Y 

 
 
 

 and 
100

0
0Y

U
dX

Y 

 
 
 

  respectively. An-

other skin friction coefficients is couple stress whose local and average part are propor-

tional to 
0YY 

 
 
 

 and 
100

0
0Y

dX
Y 

 
 
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  respectively. The local and average current den-

sity at the plate are proportional to 
0Y

H

Y 

 
 
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 and 
100

0
0Y

H
dX

Y 

 
 
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  respectively. The 
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local and average Nusselt number are proportional to 
0Y

T

Y 

 
 
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 and 
100

0
0Y

T
dX

Y 

 
 
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  

respectively. Last of all, the local and average Sherwood number are proportional to 

0Y

C

Y 

 
 
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 and 
100

0
0Y

C
dX

Y 
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  respectively. 

4. Numerical Computation 

Due to the complexity of finding an analytical solution of the system of second order 

nonlinear coupled partial differential equations, a numerical technique must be applied 

to solve this problem. For simplicity, an explicit procedure of finite difference method is 

used to obtain a numerical solution. In order to formulate a system of finite difference 

equations, the rectangular region of flow within the boundary layer is divided into a grid 

or mesh of lines parallel and normal to the plate. After carrying out the trial with a differ-

ent number of grid lines, 100 grid lines are fixed here. Hence the X-directional height of 

plate is divided by  100m   horizontal grid lines and the Y-directional thickness of 

boundary layer is divided by  1 0 0n   vertical grid lines. Therefore, the appropriate 

mesh sizes for computation become 1.0X   and 0.25Y   with a smaller time-step 

Δt = 0.002. The finite difference grid space is drawn in Figure 2.  

 

Figure 2. Finite Difference Grid Space. 

Let ,U  ,V   ,  ,H  T   and C  denote the values of ,U  ,V  ,  ,H  T  and C 

at the end of a time-step respectively. The following applicable set of finite difference 

equations is obtained using the explicit finite difference approximations, 

Finite Difference Continuity Equation, 
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Finite Difference Momentum Equation, 
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 
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      
  
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, , , 1, , 1 , , 1, , 1 ,

, , ,

i j i j i j i j i j i j i j i j i j i j

i j i j i j

H H H H H H U U U U
U V H M

t X Y X Y

   
     

   
    

 
, 1 , , 1

2

21 i j i j i j

m

H H H

P Y

  




Finite Difference Energy Equation, 

 

2

, , , 1, , 1 , , 1 , , 1 , 1 ,

, , ,2

21i j i j i j i j i j i j i j i j i j i j i jc
i j i j i j

r r m

T T T T T T T T T H HE
U V T

t X Y P P P YY

    
       

      
     

 

 
 

2

, 1 , , 1 , , 1

2

2
1

i j i j i j i j i j

c f

U U C C C
E D

Y Y

     
  

  


Finite Difference Concentration Equation, 
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The initial and boundary conditions based on the finite difference scheme are as fol-

lows, 
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0 , 0 , 0 , 0 , 0 , 0 ,0, 0, 0, 0, 0, 0n n n n n n
j j j j j jU V H T C        

,1 ,0

,0 ,0 ,0 ,0 ,0 ,1 ,0 ,10, 0, , 1, ,
i in n n n n n n n

i i i i i i i i

U U
U V S H T T Y C C Y

Y


         



, , , , , ,0, 0, 0, 0, 0, 0n n n n n n
i L i L i L i L i L i LU V H T C             where .L

Here the subscripts i  and j  denote X  and Y  directional grid points respec-

tively and the superscript n  represents a value of time, t n t   where 0, 1, 2,....n   

From the initial condition, the values of U ,  , H , T  and C are known at 0t  . At 

the end of any time-step t , the new temperature T  , new concentration C , new ve-

locity U  , new microrotational velocity  , new induced magnetic field H  and V   

at all interior nodal points may be obtained by successive applications of finite differ-

ence energy, concentration, momentum, microrotation, magnetic induction and conti-

nuity equations respectively. This process is repeated in time and provided the time-

step is sufficiently small, hence U , V,  , H , T  and C should eventually converge 

to values which approximate the steady-state solutions of the model. 

The numerical values of local shear stress, couple stress, current density, Nusselt 

number and Sherwood number are evaluated by Five-point approximation formula 
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[36,37] for the derivative and then the average shear stress, couple stress, current density, 

Nusselt number and Sherwood number are calculated by Simpson′s
1

3
 integration for-

mula [36,37]. 

Since an explicit procedure is used as a solving method, so the technique is required 

to establish a stability and convergence criteria of the problem. After simplification by 

using the general terms of Fourier expansion for the flow variables, we have obtained 

 
2

2
1

2r r

t t t t
U V

X Y P PY

   
   

  
 and 

 
2

2
1

c

t t t
U V

X Y S Y

  
  

  
 as the stability crite-

ria of the explicit finite difference method. Using the constant mesh sizes 1.0X   and 

0.25Y   with the smaller time step 0.002,t   we have also found 1,fD   1,cE   

0.0641rP   and 0.064cS   as the convergence conditions of the present problem. 

5. Discussion of the Results 

To investigate the practical aspect of the problem, a finite difference solution is ob-

tained by the use of an explicit procedure. The numerical values of velocity, microrota-

tional velocity, induced magnetic field, temperature and concentration within the bound-

ary layer are computed by assigning the different values of associated parameters with 

the help of a software development product Parallel Studio XE (American Multinational 

Corporation and Technology Company Intel Corporation, Santa Clara, CA, USA) as a 

computer programming language FORTRAN. In order to get the steady-state solutions, 

the computations have been carried out up to 20t  . It is observed that the numerical 

values of flow variables show little changes after the time 10t  . Hence the steady-

state solutions have been obtained at the maximum time 20t  . In this case the nu-

merical data of all flow variables are collected hare at the time 2, 4 and 20t  . 

In this study, the Grashof number  5.0, 6.0, 7.0rG   for heat transfer and the 

modified Grashof number  2 .0mG   for mass transfer are taken to be positive, the 

values 0rG   with 0mG   correspond to cooling to the plate. Practically the cooling 

problem is often encountered in engineering applications as the cooling of electronic com-

ponents and nuclear reactors. Since the most important fluids are known as atmospheric 

air, salt water and water so the values of Prandtl number are preferred 0.71rP   (for 

air), 1.0rP   (for salt water) and 7.0rP   (for water) with respect to the convergence 

conditions of the problem. It is also considered that the investigation is performed for 

both lighter particles as helium  0.3cS  , water vapour  0.6cS   and heavier particle 

carbondioxide  1.0cS  . The values of other associated parameters are also chosen 

arbitrarily. 

To verify the accuracy of the present results, two graphical comparisons with ex-

isting numerical solutions are presented in Figure 3. If we use viscous fluid instead of 

micropolar fluid and neglect the effects of induced magnetic field, constant heat source, 

viscous dissipation, joule heating, thermal diffusion, mass diffusion as well as the plate is 

not subjected to constant heat and mass fluxes then the current fluid flow is transformed 

into a simple boundary layer flow of Callahan and Marner [36]. If we apply a transverse 

magnetic field on the transformed simple flow then we get the MHD flow of Palani and 

Srikanth [37]. At the time 0.6t  , the velocity curve for the buoyancy ratio parameter 

2.0,m

r

G
N

G
   1.0,rP   0.7,cS   0.0,M   0.0,   0.0,aD   0.0,  0.0,   

0.0,mP   0.0,cE   0.0,   0.0,fD   0.0oS   is compared with the explicit finite differ-

ence solution of Callahan and Marner [36], which are displayed in Figure 3a. Another 

comparison of velocity profile at 0.26t   for the values of non-zero parameters 2.0,N   
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0.7,rP   0.5,cS   1.0M   with the implicit finite difference solution of Palani and Sri-

kanth [37] is shown in Figure 3b. It is found that the numerical results of present study are 

in excellent agreement with the results of previously available works in both schemes of 

finite difference method. Hence the accuracy of the current results may be described as 

very good in case of all the flow variables. 

 
(a) 

 
(b) 

Figure 3. Graphical Comparison of fluid velocity with existing (a) explicit finite difference solution ([36], Figure 1, page 

169) and (b) implicit finite difference solution ([37], Figure 3, page 352). 

In order to show the effects of various parameters on flow variables, the collected 

numerical values have been plotted in figures by the help of data visualization software 

TECPLOT (American Company Tecplot, Inc., Bellevue, WA, USA). The time dependent 

flow variables related to the problem versus Y-directional length are illustrated in Figures 

4–10. 

The transient velocity distributions have been shown in Figures 4 and 5. It is found 

that the fluid velocities increase dramatically with time until at 20t   when a steady-

state value is reached. We observe from Figure 4a, for extremely cooled plate  0rG  , 

the fluid velocity increases with the increase of Grashof number. The effect of the Darcy 

number on velocity field is presented in Figure 4b. It is observed that the velocity rapidly 

decreases in case of strong Darcy number. The Figure 4c shows that the fluid velocity 

decreases near the plate but increases far away from the plate with the increase of mag-

netic force number. The effect of the heat absorption parameter on velocity field is pre-

sented in Figure 5a. It is declared that the velocity decreases in case of strong heat absorp-

tion parameter. In Figure 5b, we see that the velocity decreases in case of strong Prandtl 

number i.e., the velocity is higher for air than water. A same effect on velocity field is 

noted from Figure 5c for increasing the value of Schmidt number. In particular, the veloc-

ity is larger for helium than carbon dioxide. Hence, it is concluded that the maximum 

velocity occurs in the vicinity of the plate. 
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The time dependent microrotational velocity profiles are displayed in Figures 6 and 

7. It is noted that the microrotational velocities decrease significantly to a steady-state 

value at the time 20t  . We observe from Figure 6a, the microrotational velocity falls 

with the increase of Grashof number. The effects of Darcy number on microrotational ve-

locity are shown in Figure 6b. We see that the microrotational velocity increases with the 

rise of Darcy number. A decreasing effect far away from the plate on microrotational ve-

locity is observed from Figure 6c for increasing the spin gradient viscosity. Figure 7a de-

clares that the microrotational velocity is decreasingly affected by Soret number. In Figure 

7b, we find that the microrotational velocity slowly raises in case of strong Prandtl num-

ber. The velocity distributions in Figure 7c represent that the microrotational velocity in-

creases with the increase of Schmidt number. 

The induced magnetic field for cooling plate is displayed in Figure 8 and we see that 

they fall sharply with time until at 20t  . It is observed from Figure 8a that the induced 

magnetic field increases near the plate but decreases far away from plate with the in-

crease of magnetic diffusivity number. Figure 8b shows that the induced magnetic field 

increases with the rise of Darcy number. A decreasing effect of magnetic force number on 

induced magnetic field is observed from Figure 8c. 

The transient temperature distributions are shown in Figure 9. It is declared that the 

fluid temperature rises considerably with time until a steady-state value is obtained. The 

transient temperature profiles for different values of Eckert number are presented in Fig-

ure 9a and it is noticed that the increase of Eckert number leads to a rise in fluid tempera-

ture. An important effect on temperature is found from Figure 9b and we observe that 

temperature rapidly decreases with the increase of Prandtl number. This is due to the fact 

that there would be a decrease of thermal boundary layer thickness for the increase of 

Prandtl number. An increasing effect on temperature is observed in Figure 9c with the 

increase of Dufour Number. 

The species concentration profiles are presented in Figure 10. It is observed that the 

concentration increases substantially with time until at 20t  . Figure 10a shows that the 

concentration increases in case of strong heat absorption parameter. The thermal diffusion 

effect is shown in Figure 10b and it is noticed that concentration gradually increases with 

the increase of Soret number. For different gases like helium, water vapor and carbon di-

oxide, concentration profiles are displayed in Figure 10c. The figure shows that a decreas-

ing effect on concentration in case of strong Schmidt number. Physically, the increase of 

Schmidt number means decrease of molecular diffusivity. Hence, the concentration of 

species is higher for small values of the Schmidt number and lower for large values of 

Schmidt number. It is concluded that the maximum of concentration occurs on the plate 

and the thinning effect is noted for heavier particles.   
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(a) 

 
(b) 

 
(c) 

Figure 4. Velocity profiles for different values of (a) Grashof number (b) Darcy number (c) mag-

netic force number. 
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(a) 

 
(b) 

 
(c) 

Figure 5. Velocity profiles for different values of (a) heat absorption parameter (b) Prandtl number 

(c) Schmidt number. 
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(a) 

 
(b) 

 
(c) 

Figure 6. Microrotational velocity profiles for different values of (a) Grashof number (b) Darcy 

number (c) spin gradient viscosity. 
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(a) 

 
(b) 

 
(c) 

Figure 7. Microrotational velocity profiles for different values of (a) Soret number (b) Prandtl 

number (c) Schmidt number. 
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(a) 

 
(b) 

 
(c) 

Figure 8. Induced Magnetic field profiles for different values of (a) magnetic diffusivity number 

(b) Darcy number (c) magnetic force number. 
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(a) 

 
(b) 

 
(c) 

Figure 9. Temperature profiles for different values of (a) Eckert number (b) Prandtl number (c) 

Dufour number. 
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(a) 

 
(b) 

 
(c) 

Figure 10. Concentration profiles for different values of (a) heat absorption parameter (b) Soret 

number (c) Schmidt number. 
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Now we attempt to discuss about the behavior of the quantities of chief physical in-

terest of the flow. For this purpose, the solutions of shear stress, couple stress, current 

density, Nusselt number and Sherwood number for different values of associated param-

eters are computed and the obtained local and average numerical values versus X-di-

rectional length and time respectively are plotted in Figures 11–15. 

For the different values of Grashof number, Prandtl number and Schmidt number, 

the curves of shear stress are drawn in Figure 11. We see that both local and average shear 

stress increases in case of strong Grashof number while it decreases with the increase of 

Prandtl number or Schmidt number. Figure 12 shows that the couple stress decreases for 

the increase of spin gradient viscosity, Darcy number or Schmidt number. It is observed 

from Figure 13 that the current density rises in case of strong Darcy number but falls with 

the increase of magnetic diffusivity number or magnetic force number. A decreasing effect 

on Nusselt number for increasing values of Dufour Number, Prandtl or Eckert number is 

noted from Figure 14. From the last Figure 15, we see that both local and average Sher-

wood number is decreasingly affected by Schmidt number or heat absorption parameter 

while increasingly affected by Soret number. 

 

Figure 11. Effect of flow variables on local and average shear stress. 

 

Figure 12. Effect of flow variables on local and average couple stress. 
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Figure 13. Effect of flow variables on local and average current density. 

 

Figure 14. Effect of flow variables on local and average Nusselt number. 

 

Figure 15. Effect of flow variables on local and average Sherwood number.   
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6. Conclusions 

The induced magnetic field effect on an unsteady MHD free convective heat and 

mass transfer flow of a micropolar fluid past a semi-infinite vertical plate bounded by a 

porous medium which is subjected to constant heat and mass fluxes under the action of a 

strong magnetic field taking into account a constant heat sink is investigated in this work. 

The resulting governing system of dimensionless coupled non-linear partial differential 

equations are numerically solved by an explicit finite difference method. A graphical com-

parison between the current results and existing results of previous works is also made 

here. The agreement with finite difference solutions in both explicit and implicit schemes 

is found to be very good. Finally, the results are discussed for different values of flow 

parameters and the important findings that obtained from the graphical representation 

of the results are listed below. 

i. All of the flow variables except microrotational velocity and induced magnetic 

field increase significantly until the steady-state value with time. 

ii. Only the Grashof number enhances the fluid velocity near at the plate. It is con-

cluded that the Grashof number plays an important role on fluid velocity in case 

of cooling problem. 

iii. The microrotational velocity of fluid particles is positively influenced by Darcy num-

ber but negatively influenced by spin gradient viscosity. 

iv. The induced magnetic field strength is stronger for the lowest magnetic force or dif-

fusivity numbers. 

v. The fluid temperature is found to be high in case of strong mass diffusion. Particu-

larly, the fluid temperature is grater for air than water. 

vi. The species concentration is increasingly affected by the both heat sink and ther-

mal diffusion. It is also confirmed that the concentration level of fluid is greater for 

lighter particles than heavier particles. 

It is expected that the recent study of the combined heat and mass transfer flow of 

micropolar fluid can be utilized in many scientific research related to the flow under in-

duced magnetic field. The key findings may be effective in the movement of underground 

natural assets, in separation processes as well as in the research of geophysical fluid dy-

namics. 
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Nomenclature 

C  species concentration 

C dimensionless species concentration 

sc  concentration susceptibility 

pc  specific heat at constant pressure 

C  species concentration of uniform flow 

aD  Darcy number 

mD  coefficient of mass diffusivity 

fD  Dufour number 

cE  Eckert number 

g local acceleration due to gravity 

G microrotation vector 
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rG  Grashof number 

mG  modified Grashof number 

sh  constant heat sink 

H  induced magnetic field vector 

H  dimensionless induced magnetic field component 

0H  induced magnetic field strength 

wH  induced magnetic field at the wall 

,x yH H  induced magnetic field components 

j  microinertia per unit mass 

K  permeability of the medium 

m  constant mass flux per unit area 

M  magnetic force number 

mP  magnetic diffusivity number 

rP Prandtl number 

Q constant heat flux per unit area 

S microrotational constant 

cS  Schmidt number 

oS  Soret number 

t  dimensionless time 

T fluid temperature 

T  dimensionless fluid temperature 

mT  mean fluid temperature 

T  fluid temperature of uniform flow 

,u v  velocity components 

,U V  dimensionless velocity components 

0U  dimensionless constant velocity 

x  spatial coordinate along to the plate 

X  dimensionless spatial coordinate along to the plate 
y spatial coordinate normal to the plate 

Y  dimensionless spatial coordinate normal to the plate 

Greek Symbols 

 divergence vector 

  microrotational number 

t  dimensionless time-step 

X  dimensionless mesh sizes along X  direction 

Y  dimensionless mesh sizes along Y  direction 

  spin gradient viscosity 

  heat absorption parameter 

 thermal expansion coefficient 
*  concentration expansion coefficient 

 vortex viscosity 

  spin-gradient viscosity 

  thermal conductivity 

T  thermal diffusion ratio 

 vortex viscosity 

e  magnetic permeability 

 density of the fluid 

  electrical conductivity 

  time 

  dimensionless microrotational component 

 microrotational component 

  kinematic viscosity 

Subscripts 
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W  at the wall of the plate 

 free stream conditions 

,i j  grid points along X  and Y  axis respectively 

Superscript 

n  number of time-steps 

'  at the end of a time-step 
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