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Abstract: The revealing of the turbulence archetypes is one of the fundamental problems in the
study of turbulence, which is important not only from the fundamental point of view but also for
practical applications, e.g., in geophysics of ocean and lakes. The paper is devoted to the study of
the emergence of coherent structures and the identification of their turbulent archetypes, typical
for the free convective flows of the Rayleigh-Bénard type. Using Direct Numerical Simulation, we
perform a numerical study of two refined convective flows: convection in a cylinder heated from
below and internally heated convection in a layer. The main purpose of the study is identifying
coherent structures (CS), investigating its main features and properties, and determining the turbu-
lence archetypes using the anisotropy invariant map (AIM). We show that, in both configurations
considered, CS takes place. In a cylinder, CS is a single large-scale vortex that can rotate azimuthally
in non-titled container, but is almost “fixed” in the case of slightly tilted cylinder; in a layer, CS is
a quasi-2D vortex, which can arise, exist for some time, disrupt, and then re-emerge again in the
orthogonal direction. Nevertheless, the turbulence archetypes represented by the AIM are quite
similar for both cases, and there are the distinct CS fingerprints on AIM.

Keywords: Rayleigh-Bénard convection; internally heated convection; tilted container; turbulence;
coherent structures; anisotropy invariant map; direct numerical simulation

1. Introduction

Usually the studies of turbulent transfer processes in natural geophysical flows are
complicated due to the variety of energy forcing. For example, the turbulence production in the
surface layers of ocean and lake water bodies may be the result of wind, waves, heating/cooling,
tides, seiches, or geostrophical circulations. Therefore the structure of turbulence generated
by mean velocity gradient (wind stress), wave-shear interaction (like in the case of Langmuir
circulation), or gravitational instability (during night cooling or under-ice inhomogeneous
heating of the water column) depends crucially on the type of the forcing. In this regard one
can even distinguish between the different “archetypes” of turbulence [1].

The revealing of these archetypes is one of the fundamental problems of turbulence.
On the other hand, the thorough description of the archetypes is of great practical impor-
tance, considering the variety of water bodies’ responses to external forcing of different
nature. In particular, most processes and values of interest (like temperature profile evo-
lution, mixing intensity, thermocline dynamics, etc.) result from simultaneous multiple
forcings. Thus to achieve the proper forecasting of system response, the splitting criteria
for deriving the contribution of each type of forcing is necessary.
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Each turbulence archetype demonstrates the inherent patterns of turbulence param-
eters spatial distribution and specific features of their temporal evolution. As for these
parameters, not only turbulence intensities 〈ui

′2〉 (ui
′—pulsation of the velocity along i-th

axis; angular brackets mean the averaging in time), but also the anisotropy characteristics
like the so-called anisotropy tensor [2,3] aij = 〈ui

′uj
′〉/(2k)—δij/3 (here k is the turbulence

kinetic energy) are of primary interest. The latter ones, in particular, describe the inter-
component energy transfer and, supposedly, govern the specifics of mixing processes
over a wide range of scales. In this connection, it is worthy to note, that the problem of
mixing efficiency η estimation remains still challenging. These estimations for stratified
turbulence, reported in a large number of papers, vary from a few percent [4] to 65% [5],
though the widely accepted value is 17% (see [6] for example). It cannot be ruled out that
just the turbulence archetype variability leads to the crucial differences in estimating the
mixing efficiency.

The powerful tool for studying turbulence anisotropy properties is based on the
analysis of the second II = aijaji/2 (summation on repeated indexes henceforward) and
third III = aijajlali/3 invariants of the anisotropy tensor. For any given values of invariants
II and III, one may represent each state of turbulence by the point on the Anisotropy
Invariant Map (AIM) [7–11]. Physically acceptable values are restricted by the realizability
requirements (positive definiteness of the turbulent stresses matrix). The correspondent
domain on II–III plane is usually referred to as the Lumley triangle (Figure 1). The upper
bound of this domain (the segment AB of the line II = 1/9+3III in Figure 1) corresponds
to the so called 2D turbulence, the lateral sides AC and BC present the axisymmetric
turbulence states II = 3(III/2)2/3 with one (AC, ”rod-like” pulsations) or two (BC, “disk-
like” pulsations) components dominating [9]. Isotropic turbulence is presented by point C
with coordinates (0, 0). In addition to the classic triangle, some alternative versions of AIM
are widely used, in particular, by substituting coordinates II and III by ζ = (III /2)1/3 and
η = (II/3)1/2 (see [3] for more details and wider examples).

Figure 1. Lumley triangle: different archetypes of the turbulence on the map of the turbulence
anisotropy tensor invariants.

Each turbulence archetype can be visualized by mapping the turbulent states along
vertical or horizontal lines (if all six turbulent stresses are measured or calculated). The
correspondent “trajectories” on AIM one can be regarded as the unique “portrait” or
fingerprint of the archetype. The gallery of such portraits, based on experimental data
or computer simulations, is widely presented in literature for both geophysical [2] and
technological [12,13] flows. Even though the high degree of anisotropy is the common
feature of most geophysical flows, the details of AIM trajectories differ sufficiently, illustrat-
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ing the complicated interplay between “rod-like” and “disk-like”, 2D turbulent structures.
The comparative analysis of these trajectories was carried out for Langmuir circulation
dominated and convective flows [14], channel flows and mixing layers, wind driven and
tidal flows [2]. The unsteady flows also demonstrate the unique AIM trajectories, as in the
case of breaking Kelvin-Helmholtz wave train [15].

In some cases, the special details of AIM trajectories are viewed as indirect indicator of
the large-scale quasi-deterministic vortex (coherent structures, CS) presence. In particular,
for the case of Rayleigh-Bénard convection, trajectories, which are pressed against “rod-like”
turbulence limiting curve, might indicate the presence of two-dimensional convection rolls [16].
The similar pressing in rotating flows may serve as a marker of columnar vortex plumes
development [10]. On the contrary, the inverse trend—trajectory transformation from right-
hand AIM boundary aligning to ‘C-shaped’ form, observed for turbulent Couette channel flow—
may be treated as the result of Langmuir forcing and the onset of Langmuir supercells [1,14].

A related issue, which is being intensively investigated, is flow reversals, i.e., change
in flow direction inside CS due to its rotation or cessation [17–19]. In particular, using Direct
Numerical Simulation, authors of [18] showed that flow reversal in a Rayleigh-Bénard
convection in a cylinder occurs by two kinds of reorientations: rotation-led and cessation-
led. The cessation of CS followed by a restart in a random direction, and sometimes
double cessation can occur. The unsteady AIM analysis (i.e., temporal variability of AIM
trajectories) can reveal some important aspects of the flow reversals, in particular, the
change in turbulence archetype due to CS cessation and re-starting.

In general, the revealing of relationships between CS and AIM images of turbulent
structures remains the challenging issue, in both fundamental and practical dimensions. As
for applied aspects, this issue is of prior interest for problems such as dynamics and spatial
distribution of non-motile plankton populations [20–22] and sediment resuspension [14].

Only a few attempts of AIM-based CS identification and quantitative description is
presented in the literature [23]; as a whole, the problem looks underdeveloped.

This paper is devoted to the study of turbulent archetypes, typical for heat-induced
forcing, which triggers gravitational instability and Rayleigh-Bénard type convection. The
flows driven by buoyancy are ubiquitous in geophysics, astrophysics, and technological
applications. In a number of cases such flows occur in a shear-free environment, so
the problem of archetype identification is sufficiently simplified. On the other hand,
the AIM analysis for this type of flow is often restricted because of the lack of directly
available experimental data (like in the cases of convection in Earth’s mantle and stars or
penetrative convection in ice-covered lakes [24]). In this regard, computational methods,
including Large Eddy Simulation (LES) and Direct Numerical Simulations (DNS), are in
special demand.

In this article we present the results of DNS computations for two refined convective
flows of the Rayleigh-Bénard type (detailed overview of this topic can be found, for
example, in papers [25,26]). The first considered problem is the Rayleigh-Bénard convection
in a cylinder. It should be noted that there is a large number of both experimental [27–30]
and numerical [31–33] studies of fluid convection in cylindrical containers with different
ratios of the container diameter D to its height H (Γ = D/H) in a wide range of Prandtl
numbers. Of the cited papers, a number of publications consider the case of Γ = 1 [27,28,32].
A characteristic feature of the flow here is the presence of large coherent vortex structure
that form the so-called large-scale circulation. In the case of a container with Γ = 1, the large-
scale coherent structure is a single vortex. One of the features in such flow is the random
oscillations of the vortex in the azimuthal direction. These displacements of the large-scale
circulation in the azimuthal direction lead to flow reversals and vastly complicate the
process of obtaining statistical data on the three-dimensional structure, as well as the local
characteristics of turbulent transport. The situation is improved if some stabilizing external
factor is artificially introduced, by means of which the large-scale circulation is “fixed” in
a certain azimuthal position. For example, in a number of experimental [28,34–36] and
numerical [37–39] works, it was shown that the tilt of the container by a small angle almost
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completely “fixes” the CS in a certain position. In the paper, we show the results of our
numerical simulation of the Rayleigh-Bénard convection in a cylinder, both tilted and
non-tiled, and perform the AIM analysis of the large-scale coherent structure.

The second case considered is the convection of an internally heated fluid. Such
problem definition differs from the more studied phenomenon of Rayleigh–Bénard con-
vection where motion is driven by thermal conditions at the fluid boundaries. However,
the main features of the flow remain very similar [40]. It should be noted that there are
many works devoted to classic Rayleigh–Bénard convection, where the emergence and
the features of the large-scale coherent structures have been actively studied [41–45]. For
example, in [45] such large-scale structures are investigated by analyzing the turbulent
kinetic energy and the thermal variance spectra. Another method, which is widely used for
CS identification in Rayleigh–Bénard convection, is the flow mode decomposition analysis
using Fourier mode decomposition or proper orthogonal decomposition (POD) [46–50],
where the instantaneous flow field is projected onto orthogonal basis, and the amplitude of
the flow mode takes on the role of a measure of each flow mode strength. Such methods are
very robust in case when the possible modes can be known in advance. On the other hand,
flow mode decomposition method requires data in the entire geometric domain, which
makes it impossible to use it as a tool for identifying CS in experimental observations. The
studies of the large-scale coherent structures in internally heated fluid are mostly devoted
to the analysis of the mean properties and the turbulence characteristics [40,51–55].

The analysis of large-scale CS, both in an internally heated layer and in a cylindrical
container, is quite difficult due to the presence of uncontrolled low-frequency azimuthal
oscillations (in case of cylinder) or to the possibility of sudden destruction of CS and
subsequent appearance with a different orientation (in case of layer). Such low-frequency
changes in the orientation of CS can be reflected in the distribution of AIM trajectories in a
rather complicated way and require a separate study. In this paper, we restrict ourselves to
studying “fixed” structures, i.e., structures that keep their averaged position in space for a
sufficiently long period of time.

Thereby, the revealing of “fixed” CS and AIM trajectories are the focus of the study.
Note that the chosen flows differ sufficiently with regard to boundary conditions and the
type of forcing. Research questions included, in particular, the following topics:

• Are the flows self-organized (in the sense of CS presence) or constitute the sequence
of irregular “thermals”?

• If CS are present, what factors govern their stability and temporal variability?
• Are the turbulence archetypes similar for two chosen types of forcing?
• What are the CS fingerprints (if any) on AIM?

The two last questions mentioned are the main topic of the paper. Our main idea is
that a large-scale CS can be identified by analyzing the corresponding AIM along different
spatial lines. This is of special interest in experimental study, where often only limited
flow data can be obtained. In the paper, using numerical analysis, we try to identify
main features of the Rayleigh-Bénard convection associated with CS. We argue that AIM
analysis can help identify the CS. This goal is achieved by numerically investigating two
relatively different problems of Rayleigh-Bénard convection. Thus, the paper is structured
as follows: in Section 2, we present two problem definitions, first is the Rayleigh-Bénard
convection in a cylinder, where there is only one distinguishable CS, and the second is
internally heated convection in a layer, where emergence and behavior of CS is insufficiently
studied in literature. In Section 3, we firstly present the results, obtained for the convection
in a cylinder, and perform the analysis of the AIM for this case. Secondly, we present
results of numerical simulation of internally heated convection and perform the analysis of
emergence and behavior of the CS there. Section 4 is devoted to analysis of the common
features of the considered flows, including comparing of the AIM, obtained for two cases.
The last section, Summary, contains main considerations obtained in the paper.
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2. Problem Definition, Mathematical Model and Numerical Aspects

We consider two cases of the turbulent convection of Rayleigh-Bénard type where
large-scale coherent structures arise: convection in a cylinder heated from below and
internally heated with constant volumetric heat source.

Turbulent heat and mass transfer in both cases are described by Navier-Stokes equa-
tions for incompressible fluid using Boussinesq approximation for buoyancy force coupled
with energy equation for incompressible fluid:

∇ ·
→
V = 0

∂
→
V

∂t
+

(→
V · ∇

)→
V = −1

ρ
∇p + β(T0 − T)

→
g + ν∇2

→
V

∂T
∂t

+

(→
V · ∇

)
T = a∇2T + Q

where
→
V =

(
Vx, Vy, Vz

)
is the velocity field; t is the time, p is the pressure, T is the

temperature, ρ is the medium density, a is the thermal diffusivity coefficient, ν is the
kinematic viscosity, β is the thermal expansion coefficient,

→
g is the gravitational acceleration,

T0 is the temperature under hydrostatic equilibrium, Q is the volumetric heat source in
case of internally heated convection.

2.1. Rayleigh-Bénard Convection in a Cylinder

Direct numerical simulation of turbulent Rayleigh-Bénard convection was performed
in vertical (Figure 2a) and tilted (Figure 2b) cylindrical cells with a diameter-to-height
aspect ratio Γ = D/H = 1. The coordinate system has its origin in a center of the cylinder.
Some details on the problem definition, as well as preliminary results, were reported by us
in [37,38]. No-slip conditions are imposed on all boundaries. Constant temperatures were
set on the horizontal walls. The lateral cylindrical surface was assumed adiabatic.

Figure 2. Computational domain for: (a) original geometry for Rayleigh-Bénard convection in a
cylinder, (b) the tilted cylinder case. H—cylinder height, D—cylinder diameter.

First, let us define the scales of the problem. As a linear scale, we take the height of the
container H. The temperature scale is the temperature difference on the horizontal walls ∆T.
For the scale of velocities, we choose the characteristic velocity of free convection (buoyancy
velocity) Vb = (gβ∆TH)0.5. The time scale is the characteristic convective time tb = H/Vb.
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The heat and mass transfer in present configuration is determined by the Prandtl
number, Pr, and the Rayleigh number, Ra, which are defined as follows:

Pr =
v
a

, Ra =
Pr× gβ∆TH3

v2 ,

where ∆T = Th–Tc is the temperature difference between hot and cold walls.
In present study, we consider the case of Pr = 6.4, Ra = 108.
Here, we also investigate the effect of tilting the container at a small angle relative to

the gravity vector (ϕ = 2◦) in the plane y0z.

2.2. Convection of an Internally Heated Fluid

Figure 3 shows the computational domain: a horizontal layer of fluid of height H,
bounded above and below by plates of equal temperatures T = 0 (here, the temperature
is measured from the reference one), that is subject to volumetric uniform heating Q. The
lateral boundaries of the domain are periodic in corresponding directions. The lengths of
the domain in both periodic directions are equal to L; we consider two cases: Γ = L/H = 1
and Γ = 2 (the origin of the coordinate system is located at the center of the domain). Note
that the problem definition presented here is based on the paper [52].

Figure 3. Computational domain: H—domain height, L—length in periodic directions. Top and
bottom walls have equal temperature T = 0.

As a linear scale, we take the layer height, H. For the scales of velocity and time, we
choose the Vb = (gβQH3/a)0.5 and tb = H/Vb, respectively. Temperature scale is chosen
according to the paper [52] as Tb = H2Q/a.

The heat and mass transfer in present configuration is determined by the Prandtl
number and Rayleigh number, latter is defined as follows:

Ra =
Pr× gβQH5

av2

In present study, we consider the case of Pr = 1, Ra = 1010.

2.3. Computational Aspects

Numerical simulations were performed using in-house finite-volume code SINF/Flag-
S developed at Peter the Great St. Petersburg Polytechnic University; the code can operate
with unstructured grids. We used a variation of the fractional step method described
in [56]. The Crank–Nicolson scheme with second-order accuracy was used for advancing
in time. In cylindrical container, a central difference scheme was used to approximate
the convection terms in the governing equations. Spatial discretization of the convective
terms is performed with the third-order QUICK scheme for convection of an internally
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heated fluid. The diffusion terms were approximated by the central-difference scheme of
the second order accuracy.

For the case of convection in cylinder, we used a computational grid consisting of
hexagonal elements with about 15 mln cells. For the internally heated convection, we used
structured grids: “rough” grid of size 2 mln cells and “fine” grid of size 4 mln cells for Γ = 1
and 16 mln cells for Γ = 2. The grids were clustered to the walls (the vertical cell dimension
near the wall amounted to about 10–4H).

Calculations of turbulent convection can be considered as direct numerical simulation
of turbulent flow if the local cell size is of the same order or less than the size of the
smallest vortex structures in a given region. It is known that in cases where the velocity
layers are thinner than the temperature layers (Pr < 1), the smallest turbulence scale is the
Kolmogorov scale

δK =

(
v3

ε

)0.25

δK =
(
ν3/ε

)0.25
,

where ε is the dissipation rate of kinetic energy

ε = ν
∂V′i
∂xk

∂V′i
∂xk

,

where Vi
′—is the fluctuation of the i-th velocity component. For Pr > 1, the smallest scale is

the Batchelor scale
δB =

δK

Pr0.5

Thus, to assess the quality of the calculations, it is necessary to compare the character-
istic size of the grid cells with one or another minimum scale of the turbulent flow.

We actually analyzed the fields of the Kolmogorov and Batchelor scales computed by
the above relations and taken relative to the cubic root of the computational cell volume
(Vol1/3). After performed calculations, it was found that in almost the entire convection
region, ratios Vol1/3/δK and Vol1/3/δB assumed values less than one. In the case of convec-
tion in the cylindrical container, the exception was a small region near the adiabatic wall in
the middle-height layer, as well as the location of angular vortices, where the maximum
ratios Vol1/3/δB were approximately 1.4. In the case of internally heated convection, the
maximum ratios Vol1/3/δK and Vol1/3/δB were observed in the middle-height layer and
were approximately 2.

Thus for both cases the cell size exceeded the minimum turbulence scale only within
the restricted areas of the regions, and at the most by factor 2. In our previous studies [37,38],
it was shown that such degree of resolution of the turbulent content is sufficient to obtain
grid-independent fields of average velocity and temperature, as well as pulsation values
characterizing small-scale turbulence (this will also be illustrated in the present study).

The time step did not exceed one hundredth of the characteristic time tb and was
noticeably less than the Kolmogorov time scale tK = (ν/ε)0.5 in the entire region for all
cases considered.

3. Results
3.1. Rayleigh-Bénard Convection in a Cylinder

First, we consider the case of convection of water in a vertical oriented cylindrical
cell. Figure 4a,b, illustrates an instantaneous picture of convection: the presence of the
large-scale coherent structure is clearly seen. In non-tilted container, this CS can perform
azimuthal motion. Temporal changes in the dimensionless vertical velocity component at
the point located at the distance of 0.17D from the sidewall are shown in Figure 4c (black
line). These changes are due to the large-scale coherent structure azimuthal reorientations.
It can be seen that in non-tilted container, after about a certain period, the CS begins to
slowly rotate, thus changing its azimuthal position; thus, here the flow reversals of the CS
are due to its azimuthal reorientations. In Figure 4c, we also present the results for the tilted
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container, where CS is fixed: green and red lines correspond to the temporal dependence
of the dimensionless vertical velocity component at two points located symmetrically in
the regions of ascending (red line) and descending (green line) flows. Here, it is clearly
seen that the random azimuthal reorientations of CS, as well as flow reversals, are almost
absent; the CS can perform only slight azimuthal oscillations near its average position.

Due to random azimuthal instability of the CS in case of non-tilted container, the
degree of spatial inhomogeneity of the vertical velocity field in the central horizontal section
averaged over a sufficiently large time sample (Figure 5a) is cardinally reduced compared
to the instantaneous field (Figure 4b). Theoretically, for a large enough arbitrary sample, the
time-average velocity in the given section and in the whole region should be zero.

Figure 4. (a) Instant vertical velocity isosurfaces (the red color corresponds to the ascending flow with Vz = +0.06Vb, the blue
color corresponds to the descending flow with Vz = −0.06Vb); (b) instantaneous field of the dimensionless vertical velocity
component in the central horizontal section; (c) temporary changes in the dimensionless vertical velocity component at a
point located near the sidewall for the non-tilted container (black line), and the temporal dependence of the dimensionless
vertical velocity component at two points located symmetrically in the regions of ascending (red line) and descending
(green line) flows for the tilted container.

Figure 5. Time-averaged fields of the dimensionless vertical velocity component in the central horizontal section: (a) vertical
container (averaging time 2500tb); (b) tilted container (averaging time 400tb); (c) tilted container (averaging time 4000tb).

Figure 5b,c illustrates the averaged vertical velocity distributions obtained for a con-
tainer tilted by 2◦. Hereinafter, the “vertical velocity component” means the velocity com-
ponent along the axis of the tilted container. It is seen that this distribution is characterized
by double symmetry: relative to line 2 and the central vertical plane passing through line 1.
This is to be expected in the case of the CS “fixed” in a certain azimuthal orientation. Due
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to the absence of low-frequency azimuthal oscillations of the CS, a sample of 400tb turns
out to be sufficient to obtain reliable statistics for the modeled Rayleigh-Bénard convection.

It is of interest to determine the characteristics of the convective flow in the central
vertical section of the container, coinciding with the central section of CS (it is a plane
tilt y′0z′). As shown in paper [38], in addition to the large-scale CS, a number of smaller
angular vortices are observed which are located in the corners of the container. Such flow
structure is consistent with the distribution of the kinetic energy of turbulence in the central
vertical plane shown in Figure 6. In the regions of interaction of angular vortices with the
CS, the most intense velocity pulsations are present. In the center of the cylinder, the level
of pulsations is noticeably lower.

Figure 6. Dimensionless kinetic energy of turbulence in the central horizontal section: (a) vertical container (averaging time
2500tb); (b) tilted container (averaging time 400tb); (c) tilted container (averaging time 4000tb).

As noted in the Introduction, random changes in the orientation of the CS greatly
complicate the process of obtaining the distributions of physical quantities characterizing
small-scale background turbulence. In particular, Figure 6a illustrates how strongly the
velocity pulsates, and, consequently, the kinetic energy increase in the presence of azimuthal
oscillations in comparison with the case of a “fixed” CS (Figure 6b,c).

As a result of the calculations performed for the “fixed” CS, three-dimensional fields of
all components of the Reynolds stress tensor and the vector of turbulent heat flux were also
obtained (Figure 7). The lines 1 and 2 in the central horizontal section of the container, along
which the data in Figure 7 are presented, as shown in Figure 5c. Note that a large amount
of data and a detailed analysis of the results are presented in paper [38]. The illustrated
distributions are obtained after averaging over two halves of each of the lines. It can be seen
that the maxima of the correlations, which include the vertical component of the velocity
(Figure 7c,d,f), are related exactly on the section of the mixing layer (x ≈ 0.95D). In the
region of the most intense motion of the CS (y ≈ 0.95D), there is no sharp change in the
correlations of the vertical velocity. Correlations of other velocity components are usually
noticeably lower; they are characterized by a smoother change in the central horizontal
plane (Figure 7a,b,e). In the center of the cylinder, as a rule, no intense pulsating motion
is observed.

The integral heat transfer in the cases of vertically oriented and tilted cylinders turn
out to be close to each other. In particular, the integral Nusselt number in the case of water
convection at Ra = 108 is 33.0, which agrees with an accuracy of three significant digits with
the calculation result [57] performed within the DNS approach for a non-tilted container.
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Figure 7. Changes in the normalized components of the Reynolds stress tensor (a–d) and the turbulent heat flux vector (e,f)
along the radial coordinate: black curves—along line 2, red curves—along line 1 (see Figure 5c), coordinate r = 0 corresponds
to the point (x, y′, z′) = (0, 0, 0).

Thus, in case of the “fixed” CS, the characteristics of the large-scale coherent structure
could be identified unambiguously. To perform the analysis of the anisotropy invariant
map, we extract Reynolds stress data along several lines inside the computational domain:
two lines pass through the domain center and lie in the central xy section (first line along y
axis, and second line along x), third line also passes through domain center along vertical
axis z, and fourth line passes through point x = 0, y = 0.4D along z line (these lines are
schematically shown in corresponding figures). AIMs for the first two lines are shown
in Figure 8, top row, for third and fourth lines—in Figure 8, bottom row. In Figure 8, top
row, one can see that near the lateral walls turbulence is as in turbulent boundary layer,
then, farther from the lateral wall, turbulence is getting closer to isotropic with transition
between “rod-like” and “disk-like” archetypes. The turbulence near top and bottom walls
of the cylinder, conversely, is mainly axisymmetric in center line and near axisymmetric for
line at y = 0.4D (see Figure 8, bottom row). It is interesting to note that turbulence along
vertical line changes its archetype from “disk-like” to “rod-like” as we move away from the
wall. Such change in archetype can be explained as follows: near the wall, where boundary
layer takes place, the fluctuations of the vertical velocity component is actively suppressed
by the close proximity of the top/bottom walls, whereas fluctuations of the horizontal
velocity components evolve. Such anisotropy is typical for the near-wall turbulence [58].
Far from the wall, turbulence becomes isotropic. But in the center of the cylinder, where
ascending and descending flows are dominant, the vertical velocity component fluctuations
also prevail over the horizontal ones.

We have also performed averaging of the turbulence anisotropy tensor over horizontal
sections to obtain its distribution along vertical coordinate. In Figure 9 the corresponding
AIM is shown. Averaging over horizontal sections clearly reveals the details of turbulence
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archetype under study: in the average, near the bottom and top walls of the cylinder the
turbulence is 2D axisymmetric, then, turbulence remains axisymmetric but with tendency
to isotropic, and turbulence in the center of the cylinder is mainly “rod-like”. Such behavior
is most likely due to the presence of coherent vortex structure.

Figure 8. AIM for convection in a titled cylinder along different lines. (a) variables II, III (b) variables η, ζ. Points 1, 2, 3
correspond to the start point in a line, to the point at 3

4 of line length, and to the point at 1
2 of line length. The lines are

schematically shown on the small picture with CS in cylinder: in the top row, the lines lie in xy central section; in the bottom
row, lines lie in yz central section.

Figure 9. AIM for convection in titled cylinder: the averaged in horizontal section distribution over vertical coordinate:
(a) variables II, III (b) variables η, ζ. Points 1 and 2 correspond to bottom section and central section of the cylinder.
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3.2. Convection of an Internally Heated Fluid

The typical instantaneous non-dimensional temperature distribution in the compu-
tational domain for two cases considered is shown in Figure 10 (temperature is scaled
by Tb). One can see the cold thermals descending from above, which leads to intensive
mixing near the top wall, and consequently the boundary layer is thin. Contrariwise, the
boundary layer near the bottom wall is noticeably thicker. Such difference in the boundary
layers thickness is clearly visible in the distribution of the mean temperature across whole
domain (see Figure 11a). Note that mean characteristics are obtained by both averaging in
time and in horizontal planes.

Figure 10. Non-dimensional temperature distribution in central xz cross section: (a) Г = 1; (b) Г = 2. Color legends are the
same for both distributions.

Figure 11. Vertical distributions of non-dimensional mean characteristics across the domain: (a) mean temperature; (b) RMS
of vertical velocity component; (c) RMS of horizontal velocity component.

The mean temperature distribution shown in Figure 11a is in good agreement with
the data presented in [52]. Obviously, the mean temperature does not depend on the
periodic length L: the temperature distributions obtained for two cases considered are
almost identical.

Figure 11b,c, shows the RMS of vertical and horizontal velocity components; one can
see that “fine” grid is enough to obtain almost grid-independent results. It should be noted
that similar distributions of velocity components RMS are presented in paper [52]; our
results are in qualitative agreement with them.

Some non-uniformity is seen in RMS of horizontal velocity component distribution,
Figure 11c; note also that RMS distributions differ markedly for different lengths L. Now,
the nature of such in-homogeneity is not evident; perhaps, it is connected to emergence
and reversals of the large-scale coherent structures in the flow.
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As noted in Introduction, the presence of CS are reported by many authors for the
classic turbulent Raylegh-Bénard convection. Here, such structures also take place. In
Figure 12 the instantaneous distributions of the vertical velocity component are shown
in central horizontal section at different times for the case Γ = 1. Three time moments
are shown. First time moment (Figure 12a) corresponds to the presence of the quasi-2D
coherent vortex structure: in the central part of the domain, the flow is descending in
general, whereas a lifting motion takes place in other regions; note that descending motion
is more intense that ascending one. The second time moment (Figure 12b) corresponds
to the disruption of the large-scale coherent structure, and the third time (Figure 12c)
corresponds to the emergence of the quasi-2D coherent structure that is orthogonal to that
shown in Figure 12a. It should be noted that for the case Γ = 1 the “life time” of the coherent
structure is short enough (less than 200tb).

Figure 12. Instantaneous dimensionless vertical velocity component distributions in horizontal section at different times for
the case Г = 1: (a) time ~100tb; (b) time ~300tb; (c) time ~500tb.

To perform identification of CS behavior (including the emergence, disruption, and
re-orientation) more clearly, we have also performed the Fourier mode decomposition of
the instantaneous velocity field described in [50] for three time moments corresponding
to the times shown in Figure 12. Three-dimensional instantaneous velocity field (Vx, Vy,
Vz) for each time moment was projected onto the Fourier basis, for which we choose 2D
modes oriented in the xz or yz planes. Thus, we assume that flow field can be represented
as a number of 2D vortices in two orthogonal horizontal directions. The number of these
2D vortices in vertical and horizontal directions corresponds to mode numbers (m, n, k),
where m and n are the modes in horizontal directions (one of m or n should be set to zero to
obtain 2D vortices), and k is the mode in vertical direction. Considering first three modes in
each direction, we calculated the normalized energy of each mode (m, n, k) divided by the
total energy to determine dominant Fourier modes. Our calculations showed that for the
time moment corresponding to Figure 12a, one dominant mode (0, 2, 1) takes place with
normalized energy of value 0.21; other Fourier modes have normalized energy less than
0.1. Thus, Fourier mode decomposition shows presence of the CS, which is represented
by two 2D vortices in yz plane. For the time moment corresponding to Figure 12b, there
is no single noticeable dominant mode: two modes (0, 1, 1) and (0, 2, 1) with normalized
energy of about 0.13 take place, whereas other modes have normalized energy less than
0.1. Finally, for the time moment corresponding to Figure 12c, one dominant mode (2, 0,
1) takes place with normalized energy of 0.16, other modes have energy less than 0.1. In
this case, we see two 2D vortices in xz plane. Thus, Fourier mode decomposition analysis
also confirms the presence of the CS, its disruption and re-emergence in the orthogonal
direction over time.
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The emergence and evolution of the large-scale CS can be also seen in time dependence
of vertical velocity component in the center of the domain, see Figure 13. Here, the low-
frequency oscillation of the vertical velocity component corresponds to the emergence of
the large-scale CS with different orientation and location in space.

Figure 13. Time dependence of the dimensionless vertical velocity component at central point of the
domain, case Г = 1.

It should be noted that in case Γ = 2 these large-scale oscillations have much lower
frequency; thus, coherent structure turnover time is increasing, and we can perform
averaging over the period of the large-scale structure existence to obtain Reynolds stress
tensor. In Figures 14a and 15b the fields of the instantaneous vertical velocity component
and the one averaged by the period of coherent structure existence are presented (the
averaging period is 200tb; the figure is doubled in periodic directions for visibility). Of
course, chosen averaging period does not allow to obtain fully time-independent means,
however, obtained mean distributions can reveal some important details useful for the
development of the methods of large-scale coherent structure identification.

Figure 14. (a) Distributions of instantaneous dimensionless vertical velocity component, (b) dimensionless turbulent kinetic
energy in central horizontal section z = 0 for the case Г = 2. The pictures are doubled in x and y directions for clarity.
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Figure 15. (a) Time-averaged vertical velocity isosurfaces (the red/blue colors correspond to the upward
(Vz = 0.007Vb)/downward (Vz = −0.012Vb) flow), (b) time-averaged dimensionless vertical velocity averaged by coherent-
structure existence period distribution for the case Г = 2, central section z = 0; the picture is doubled in x and y directions.

Chosen for averaging time period was used to obtain the fields of the following
turbulent characteristics: turbulent kinetic energy, turbulent dissipation, Reynolds stress
tensor. In Figure 14b the distributions of the turbulent kinetic energy are shown (the
pictures are doubled in periodic directions). Comparing with Figure 14a, one can see that
the most intense turbulence oscillations take place in the region of descending flow and in
the region between descending and ascending flows.

The large-scale coherent structure is clearly seen in Figure 15, where isosurfaces of
the mean velocity and distribution of the vertical component of the mean velocity are
shown (picture in Figure 15b is doubled in x and y directions). This coherent structure is
apparently 2D vortex; it can move along periodic directions, which leads to flow reversals.

The anisotropy invariant map obtained for the different lines is shown in Figure 16
for the case Γ = 2. Here, we choose three lines: the first one lies in the horizontal central
section and crosses CS, the second and third lines are vertical and located in the zones
of descending flow and mixing layer between ascending and descending flows. Due to
insufficient averaging time, the AIMs are more complicated than in case of convection in
tilted cylinder. However, the main features can be identified. The first line (red color in
Figure 16) crosses CS in the horizontal direction, and the turbulence archetype sequentially
changes between “rod-like” and “disk-like” axisymmetric turbulence, but in general,
turbulence is close to isotropic. AIMs for the second and third lines (blue and green
colored) start and end in the region of 2D turbulence (near the bottom and top walls),
and in the central part of the domain the turbulence archetype is also changes between
“rod-like” and “disk-like”, and its anisotropy is more pronounced.

The most interesting result is the AIM for the distribution of the Reynolds stress tensor,
averaged over horizontal sections, see Figure 17. Due to horizontal averaging in space,
we obtain more statistically established distribution along vertical coordinates, and the
turbulence archetype becomes very close to the one obtained for analogue distribution in
case of tilted cylinder (compare with Figure 9). This is a very interesting result, which will
be discussed below.
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Figure 16. AIM for internally heated convection along different lines. (a) variables II, III (b) variables η, ζ. Points 1 and 2
correspond to start point in line and to central point of line. Lines are schematically shown on the small picture.

Figure 17. AIM for internally heated convection: the averaged in horizontal sections distribution over vertical coordinate:
(a) variables II, III (b) variables η, ζ. Points 1 and 2 correspond to bottom section and central section of the domain.

It is interesting to note that similar flow behavior takes place in Rayleigh-Bénard con-
vection in a cubic cell [59], where large-scale CS changes its orientation due to cessation. We
guess that similar steady (and unsteady) AIM analysis can be applied for the identification
of CS, revealing its properties in space in time.

4. Discussion

In the present study, we investigate two quite different configurations of the convection
of Rayleigh-Bénard type. First is the convection in a cylinder heated from below, which is
very heavily studied by many other researchers, both experimentally and numerically. For
this case, by means of our numerical simulation, we also have confirmed the presence of
large-scale CS, which can rotate in azimuthal direction if the cylinder is not tilted. Such
rotation of the CS leads to the flow reversals and to the difficulties in obtaining statistical
properties of the turbulent motion. To prevent the CS from rotation, we use a modified
problem statement with slightly tilted cylinder. In this case, the CS becomes “fixed” and
can be easily visualized and investigated, and we have carried out the AIM analysis for this
case, which shows characteristic behavior of turbulence archetype when moving between
different regions of the CS.
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Averaging of the Reynolds stress tensor across horizontal section leads to a quite
simple AIM (shown in Figure 9), where three main regions of the different turbulence
archetypes have place: first region corresponds to the areas near top and bottom walls
where turbulence is mostly 2D axisymmetric. Second region is located between the wall
and domain center, and the turbulence archetype there is close to isotropic. The last region
is located in the central part of the domain, and it is characterized by the dominance of the
“rod-like” axisymmetric turbulence. We guess that such archetype variance is due to the
presence of the large-scale CS.

The second configuration considered is the internally heated convection in a layer.
This case was also heavily studied by many authors (e.g., see [52]), but the analysis of the
turbulence archetypes for such flows is almost absent. Of course, the existence of CS was
mentioned in many papers, especially for the case of classical Rayleigh-Bénard convection
(see the corresponding references in Introduction), but due to the high degree of freedom
in periodic directions, these CS move quite occasionally in different horizontal directions,
so their determination and investigation becomes very challenging. In our investigation,
according to [52], we chose quite small computational domain in periodic directions, and
we were able to detect the emergence of the CS and perform its analysis. It was established
that emerging CS is very similar to the 2D vortices, which are elongated along one or
another periodic direction, and CS is disrupted time to time with emergence of a new
one, located orthogonally; performed Fourier mode decomposition analysis has confirmed
our deductions. Furthermore, we saw that the descending motion in coherent structure
is more intense that ascending one; such observation is consistent with the conclusion
obtained in paper [60], where the Large Eddy Simulation has been carried out for the case
of radiatively-driven convection in a lake; in our further studies, we plan to perform Direct
Numerical Simulation of radiatively-driven convection to verify those results.

It was shown that in the computational domain of size Γ = 2, turnover time of CS
is large enough, so we could perform more accurate averaging over the period of the
large-scale structure existence. The analysis of the AIM for the case of internally heated
convection shows that the spatial distribution of turbulence anisotropy parameters is highly
variable (as in the case of convection in a cylinder): in some regions, the turbulence has
“rod-like” structure, and in other—“disk-like” structure. Such behavior of the turbulence
archetype is very close to the one for the case of convection in a cylinder. In Figure 18,
two AIMs are shown, which correspond to the distributions along similar lines for two
cases considered (convection in a cylinder and internally heated convection): the lines pass
vertically through the mixing region between ascending and descending flows (green lines
in Figures 8 and 16). Some similar features are observed for two cases: first, anisotropy
parameters of the turbulence vary between “rod-like” and “disk-like” limits as one moves
away from the wall. Near the walls, the turbulence archetype is quite similar: both points
1 in Figure 18 lie on the top boundary of Lumley triangle, which corresponds to the
2D turbulence, but for the convection in a cylinder, the turbulent pulsations are nearly
axisymmetric; of course, this is due to the different types of symmetry in the two problem
definitions. Near the center of the both domains, the turbulence archetype is close to
axisymmetric “disk-like”. One can see that turbulence in a central part of a cylinder
is practically isotropic, while for the internally heated convection it is farther from the
isotropic (this is also possible due to insufficient averaging).

The most interesting result is the anisotropy invariant maps for the vertical distribution
of the Reynolds stress tensor, which is obtained by averaging both in time and over
horizontal cross sections (Figures 9 and 17). We see that both maps have very similar
structure: near the top and bottom walls, the turbulence is almost 2D axisymmetric, then,
when one moves away from the walls, turbulence becomes similar to the “disk-like”
one and more isotropic. However, in the central part of the computational domain, the
turbulence archetype becomes close to the “rod-like” one, both for cylinder and layer cases.
We guess that in both cases such behavior is due to the presence of the specific large-scale
coherent structures.
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Figure 18. Anisotropy invariant maps both for convection in a cylinder (cyan lines) and internally heated convection
(magenta lines): (a) variables II, III (b) variables η, ζ. The maps are constructed for the similar lines, which pass vertically
through the mixing region of ascending and descending flows. Points 1 and 2 correspond to the bottom wall and a half of
computational domain.

5. Summary

In the paper, we presented the results of the study of turbulent archetypes, typical for
heat-induced forcing, which triggers gravitational instability and Rayleigh-Bénard type
convection. It was shown that, accordingly with the data of other authors, such flows
are self-organized with the presence of large-scale coherent structures. In the non-tilted
cylinder, the CS is the single vortex, which is stable and can rotate azimuthally, whereas
in a tilted cylinder the CS is “fixed” in space. In the layer, the quasi-2D CS can arise,
exist for some time, disrupt, and then re-emerge again; the stability of these CS can be
connected with its random horizontal motion and interaction with relatively small arising
thermals. It was shown that the turbulence archetypes are very similar for two chosen
types of forcing, and there are the distinct CS fingerprints on anisotropy invariant map.
Thus, analyzing the AIM, one can obtain useful information about the presence of CS in
the flow of Rayleigh-Bénard type and its characteristics. By performing unsteady AIM
analysis, one can reveal the CS motion, cessation and re-starting, which potentially can be
helpful, in particular, for understanding flow reversals. Our further investigation will be
directed to studies of the CS in penetrative convection driven by inhomogeneous heating
of the water column, which is a challenging and important topic from both a fundamental
and practical point of view.
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