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Abstract: In this paper, an artificial neural network (ANN)-based reduced order model (ROM) is
developed for the hydrodynamics forces on an airfoil immersed in the flow field at different angles
of attack. The proper orthogonal decomposition (POD) of the flow field data is employed to obtain
pressure modes and the temporal coefficients. These temporal pressure coefficients are used to train
the ANN using data from three different angles of attack. The trained network then takes the value
of angle of attack (AOA) and past POD coefficients as an input and predicts the future temporal
coefficients. We also decompose the surface pressure modes into lift and drag components. These
surface pressure modes are then employed to calculate the pressure component of lift Cp

L and drag Cp
D

coefficients. The train model is then tested on the in-sample data and out-of-sample data. The results
show good agreement with the true numerical data, thus validating the neural network based model.

Keywords: reduced-order modeling; neural networks; airfoil; hydrodynamic forces

1. Introduction

Airfoils are cross sectional curved surfaces which give required ratio of hydrodynamic
forces (i.e., lift and drag). Flow separation is an active area of research in airfoils due to
stall phenomenon when the angle of attack goes beyond a certain limit. In response, there
is vivid decrease in the hydrodynamic forces (i.e., lift and drag) [1,2], so there is a need to
control flow separation.

Computational fluid dynamics (CFD) is widely used for numerical solution of com-
plex, nonlinear, and transient flows to study the flow separation phenomenon. To further
develop flow control strategies, reduced-order models (ROM) are often developed. Proper
orthogonal decomposition (POD) [3] is mostly used to project these transient flows on
the low dimensional subspace where these flows behave linearly. POD was first used for
reduced-order modeling of turbulence by projecting the Navier–Stokes equations onto
the low dimensional space [4]. Different model reduction techniques have been devel-
oped in recent years to reduce the dimensionality of dataset, such as POD, dynamic mode
decomposition (DMD) [5,6], and its variants [7–9], spectral proper orthogonal decomposi-
tion (SPOD) [10,11] and machine learning-based methods, such as autoencoders [12], etc.
Taira et al. [13,14] did the detail review of such methods and techniques in their paper.
POD/Galerkin models can work well but often require careful tuning to give satisfactory
results. In addition, POD-based models representing complex (nonlinear) dynamics are
known to be inaccurate for long-time integration [15], and different closure model strategies
were employed in literature [15–20] which were aimed at modeling small-scale dynamics.
In addition, if DMD is used for system identification, it results in a linear system [13,14]. For
nonlinear systems, the Koopman operator, its eigenfunctions, and corresponding Koopman
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modes may be computed using a version of DMD [7–9,21]. These eigenfunctions can then
be used to determine coordinates [22,23], in which the system is linear, and the resulting
Koopman modes may be used to understand coherent structures that occur at a particular
temporal frequency.

Reduced order models are broadly used for modeling of fluid systems [14] as they
reduce the CPU time to achieve the desired results and preserve the physics of interest.
There are mainly three approaches which are used to develop reduce order models: (a) The
first is Phenomenon-based [24,25]. (b) The second is Direct approach, which is the intrusive
way of modeling the fluid systems. This approach is dependent on the source code of the
governing equations. POD-Galerkin-based models suffer from instability and efficiency
issues [15,18,19,26–30]. Other intrusive models which show promising results can be
seen in references [31–34]. (c) The third is Non-intrusive ROM which do not require
modification of the source code rather these are purely data-driven. Xiao et al. presented
such reduced order models for Navier–Stokes equations [30,35]. Machine learning has
also been explored to infer POD coefficients in non-intrusive parametric ROMs which
can be seen in references [36–39]. San and Maulik [40], San et al. [41] used artificial neural
networks (ANN) to predict the temporal coefficients of POD in non-intrusive way. Wang
et al. [42] used long-short term memory networks (LSTM) to predict the future time steps
of POD coefficients. ANN and LSTM have also been explored for developing the closure
for truncated POD modes [40,43]. Murata et al. [44], Fukami et al. [45] used convolutional
neural networks (CNN) for data compression and reconstruction of high dimensional flow
fields. These models require a large amount of data for training, which also increases the
computational expense [44–49].

Nonetheless, most ROM based on POD employs velocity field information for model-
ing [41,50], whereas pressure specifically on the surface also plays an important role in the
accuracy of POD-based ROMs [51]. Many studies have been done on the ROM based on
pressure mode decomposition (PMD) that also enables accurate reproduction of lift and
drag forces (hydrodynamic forces) [15,52].

To understand the flow physics over an airfoil under unsteady motion, it is better
to have a fundamental knowledge of physics under steady conditions. Flows at a low
Reynolds number over the static airfoil at different angles of attack can also be used to
understand the flapping phenomenon [53]. In this study, we simulate the flow past a
NACA-0012 airfoil at Re = 1000 at different angles of attack (AOA = 10◦, 15◦, 20◦). Since the
pressure plays an important role in the development of the hydrodynamic forces [15,52] and
the wake of the vortex street behind the structure, we numerically calculate the pressure
field in the present study. We then perform the POD analysis and investigate the pressure
distribution over NACA0012 airfoil. Using these surface POD modes, we calculate the
hydrodynamic forces. In literature, many researchers used “National Advisory Committee
for Aeronautics (NACA)” airfoils for investigation of aerodynamic/hydrodynamic forces.
For the validation purpose of our DNS technique, we also considered the NACA 0012.
However, the proposed neural network model depends on the input data which are the
POD temporal coefficients but not on the airfoil shape. The same neural network setting
can be employed to the data of other NACA airfoils.

The procedure to perform the pressure mode decomposition (PMD) analysis consists
of the following steps: First, the direct numerical simulation (DNS) of the incompressible
flow field data over the airfoil is calculated for a long enough duration to mitigate the
effects of the transient phase. Second, the snapshots of the pressure field at different time
steps are assembled in a matrix that characterizes the coherent structures in the flow field.
Third, the finite numbers of dominant modes or eigenfunctions, that optimally spanned
the low-dimensional solution space of the pressure field, are extracted on the airfoil surface
and decomposed into lift and drag components.
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2. Computational Methodology
2.1. Governing Equations

The flow under consideration is a two-dimensional incompressible unsteady flow over
NACA0012 airfoil at different AOA in the flow field. The governing equations include the
continuity and momentum (Navier–Stokes) equations. The two-dimensional nondimensional
form of these governing equations are shown in Equations (1) and (2), as follows:

∂uj

∂xj
= 0, for j = {1, 2}, (1)

∂ui
∂t

+ uj
∂

∂xj
(ui) = −

1
ρ

∂p
∂xi

+
1

Re
∂2ui

∂xj∂xj
, for i, j = {1, 2}, (2)

where the ui, p, and ρ represent the Cartesian components of velocity, pressure, and density
of the fluid, respectively. We use the length of the foil, denoted as c, and uniform velocity,
labeled as U∞, as the reference scales for the length and velocity, respectively, in order to
define the Reynolds number (Re = ρU∞c/µ), where µ is dynamic viscosity of the fluid.

In this study, we used a non-staggered O-type grid to simulate the flow around the
airfoil, as shown in Figure 1 with the representation of inflow and outflow boundaries.
All the state variables u,v,p are defined at the cell centers; however, the volume fluxes
are defined at the midpoint of the corresponding faces. To handle the curved form of the
physical domain, we transform Equations (1) and (2) from the Cartesian coordinate system
(x, y) into a curvilinear coordinate system (ξ, η) to accurately handle curved grid lines.
Consequently, these equations takes the following forms:

∂Uj

∂ξ j
= 0, (3)

∂

∂t
(J−1ui) +

∂Fij

∂ξ j
= 0, (4)

where the terms for fluxes and geometric matrices are defined as:

Fij = Ujui + J−1 ∂ξ j

∂xi
p− 1

Re
Gjk ∂ui

∂ξk
, (5)

J−1 = det(
∂xi
∂ξ j

), Uj = J−1 ∂ξ j

∂xk
uk, Gjk = J−1 ∂ξ j

∂xm

∂ξk
∂xm

. (6)

2.2. Discretization Scheme

A fractional step method is used by splitting the momentum equations into an
advection-diffusion equations (by omitting the pressure term) and the pressure Poisson
equation. The pressure Poisson equation is then obtained by taking the divergence of
the momentum equations and subjected to satisfy the continuity equation. This splitting
method leads to a three-step predictor-corrector method. First, the intermediate or pre-
dicted velocity field is computed by solving the advection-diffusion equations without
satisfying the continuity equation. Secondly, the pressure Poisson equation is solved to
determine the pressure field, which satisfies the continuity equation. Finally, the divergence-
free velocity field is computed by correcting the predicted velocity field.
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Figure 1. Two-dimensional layout of an ‘O’-type body-fitted grid over the NACA0012 airfoil. The
grid-resolution close to the airfoil is shown in the upper row: (a) leading edge, (b) full airfoil,
(c) circular trailing edge. Note that we generate the orthogonal grid between the airfoil and circular
outer domain of radius 30c. We numerically solved the elliptic equations as used by Ryskin and Leal
[54] to compute the grid nodes.

The differential operators involved in the governing equations are discretized using
the finite-difference approximation. A second-order accurate centered difference scheme
is employed to discretize all the spatial derivatives, except the convective terms. The
convective terms are discretized using a variation of QUICK method [55]. The velocity
variables (ui) are calculated at the faces from the nodal values using quadratic upwinding

interpolation. The positive and negative fluxes (
Uj+|Uj |

2 ) and (
Uj−|Uj |

2 ), respectively, are
computed, and a generic stencil is used to perform upwinding of the QUICK method. For
marching in time, a semi-implicit scheme is used in which the diagonal viscous terms are
advanced using the second-order accurate Crank-Nicolson method, and all the other terms
are advanced using the second-order accurate Adams-Bashforth method. The Adams-
Bashforth scheme is chosen because of its computational efficiency when coupled with the
fractional step method. This methodology is similar to that employed by Zang [56]. The
only difference is that we employed the line successive over-relaxation (LSOR) scheme to
solve the advection-diffusion equation and the bi-conjugate gradient stabilized (BiCGStab)
method to solve the pressure Poisson equation.

2.3. Grid Generation

A two-dimensional orthogonal grid around the symmetric airfoil is generated us-
ing a body-fitted grid generation technique as proposed by Thompson et al. [57]. A
finite-difference method is used to solve the system of coupled elliptic partial differential
equations [54,57–62]. The governing equations for the generation of the two-dimensional
orthogonal body-fitted grid, as used by Ryskin and Leal [54], are given by
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∂

∂ξ

(
f

∂x
∂ξ

)
+

∂

∂η

(
f

∂x
∂η

)
= 0, (7)

∂

∂ξ

(
f

∂y
∂ξ

)
+

∂

∂η

(
f

∂y
∂η

)
= 0, (8)

where x and y are the coordinates in the physical plane, ξ and η are the coordinates in the
transformed plane (see Figure 2), and f is the distortion function which is the ratio of scale
factors in the η-direction to that of the ξ-direction, i.e.,

f =
hη

hξ
. (9)

The scale factors are defined as follows:

hη =

√(
∂x
∂η

)2
+

(
∂y
∂η

)2
, (10)

hξ =

√(
∂x
∂ξ

)2
+

(
∂y
∂ξ

)2
. (11)

After some manipulations and rearrangements, Equations (7) and (8) yield

h2
η

∂2x
∂ξ2 + h2

ξ

∂2x
∂η2 +

(
h2

ξ f
∂ f
∂ξ

)
∂x
∂ξ
−
(

h2
ξ

f
∂ f
∂η

)
∂x
∂η

= 0, (12)

h2
η

∂2y
∂ξ2 + h2

ξ

∂2y
∂η2 +

(
h2

ξ f
∂ f
∂ξ

)
∂y
∂ξ
−
(

h2
ξ

f
∂ f
∂η

)
∂y
∂η

= 0. (13)

A central-difference scheme at the interior points is employed to discretize the partial
differential equations. All the scalar factors and the distortion function are calculated
from the previous approximation of the solution, leading to a system of linear algebraic
equations. The tri-diagonal matrix algorithm (TDMA), which is an iterative technique, is
used to obtain the solution until the relative error of the distortion function converges to
the desired accuracy [63].

Figure 2. Mapping between parametric region E and physical region X.

3. Validation & Verification
3.1. Hydrodynamic Forces

The pressure and shear stresses are the two main stimuli through which a fluid exerts
forces on a body immersed in it. These forces can be decomposed into lift and drag
components. We use the free-stream dynamic pressure ρU2

∞/2 and the length of the foil to
define the dimensionless lift and drag coefficients, which are expressed as:
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Cl = −
1

1
2 ρU2

∞c

∮
c

(
psin Γ− 1

Re
ωzcos Γ

)
dΓ, (14a)

Cd = − 1
1
2 ρU2

∞c

∮
c

(
pcos Γ +

1
Re

ωzsin Γ
)

dΓ, (14b)

where ωz = ∂v
∂x −

∂u
∂y is the spanwise vorticity component. Note that the terms for shear

stress in Equation (14) diminish as the Reynolds number increases; therefore, the pressure
is considered as the main source in the development of Cl and Cd. Figure 3 shows the time
histories of pressure and viscous shear stresses components of hydrodynamic forces lift
and drag at AOA = 20◦. It is noted that approximately 98% of the lift and 88% of the drag
are generated because of the pressure forces.
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Figure 3. Time histories of the lift and drag coefficients because of the pressure and viscous stresses
acting on the airfoil surface at Re = 1000.

3.2. Validation of the Numerical Simulation

To validate the solution methodology, NACA0012 airfoil subjected to the incompress-
ible flow field at different angles of incidence is investigated at Re = 1000. A mesh of size
361× 257 is used in this study having 257 mesh points on the airfoil surface and 361 mesh
points in the radial direction with an outer domain diameter of 50D. We simulate the flow
for long enough time to reach the steady-state solution. Figure 4 shows the time-averaged
lift coefficient (Cl) distribution versus angle of attack (α) obtained in the present study, along
with the results computed at the same Reynolds number by Kurtulus [64] for 0◦ < α ≤ 90◦,
Liu et al. [65] and Khalid and Akhtar [66] for α < 30◦, Suzuki et al. [67] at α = 15◦, HOA-
RAU et al. [68] at α = 20◦, and Mittal and Tezduyar [69] at α = 10◦. The numerical results
are in good agreement with the published data, hence validating the present simulations.
The time histories of Cl and Cd at α = 20◦ are shown in Figure 5a, and the power spectrum
of Cl is shown in Figure 5b, along with the results of Khalid and Akhtar [66]. The fast
Fourier transformation (FFT) algorithm is used to calculate the amplitude spectrum for the
lift coefficient. Figure 5b shows that the lift spectrum has a dominant peak at fs = 0.541, and
it contains both the odd and even harmonics, which indicates the existence of a quadratic,
as well as a cubic, nonlinearity in the system, as observed by Khalid and Akhtar [66].
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4. Parallel Implementation

CFD of the fluid-structure problems on large mesh sizes generally involves several
million degrees of freedom within each time loop to simulate the unsteady flow behav-
ior. The demand for high-order accuracy and dealing with complex geometries increases
the computational workload. Therefore, to reduce the overall computational time, we
employ parallel computing of the incompressible flow over the airfoils. In the parallel
implementation, the problem domain is partitioned to allocate its regions to different
processing units to reduce overall execution time. These processing units simultaneously
compute the results on their assigned part of the domain. For inter-process communication
among the processors, we utilize the Massage Passing Interface (MPI) library. In Figure 6,
a computational domain decomposed in 8 processing units is shown. The different col-
ors represent the part of the domain to be assigned to different processing units. For a
detailed implementation of the parallel algorithm, the interested readers are referred to
Reference [70].

Figure 6. The computational domain partitioned in 8 parts; the different colors show the different
parts of the domain to be assigned to different processing units.

5. Artificial Neural Network

In the current work, feed forward neural network has been employed to map the past
time steps to future time steps. The inputs to the neural network are the POD temporal
coefficients of the pressure and velocity fields of airfoils along with the angle of attack.
The basic architecture used is shown in Figure 7. The inputs are then passed through two
hidden layers, and each layer has 512 neurons followed by relu activation function. For
simplicity, only five neurons are shown in Figure 7. Tensorflow [71] is used for the training
of neural network, which minimizes the error between predicted and the target quantities of
interest (i.e., temporal coefficients) to determine the best fit parameters (weights and biases).
For optimization of neural network a stochastic optimization algorithm, Adam [72] was
employed. Autokeras [73] was used to find the best possible ANN architecture (number of
hidden layers and neurons), which uses the Bayesian Optimization [74]. Here, 370 time
steps from each case of AOA = 10◦, 15◦, 20◦ have been used to train the network, and 80
time steps were set aside for the testing purpose. Time coefficients for the case of AOA = 12◦

are not used for the training, but these are predicted by trained ANN. After training, the
network can be used as a function, which takes AOA and past time steps to predict the
future time steps, as shown in Equation (16).

fANN(X) = ψ(XW + b), (15)

where X is the input matrix that contains the temporal coefficients and angles of attack
(AOA) values. It has one column per coefficient. The weight matrix W contains all the
weights, except for the ones from the bias neuron. The bias vector b contains all the
connection weights between the bias neuron and the artificial neurons. It has one bias term
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per artificial neuron. The function ψ is called the activation function, which is ‘relu’ in
this study.

at+1 = fANN(at, AOA) (16)

Figure 7. Feed Forward neural network architecture.

6. Proper Orthogonal Decomposition (POD)

POD modes can be computed through either Singular Value Decomposition (SVD) or
the method of snapshots [75,76]. In this study, we employ the latter technique since it is
computationally inexpensive as compared to SVD for large mesh sizes used in high-fidelity
simulations. The set {Un = U(x, tn), tn = (n− 1)4t, n = 1, 2, . . ., S}, where S represents
the number of snapshots of time discrete snapshots and is used as the input for POD of
the state vector U = (u, v, p)T over one time-period T of vortex shedding. The unknown,
U, is decomposed into its mean part, Ū(x), and fluctuating Ú(x, t) part. Next, Ú(x, t) is
expanded in terms of the linear combination of temporal coefficients, which need to be
determined, and POD bases as:

U(x, t) := Ū(x) + Ú(x, t) = Ū(x) +
∞

∑
j=1

aj(t)Φj(x) ≈ Ū(x) +
M

∑
j=1

aj(t)Φj(x), (17)

where M represents the finite number of modes in the expansion, Φj(x) denotes POD-modes
or simple modes of U, and αj(t) are temporal coefficients. Moreover, Φj(x) = (ψu

j , ψv
j , φi)

T,
where ψu

j and ψv
j are the u and v velocity modes, respectively, and φi are the pressure modes.

In addition, we have αj(t) = (qu
j , qv

j , aj), where qu
j , qv

j , and aj are the temporal coefficients for
u, v, and p, respectively.

The decomposition of the pressure field in terms of its mean p̄(x) and the fluctuating
ṕ(x, t) parts is carried out by:

p(x, t) := p̄(x) + ṕ(x, t) = p̄(x) +
∞

∑
j=1

aj(t)φj(x) ≈ p̄(x) +
M

∑
j=1

aj(t)φj(x). (18)
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The instantaneous solutions at time t1, t2, · · · , ts ∈ [0, T] of U are stored in matrix P of
size N×S, where S� N and N denotes the number of grid points. The objective is to seek a
low dimensional basis {Φ1, Φ2, · · · , ΦM} that satisfies the following optimization problem.

min
Φj

1
N

N

∑
i=1
‖ Ú(., ti)−

M

∑
j=1

(Ú(., ti), Φj(.))HΦj(.)‖2
H, (19)

subject to the condition of orthogonality,
(
Φi, Φj

)
H = δij, where δij is the Kronecker delta

function, and H is a real Hilbert space, such that Ú(., t) ∈ H|t ∈ [0, T]. In order to solve
Equation (19), we consider the following eigenvalue problem:

Mv = λv, (20)

where vk for k = 1, 2,· · ·, S are eigenvectors, λ1 ≥ λ2 ≥ · · · ≥ λS > 0 are eigenvalues, and
PT P =M ∈ RS×S is the correlation matrix that can be defined as:

Mij =
1
S
(Ú(., tj), Ú(., ti))H. (21)

It can be shown [76] that the solution of Equation (19) is given by:

Φk(.) =
1√
λk

S

∑
j=1

(vk)jÚ(., tj), 1≤k≤M. (22)

For our present work, we utilize 50 snapshots of flow fields captured in one time-
period (T = 1/ fs) and assemble them in P. For a pressure field, the correlation matrixM
of the snapshots is defined as:

Mij =
1
S
(ṕ(., tj), ṕ(., ti))H. (23)

7. Results & Discussion

Using the pressure POD data, the surface mean pressure (p̄s) and the surface pressure
modes (ψs

j ) are extracted from the pressure modes ψj. Symbolically, the sine and cosine
components of ψs

k over the airfoil surface are, respectively, denoted by −ψs
k sin Γ and

−ψs
k cos Γ, which contribute in the lift and drag coefficients, respectively. Likewise, the

distribution of the mean pressure p̄ over the airfoil surface contributes to the mean lift and
drag coefficients denoted by − p̄s sin Γ and − p̄s cos Γ, respectively.

7.1. Hydrodynamics Forces and Wake

In Figure 8a, instantaneous lift coefficient Cl is shown at AOA=10◦, 15◦, and 20◦. The
lift coefficient at AOA = 20◦ is relatively higher in magnitude but oscillating about its
nonzero mean value with low frequency as compared to that of the other two cases. The
power spectra of Cl of the simulated cases are shown in Figure 8b. A snapshot of vorticity
pattern in the wake of the inclined airfoils is shown in Figure 9. The shear layer for the case
AOA = 10◦ is close to the surface, while, for the cases 15◦ and AOA = 20◦, the shear layer
is clearly separated.

7.2. PMD Analysis

Figure 10a shows normalized eigenvalues (λi/ ∑∞
j=1 λj) of pressure modes. The eigen-

values λ
p
k represent a measure of the weight corresponding to each pressure mode. In

each case, the eigenvalues do not exhibit similarity, and there exists no significantly visible
pairing structures for stronger pressure modes, as is usually observed in eigenvalues of
velocity modes (not discussed here). Furthermore, the values of λ

p
1 vary significantly (in

the range of 40–90%) for different values of AOA, which are increasing with AOA. Most
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importantly, we find that the first four pressure modes constitute over 95% of the total
contribution of the system (see Figure 10b). This observation demonstrates the effectiveness
of the modal decomposition based on pressure data of flow fields around the airfoil.

We present the mean mode (Mode 0), defined as the average of the snapshots, in
Figure 11 (left column), along with the data p̄s on the airfoil surface. The decomposition of
p̄s in its sine and cosine components is also depicted. Here, we represent the upper and
lower surfaces of the airfoil by chord length from 1 to 0 and 0 to 1, respectively. For plots in
the right column of Figure 11, the 1s represents the trailing edge, whereas 0 represents the
leading edge of the airfoil. In each case, we observed higher pressure near the edges of the
airfoil and its magnitude increases with AOA. The pressure distribution over the upper
surface and near vicinity of the lower leading edge is the main source to the generation of
mean lift coefficient, while the pressure at the edges of the airfoil contributes to the mean
drag coefficient.
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Figure 8. (a) Time histories of Cl , (b) Power spectra of Cl at AOA = 10◦, 15◦, and 20◦.
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(a)

(b)

(c)

Figure 9. Snapshots of spanwise vorticity contours, (a) AOA = 10◦, (b) AOA = 15◦, and (c) AOA = 20◦.

Similar to the mean mode, we plot the distribution of first four pressure modes, ψs
i , and

their decomposition into sine, −ψs
i sin(.) and cosine, −ψs

i cos(.), components in Figure 12,
since first four modes are enough to capture the physics of force on the airfoil surface. It
can be seen that the pressure modes distribution near the vicinity of edges is dominant. The
overall contribution of pressure modes into the lift and drag coefficients can be inferred by
integrating the components −ψs

i sin(.) and −ψs
i cos(.), respectively, over the airfoil surface.
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(a) (b)

Figure 10. (a) Normalized eigenvalues of pressure modes, (b) Cumulative effects of pressure eigen-
values.

(a) (b)

(c) (d)

(e) (f)

Figure 11. (a,c,e) Mean pressure modes p̄, (b,d,f) Surface modes p̄s ( ), along with dissection into
− p̄s sin Γ ( ) and − p̄s cos Γ ( ) : AOA = 10◦, 15◦, and 20◦, top to bottom.
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Figure 12. First four surface pressure modes ψs
i ( ), along with dissection into −ψs

i cos(.) ( ) and −ψs
i sin(.) ( ): (

AOA = 10◦), ( AOA = 15◦), and ( . AOA = 20◦).
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7.3. Lift and Drag Models

The ROM for the lift and drag coefficients can be obtained by replacing the pressure
term (p) in Equation (14) with the pressure modal expansion given in Equation (18) over
the airfoil surface (φs

k). As mentioned earlier, the viscous contribution is neglected because
of its insignificance at high Reynolds numbers. The resulting forms of the lift and drag
decomposition models are given as:

CL = Lo +
M

∑
k=1

ai(t)Li, (24a)

CD = Do +
M

∑
k=1

ai(t)Di, (24b)

where ai(t) is the temporal coefficient for both lift and drag models, and M is the number
of modes in the expansion. The terms Li and Di are scalars called lift decomposition
coefficient (LDC) and drag decomposition coefficient (DDC), respectively, and contribute,
respectively, to the lift and drag coefficients as the weight of the temporal coefficient. Thus,
the decomposition models are independent of any spatial distribution, unlike in a typical
POD-ROM framework. The LDC and DDC are defined as the integral of sine and cosine
components of surface pressure modes:

L◦ = −
∮

s
p̄ssin Γ dΓ, (25a)

Li = −
∮

s
ψs

i sin Γ dΓ, (25b)

D◦ = −
∮

s
p̄scos Γ dΓ, (25c)

Di = −
∮

s
ψs

i cos Γ dΓ. (25d)

Here, the subscripts ◦ and k represent the decomposition of p̄s and ψs
k, respectively.

The LDC and DDC of mean and the first ten modes of each simulated case are plotted
in Figure 13. It can be seen that contribution of the mean mode is significant to the lift
and drag, and its significance in terms of magnitude increased with AOA. Figure 13a,b
show that mean plus first modes are enough to model the lift and drag coefficients of
AOA = 10◦ using model (24). In the case of AOA = 15◦, the mean plus the first four modes
are sufficient for lift and drag models, while, in the case of AOA = 20◦, as we can infer
from Figure 13c,d, the LDC and DDC of first eight modes are significant, which would
contribute to lift and drag models.

(a) (b)

Figure 13. Cont.
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(c) (d)

(e) (f)
Figure 13. (a,c,e) Magnitude of mean and the first ten LDC, (b,d,f) Magnitude of mean and the first
ten DDC: AOA = 10◦, 15◦, and 20◦, top to bottom.

7.4. ANN-Based ROM Using PMD

ANN is trained on the POD coefficients obtained at three AOA = (10◦, 15◦, 20◦), and
out of sample POD coefficients of AOA = 12◦ are predicted. The first four pressure POD
coefficients are shown in Figure 14, indicating good agreement with the true data. We then
perform the PMD analysis and predict the lift coefficients for both training data and out of
sample case. Figure 15 shows the predicted and true lift coefficients for all AOA (10◦, 15◦,
20◦, 12◦).
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Figure 14. Cont.
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Figure 14. (a) the first four pressure coefficient at AOA 10◦ (vertical black line indicates the train test
split). (b) The first four pressure coefficients at AOA 15◦. (c) The first four pressure coefficients at
AOA 20◦. (d) The first four pressure coefficients at AOA 12◦.
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Figure 15. (a) Lift coefficient prediction at AOA 10◦ using six modes. (b) Lift coefficient prediction
at AOA 15◦ using six modes. (c) Lift coefficient prediction at AOA 20◦ using six modes. (d) Lift
coefficient prediction at AOA 12◦ (out of sample data) using six modes.

8. Conclusions

In this study, we simulated the incompressible flow over a stationary airfoil NACA0012
at different AOA. The main objective of the study was to develop the ROM for hydro-
dynamic forces acting on the airfoil surface using machine learning tools. Unlike the
traditional POD-ROM-based models, we developed the ANN-ROM using POD temporal
coefficients and PMD. We took flow field snapshot data at AOA = 10◦, 15◦, 20◦. We then
performed POD to obtain optimal modes and temporal coefficients. Then, we trained the
neural network using these temporal coefficients. ANN was used as a function which takes
past time steps and angle of attack to predict the future time steps. We also performed
interpolation of out of sample data at angle of attack 12◦. We used these predicted temporal
coefficients to calculate lift coefficients using PMD. We employed pressure in this study
because it plays an important role in the accuracy of POD-based ROM, as indicated by
Reference [15,51,52]. The results show that the ANN model is more accurate than the
traditional POD-ROM in terms of predicting in-sample and out-of-sample POD coefficients.
Furthermore, the pressure component of lift is reconstructed using PMD analysis and
shows excellent agreement, which is found with the true data.
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