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Abstract: In this work, we present the mathematical formulation of the new adaptive multiresolution
method for the Stokes problems of highly viscous materials arising in computational geodynamics.
The method is based on particle-in-cell approach—the Stokes system is solved on a static Eulerian
finite element grid and material properties are carried in space by Lagrangian material points. The
Eulerian grid is adapted using the wavelet-based adaptation algorithm. Both bilinear (Q1P0, Q1Q1)
and biquadratic (Q2P−1) mixed approximations for the Stokes system are supported. The proposed
method is illustrated for a number of linear and nonlinear two-dimensional benchmark problems of
geophysical relevance. The results of the adaptive numerical simulations using the proposed method
are in an excellent agreement with those obtained on non-adaptive grids and with analytical solutions,
while computational requirements are few orders of magnitude less compared to the non-adaptive
simulations in terms of both time and memory usage.

Keywords: Stokes problem; adaptive mesh refinement; finite element method; wavelets;
particle-in-cell

1. Introduction

Practical problems of computational geodynamics require high-resolution numerical
models. Computational requirements of such models can be very high, and thus powerful
supercomputers are employed routinely nowadays. However, to utilize these machines
more efficiently and to be able to model truly challenging problems like global mantle
convection at numerical resolutions resolving 1 km scales, new advanced computational
methods are needed (e.g., [1–3].

In this work we present the novel adaptive multiresolution method for mechanical
Stokes problems arising in computational geodynamics. The Stokes system of equations is
solved on a static Eulerian finite element grid which is adapted in space based on chosen
adaptation criterion (viscosity field, strain rate field, etc.), and material properties and
history are carried by Lagrangian particles. Fully automatic grid adaptation is implemented
using an original algorithm based on wavelet analysis [4–8]. The adaptation is supported
for both bilinear (Q1P0, Q1Q1) and biquadratic (Q2P−1) finite element grids.

The work is divided into 2 parts. In the first part (Sections 2–7), the mathematical
formulation and implementation details of the method are given. In the second part
(Section 8), we discuss the results of some numerical benchmarks.

2. Governing Equations

We are interested in very slow deformations of highly viscous materials, typical for
mantle convection problems. In problems of geophysical relevance due to drastically
different convection and viscous time scales, both material properties and scalar quantities
are advected as described in Section 4, while viscous forces are assumed to be in equilibrium.
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In this case all inertial forces can be neglected and such quasi-static deformation process
can be described as an evolution through a succession of equilibria:

∂σij

∂xj
+ ρ fi = 0 (1)

where σij is the total stress tensor component, fi is the external force per unit mass vector
component, xj indicates the spatial coordinate and ρ is the density.

The medium is assumed to be incompressible. Thus, Equation (1) is solved subject to
incompressibility condition:

ε̇ii = 0 (2)

where ε̇ij is the strain rate tensor component defined as:

ε̇ij =
1
2

(
∂vi
∂xj

+
∂vj

∂xi

)
(3)

where vi and vj indicate the velocities.
The relation between dynamic (σ) and kinematic (ε̇) quantities is given by rheological

constitutive equation. For viscous incompressible medium it is expressed as (e.g., [9]):

σij = −pδij + 2ηε̇ij (4)

where p is the pressure, δij is the Kronecker delta, η is the viscosity.
Equations (1)–(4) form the incompressible Stokes system. Even though the adaptive

finite element method is generalizable to three dimensions, in this work both the method
formulation and its applications are limited to two-dimensional problems. Thus we assume
strain tensor components εzz, εxz, εzx, εyz, εzy to be equal 0 (plane strain assumption) and
the system we solve takes the form:

2
∂

∂x

(
η

∂vx

∂x

)
+

∂

∂y

(
η

∂vx

∂y
+ η

∂vy

∂x

)
− ∂p

∂x
= −ρ fx

2
∂

∂y

(
η

∂vy

∂y

)
+

∂

∂x

(
η

∂vy

∂x
+ η

∂vx

∂y

)
− ∂p

∂y
= −ρ fy

∂vx

∂x
+

∂vy

∂y
= 0

(5)

Viscoplastic rheology is implemented by using a non-linear effective viscosity in (5).
A material deforms viscously when stresses fall below its yield strength σyield, but plastic
deformations occur as soon as σyield is reached, and the effective viscosity is adjusted to
ensure material strength σyield is never exceeded (e.g., [10–12]):

ηeff = min{ηcreep,
σyield

2ε̇ I I
} (6)

Here ηcreep is the creep viscosity, which is a function of strain rate and other material
parameters in general cases, and is a constant if viscous deformations are linear (e.g., [9]),
σyield is the yield strength of a material and ε̇ I I is the second invariant of the strain rate
tensor defined as:

ε̇ I I =

√
1
2

ε̇ij ε̇ij (7)

The yield strength σyield is calculated according to the Drucker-Prager plasticity model,
which in general form is expressed as (e.g., [13]):

σyield = αp + β (8)
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where p is the pressure, α and β are material parameters. The following relationships for α
and β are used [14]:

α = sin(φ), β = c cos(φ) (9)

where c and φ are cohesion and friction angle of a material respectively.

3. Finite Element Discretization of the Stokes System

The Stokes system of Equation (5) is solved on an Eulerian grid using Galerkin mixed
finite element discretization technique. In this way velocities and pressure are approxi-
mated as:

vx(x, y) '
n

∑
i=1

Ni(x, y)vxi vy(x, y) '
n

∑
i=1

Ni(x, y)vyi

p(x, y) '
m

∑
i=1

Mi(x, y)pi

(10)

where n and m are numbers of velocity and pressure nodes, Ni and Mi are locally defined
basis functions, vxi, vyi and pi are nodal values of velocities and pressure which have to
be found.

In this work we employ 3 different quadrilateral element types (i.e., combinations of
basis sets {Ni} and {Mi}): bilinear velocity—constant discontinuous pressure Q1P0, bilin-
ear velocity—bilinear continuous pressure Q1Q1 with stabilization, biquadratic velocity—
linear discontinuous pressure Q2P−1 (Figure 1; for exact expressions of basis functions see
e.g., [15]). Probably the most popular in the community is the Q1P0 element, primary
due to its low computational costs. However, this approximation is unstable as it does
not satisfy inf-sup condition and so can lead to highly inaccurate results under some
circumstances [16,17]. The Q1Q1 approximation is also inherently unstable, but it can be
stabilized by very efficient and simple to implement method proposed recently [18,19].
Finally, the Q2P−1 element is stable and known to be robust [17], but associated computa-
tional cost is significantly higher compared to bilinear approximations Q1P0 or Q1Q1.

velocity pressure

Q1P0 Q1Q1 Q2P-1

Figure 1. Mixed velocity-pressure elements.

Substitution of (10) into (5) and application of Galerkin discretization procedure yield
the Stokes system of equations in the matrix form (e.g., [20]:[

A Q
QT 0

][
v
p

]
=

[
F
0

]
(11)

where stiffness matrix A, gradient operator matrix Q, right hand side vector F and vectors
of unknowns v and p are:

A =
∫

Ω
BTDBdxdy Q = −

∫
Ω

KTHdxdy F =
∫

Ω
RTdxdy

v =
[
vx1 vy1 vx2 vy2 . . . vxn vyn

]T p =
[
p1 p2 . . . pm

]T (12)
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Here vectors and matrices B, D, K, H and R are:

B =
[
ΛN1 ΛN2 . . . ΛNn

]
where Λ =


∂

∂x 0
0 ∂

∂y
∂

∂y
∂

∂x


D = η

2 0 0
0 2 0
0 0 1


K =

[
∇N1 ∇N2 . . . ∇Nn

]
where ∇ =

[
∂

∂x
∂

∂y

]
H =

[
M1 M2 . . . Mm

]
R =

[
N1X N2X . . . NnX

]
where X = ρ

[
fx fy

]

(13)

In case of Q1Q1 approximation, the system (11) has to be further modified to include
stabilization matrix [18,19]: [

A Q
QT −V

][
v
p

]
=

[
F
0

]
(14)

where stabilization matrix V is:

V =
1
η

∫
Ω

H̄TH̄dxdy (15)

where vector H̄ is:
H̄ =

[
M1 − 1

4 M2 − 1
4 . . . Mm − 1

4

]
(16)

Since basis functions Ni and Mi are locally defined, matrices A, Q and V in (11) and (14)
are sparse and in practise are built by assembling contributions from individual elements.

The problem (11) is solved by augmented Lagrangian iterative method (e.g., [21,22]).
First, the system (11) is amended by addition of the term − 1

k M to the both sides of the
second equation, and velocity Schur complement is computed as:

Â = A + kQM−1QT (17)

where k is the penalty parameter and M is the mass matrix:

M =
∫

Ω
HTHdxdy (18)

Schur complement Â is then factorized and the iterative scheme is employed until
sufficient level of incompressibility defined by εinc is reached. The matrix Â is symmetric
positive definite, and so the Cholesky factorization is employed:

Â→ LLT

DO

vi = L−T(L−1(F−Qpi))

di = M−1QTvi

pi+1 = pi + kdi

i = i + 1

UNTIL ‖di‖∞ > εinc

(19)

Augmented Lagrangian method is very efficient, but it implies inversion of the mass
matrix M. It is easy to compute the inverse M−1 when pressure approximation is discontin-
uous, which is true when Q1P0 or Q2P−1 elements are employed. However, in case of Q1Q1
element we deal with the system (14), and it is not feasible to apply the method (19) since
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pressure approximation is continuous. The system (14) is symmetric but always indefinite,
and in the current work we solve it at once using LDL factorization. Representing the
problem (14) as Sx = b this implies:

S→ LDLT

x = L−T(D−1(L−1b))
(20)

Both methods (19) and (20) rely on direct matrix factorization. Strong advantage of
direct factorization methods is the possibility to use them as black boxes for ill-conditioned
systems which typically arise in geodynamic models. On the other hand, CPU and mem-
ory requirements of direct methods are high and thus application of such methods to
significantly large systems of linear equations is difficult and iterative schemes are used
instead [23,24]. However, as will be shown in this work, introduction of dynamic mesh
adaptation reduces the number of unknowns and thus the cost of factorization dramatically,
and makes it possible to use direct methods for models of quite high efficient numerical
resolution even in case of expensive Q2P−1 mixed approximation.

Non-linearities arising in case of plastic yielding are treated using the method of
successive substitutions (also known as Picard’s method, see e.g., [25]). At first, effective
viscosities are calculated with some initial velocity and pressure fields. The stiffness matrix
A is built then, and depending on element type the Stokes problem is solved either by (19)
or (20). Then effective viscosities are recalculated using the new solution and matrix A is
rebuilt. These steps are repeated until the maximum number of non-linear iterations is
passed or convergence criterion is reached:

‖vi
nl − vi−1

nl ‖2
‖vi

nl‖2

< εnl (21)

where vi
nl is the velocity solution obtained at non-linear iteration i and εnl is the non-

linear tolerance.

4. Particle-In-Cell Simulation Methodology

The material properties and history are carried by Lagrangian material points, which
are advected using the solution of the Stokes system obtained on a static grid (Figure 2).
Such a combination of Lagrangian and Eulerian frames is known as the particle-in-cell
method and is widely used in computational geodynamics (e.g., [26–28]). The method
allows accurate tracking of material interfaces, and can be used for modeling of very
large deformations without necessity to perform re-gridding, which is required in case of
alternative Arbitrary Lagrangian-Eulerian approach (e.g., [10]).

         Eulerian grid

Lagrangian particles

Figure 2. Q1Q1-based Eulerian grid combined with Lagrangian particles.
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The PIC simulation algorithm can be described as a succession of the following actions
performed at each time step:

• Interpolation of physical properties from Lagrangian particles to Eulerian grid.
• Assemblage of the Stokes system using interpolated physical properties.
• Solution of the system on an Eulerian grid (see Section 3).
• Interpolation of computed velocities to Lagrangian particles positions.
• Particles advection using the interpolated velocities.

Time integration is performed by the first-order forward Euler scheme. Thus each
particle p is advected as:

xp(t + ∆t) = xp(t) + vp(t)∆t (22)

where xp is the particle’s coordinate vector, vp is the interpolated velocity vector of a
particle, and ∆t is the time step calculated based on a given Courant number.

The accuracy of (22) is normally enough. However, if necessary, higher order integra-
tion methods can be used, for example the Runge-Kutta of fourth-order (e.g., [29]).

Initially, the Lagrangian particles are distributed randomly, but with uniform den-
sity. The initial uniform density, however, is not usually well preserved as simulation
proceeds. The problem can be solved using the approach based on discrete Voronoi
tessellation [30,31], which is described as follows. First, each element of computational
Eulerian grid is discretized by a structured lattice. The lattice is then divided into sub-
domains (discrete Voronoi cells) in such a way that each sub-domain consists of all lattice
cells closer to an associated particle than to any other particle residing in the element. The
accuracy of such an approximate Voronoi diagram depends on a resolution of the lattice
(Figure 3). Then, areas of discrete Voronoi cells are computed and compared to empirical
thresholds AVmin and AVmax. Physically, the cell areas are considered as weights of associ-
ated Lagrangian particles, so particles whose weights are below AVmin are eliminated, and
those with weights above AVmax are cloned. When cloning is performed, the new particle
is added to the centroid of corresponding Voronoi cell (Figure 4). The centroid coordinate
vector xcentroid is computed as:

xcentroid =
∑ncl

i=1 xi
cl

ncl
(23)

where xi
cl and ncl are, respectively, the coordinate vectors and the total number of the lattice

cells constituting the Voronoi cell.
Usually, some trial experiments are required to find appropriate values for AVmin and

AVmax. Once these values are estimated, the algorithm works very efficiently to maintain
uniform density of Lagrangian particle field.

20×20 50×50 125×125

Figure 3. Approximate Voronoi diagrams. Note that accuracy depends on the lattice resolution.
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particle to clone

particle to eliminate

new particle

Figure 4. Elimination and cloning of Lagrangian particles.

5. Wavelet-Based Grid Adaptation

In this section we describe the implementation of the grid adaptation methodology
based on wavelet analysis. First, the linear interpolating wavelet transform will be intro-
duced. Next, the wavelet-based grid adaptation algorithm will be presented.

5.1. Linear Interpolating Wavelet Transform

In general, the wavelet transform is a very efficient methodology to construct the
multilevel decomposition of some given function. Considering one dimensional case,
a function f (x) defined at m2(n−1) + 1 points (m is arbitrary integer number) can be
decomposed to n levels from J = n − 1 (finest) to 0 (coarsest) in such a way that at
each level the function is approximated as f j (e.g., [32]):

f J(x) = f 0 + w0︸ ︷︷ ︸
f 1

+ · · ·+ wj−1

︸ ︷︷ ︸
f j

+ · · ·+ wJ−1 (24)

where f 0 is the function approximation at the coarsest level, and each wj represents a
difference between approximations at levels j and j + 1:

f 0 = ∑
k∈K0

c0
kφ0

k(x)

wj = ∑
l∈Lj

dj
lψ

j
l (x)

(25)

Further substitution of (25) into (24) yields:

f J(x) = ∑
k∈K0

c0
kφ0

k(x) +
J−1

∑
j=0

∑
l∈Lj

dj
lψ

j
l (x) (26)

where K0 and Lj are index sets, φ
j
k(x) and ψ

j
l (x) are scaling functions and wavelets respec-

tively, and cj
k and dj

l are scaling function and wavelet coefficients respectively. This is the

purpose of the forward wavelet transform to determine cj
k and dj

l .

Once the decomposition (26) is obtained, we can analyze wavelet coefficients dj
l , which

indicate differences between function approximations at neighbor levels, and leave only
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significant dj
l with absolute values above some prescribed threshold ε. This way the compact

representation f J
>(x) of the original function f (x) is constructed:

f J(x) = ∑
k∈K0

c0
kφ0

k(x) +
J−1

∑
j=0

∑
l∈Lj

|dj
l |>ε

dj
lψ

j
l (x)

︸ ︷︷ ︸
compact representation, f J

>(x)

+
J−1

∑
j=0

∑
l∈Lj

|dj
l |<ε

dj
lψ

j
l (x)

︸ ︷︷ ︸
insignificant, f J

<(x)

(27)

Scaling functions φ
j
k(x) and wavelets ψ

j
l (x) are spawned by dilations and translations

of father wavelet φ(x) and mother wavelet ψ(x) respectively:

φ
j
k(x) = φ(2jx− k)

ψ
j
k(x) = ψ(2jx− k)

(28)

We use the linear interpolating transform in this work. This dictates the following
expressions for φ(x) and ψ(x) (see Figure 5 for the corresponding plots):

φ(x) = max{0, 1− |x|}

ψ(x) = 2φ(2x− 1)− 1
2

φ(x)− 1
2

φ(x− 1)
(29)

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.25

0.5

0.75

1

φ(
x)

x
−1 −0.5 0 0.5 1 1.5 2

−0.5

0

0.5

1

1.5

ψ
(x
)

x

Figure 5. Father wavelet φ(x) and mother wavelet ψ(x) for the linear interpolating transform.

Different techniques to perform forward wavelet transform exist. The very suitable
one to work with interpolating wavelets is the lifting scheme [33], which is employed in
this work. In case of linear interpolating φ(x) and ψ(x), as in (29), the lifted transform from
level j + 1 to level j is (e.g., [34]):

dj
k =

1
2
(cj+1

2k+1 −
1
2
(cj+1

2k + cj+1
2k+2))

cj
k = cj+1

2k +
1
2
(dj

k−1 + dj
k)

(30)

The scheme (30) is applied sequentially starting from the finest level and proceeding to
the coarsest one. This produces values for cj

k and dj
l at all resolution levels which can be

analyzed then in accordance with (27).
As an example consider the linear interpolating wavelet transform of the Gaussian

function f (x) = e
− (x−0.5)2

(1/64)2 with further analysis for insignificant dj
l coefficients shown on

Figure 6. Scaling function coefficients c0
k represent the coarsest resolution level, and levels

1 . . . 5 are represented by wavelet coefficients dj
l , j = 0 . . . 4 respectively. Note how the
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Gaussian curve is captured by significant dj
l coefficients and how its approximation is

sequentially refined at each level.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

x

le
ve

l

insignificant d-coefficients
significant d-coefficients
c-coefficients at coarsest level

Figure 6. Wavelet coefficients for the Gaussian function f (x) = e
− (x−0.5)2

(1/64)2 .

In two dimensional case, the 1D forward transform has to be performed in each
dimension sequentially. Thus, given a function f (x, y), the scheme (30) is applied first to
x- and then to y-slices. The example of a two-dimensional function is considered in the
next section.

5.2. Grid Adaptation Algorithm

The linear interpolating forward transform, described in the Section 5.1, can be applied
to analyze a function representing some physical field of interest (viscosity η, density ρ,
second strain rate invariant ε̇ I I , etc.). The result of such an analysis can be used then as
a guidance to build a multilevel computational grid. To facilitate the process, the nodes
of computational grid are associated with scaling function c0

k and wavelet coefficients dj
l .

Based on these ideas, the wavelet-based grid adaptation algorithm proceeds as follows
(see publications [4,6] for further details):

• Perform the forward wavelet transform of a physical field which is considered as

an adaptation criterion and get all c0
k and dj

l coefficients. If a physical property field
is defined on Lagrangian particles, the interpolation from particles to grid nodes is
performed first.

• Analyze wavelet coefficients dj
l at all levels and create a mask M containing grid

nodes associated with significant dj
l .

• Include into the maskM all grid nodes from the coarsest level, i.e. associated with
coefficients c0

k .

• Extend the maskM with grid nodes associated with adjacent to significant dj
l . This

is to ensure that the maskM includes all nodes whose coefficients can potentially
become significant at the next simulation time step.

• Apply recursively the reconstruction check procedure to the mask M. This is to

guarantee that all wavelet coefficients dj
l necessary to perform the forward transform

at the next time step will be available.
• Using the adapted maskM, construct a new multilevel finite element grid.
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As an example, consider the linear interpolating wavelet transform of the 2-D Gaussian

function f (x, y) = e
− x2+y2

2(0.07)2 . The maskM shown on Figure 7a was obtained by applying the
two dimensional forward transform and including grid nodes associated with significant
dj

l and all c0
k intoM.

Figure 7. The linear interpolating wavelet transform of the 2-D Gaussian function

f (x, y) = e
− x2+y2

2(0.07)2 : (a) the initial mask M after the wavelet transform and (b) the extended
maskM used for mesh adaptation.

Further, extendingM with grid nodes associated with adjacent wavelet coefficients
and applying the reconstruction check procedure, the complete adapted maskM becomes
as shown on Figure 7b. Based on the mask, the multilevel computational grid is built
(Figure 8, bilinear discretization is assumed), which is then used to assemble and solve the
Stokes system of equations.

−0.5 0 0.5

−0.5

0

0.5

x

y

Figure 8. Multilevel bilinear finite element grid constructed using the adapted maskM on Figure 7b.

Normally, the new grid is constructed in this way at each simulation time step. Note
that this does not impose any changes to the particle-in-cell simulation algorithm.
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If necessary, several adaptation criteria can be used simultaneously. In such a case,
each criterion is analyzed independently and the corresponding maskMi is created. The
nodewise OR combination of allMi gives the common maskM, which is then used for
multilevel grid construction.

6. Dealing with Hanging Nodes

A multilevel grid, like one shown on Figure 8, is inherently non-conforming due to the
presence of hanging nodes on boundaries between unequal grid levels. In order to obtain
correct results on such a non-conforming grid, procedures of assemblage and solution of a
corresponding system of equations have to be modified.

Bilinear (Q1) and biquadratic (Q2) basis functions, employed in this work, impose an
approximated function to be continues across the element edges. Examining in this way
the typical segment of Q1 multilevel grid shown on Figure 9a, the approximation for an
unknown function u has to be continues across the edge ab. This implies that for any point
lying on the edge ab the following equality has to hold:

u1N1(x, y) + u2N2(x, y) + u3N3(x, y) = u1N4(x, y) + u3N5(x, y) (31)

where ui are unknown nodal values of the function u, and Ni are bilinear basis functions.

a

b
u1

u3

u2

N1

N3

N2

N4

N5

hanging
node

(a)

a

b
u1

u5

u2

u3

u4

N1

N2

N5

N4

N3

N6

N7

N8

hanging
nodes

(b)

Figure 9. Typical segments of a multilevel grid for (a) bilinear (Q1) and (b) biquadratic (Q2) ba-
sis functions.

The degree of freedom corresponding to a hanging node has to be constrained to
satisfy of the continuity requirement (31). Since bilinear approximation is considered, the
constraint is expressed as:

u2 =
1
2
(u1 + u3) (32)

Generalizing, the relationship between unconstrained and constrained degrees of
freedom defined on the edge ab can be expressed in the matrix form as:

uab = Mab
u ũab (33)

where uab and ũab are unconstrained and constrained vectors of unknowns respectively,
and Mab

u is the transformation matrix:

uab =

u1
u2
u3

 ũab =

[
u1
u3

]
Mab

u =

1 0
1
2

1
2

0 1

 (34)
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In case of biquadratic basis functions, the similar to (31) continuity requirement
across the edge ab for the typical segment of Q2 multilevel grid shown on Figure 9b is
formulated as:

u1N1(x, y) + u2N2(x, y) + u3N3(x, y) + u4N4(x, y)+

+ u5N5(x, y) = u1N6(x, y) + u3N7(x, y) + u5N8(x, y) (35)

To satisfy the requirement (35), hanging degrees of freedom u2 and u4 have to be
constrained by a second-order Lagrange polynomial constructed using values u1, u3 and u5.
Thus, the transformation between unconstrained and constrained vectors of unknowns can
be expressed using the matrix relation (33), where uab and ũab vectors and matrix Mab

u are:

uab =


u1
u2
u3
u4
u5

 ũab =

u1
u3
u5

 Mab
u =


1 0 0
3
8

6
8 − 1

8
0 1 0
− 1

8
6
8

3
8

0 0 1

 (36)

Apparently, the similar to (33) transformation between unconstrained and constrained
degrees of freedom can be formulated for the whole system. Thereby, considering the
Stokes problem on a multilevel grid, the velocity constraint relationship is expressed as:

v = Mvṽ (37)

where v and ṽ are unconstrained and constrained velocity vectors respectively, and Mv is
the transformation matrix. Note that v and ṽ contain both x- and y-velocities and so Mv
has to be constructed accordingly.

Thus, the Stokes system of equations, assembled on a multilevel grid, has to be solved
subject to constraint defined by (37). Note that this is the case if Q1P0 or Q2P−1 elements are
used, and element Q1Q1 requires additional constraint on pressure due to the continuity of
pressure approximation (see below). To impose constraint (37) on the Stokes system, the
assembled stiffness matrix A, gradient operator matrix Q and right hand side vector F are
modified as [35,36]:

Ã = MT
vAMv

Q̃ = MT
vQ

F̃ = MT
vF

(38)

And then these modified matrices are used in the standard solution procedure. This
way, the velocity Schur complement (17) is computed as:

ˆ̃A = Ã + kQ̃M−1Q̃T (39)

and augmented Lagrangian iterative method (19) is applied:

ˆ̃A→ L̃L̃T

DO

ṽi = L̃−T(L̃−1(F̃− Q̃pi))

vi = Mvṽi

· · ·

(40)

Note, however, that unconstrained velocity vector vi is restored once the constrained
solution ṽi is obtained.
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In case if Q1Q1 element is employed, the additional constraint on pressure degrees of
freedom is required:

p = Mpp̃ (41)

where p and p̃ are unconstrained and constrained pressure vectors respectively, and Mp is
the transformation matrix defined in a similar way as Mv.

To impose both velocity (37) and pressure constraint (41) on the Stokes system, the
stiffness matrix A and right hand side vector F are modified in the same way as in (38), but
gradient operator matrix Q and stabilization matrix V (which is required for Q1Q1 element)
are modified as:

Q̃ = MT
vQMp

Ṽ = MT
pVMp

(42)

The modified matrices are used to assemble the system which is then solved using
LDL factorization (20). After that, the unconstrained velocity v and pressure p vectors are
restored from the obtained ṽ and p̃ using (37) and (41) respectively.

7. Implementation Aspects

The numerical method described in this work is implemented in MATLAB program-
ming language. To facilitate further development, the object-oriented programming capa-
bilities introduced with MATLAB 2008a are extensively used. Input/output is performed
using HDF5 data format, which makes possible to use external packages for postprocessing.

The Cholesky decomposition is performed using Cholmod solver [37], and for LDL
factorization the MA57 solver is employed [38]. Both are distributed with MATLAB as ex-
ternal libraries, although up-to-date versions of both can be downloaded. The permutation
to reduce fill-in is done using approximate minimum degree ordering method [39].

Where data structures permit, MATLAB Parallel Computing Toolbox is used for
parallelization. This makes possible to run the code efficiently on modern multi-core
architectures, as well as in distributed environments.

The code is available for download from http://sites.google.com/site/sdvigus/ (last
accessed on 28 June 2022).

8. Numerical Benchmarks

In the second part of this work, the results of lateral viscosity variation, sinking block,
brittle extension / compression and Rayleigh-Taylor instability benchmarks are presented
and discussed. The list of the benchmark problems studied and the main aspects of the
algorithm they test are summarized in Table 1. For each problem we compare performance
and accuracy of adaptive and non-adaptive schemes, and evaluate applicability of bilinear
(Q1P0, Q1Q1) and biquadratic (Q2P−1) mixed approximations in different conditions. All
numerical experiments were performed using MATLAB R2009b.

Table 1. Benchmark problems studied.

Section Benchmark Problem Main Aspects of the Algorithm Tested by the Benchmark Problem

Section 8.1 Lateral viscosity variation Comparison with the analytical solution
Section 8.2 Sinking block Ability to handle large O(107) viscosity contrasts
Section 8.3 Brittle extension/compression Ability to capture and resolve spontaneously forming shear zones
Section 8.4 Incompressibility test Influence of the artificial incompressibility
Section 8.5 Rayleigh-Taylor instability Comparison with the analytical solution

8.1. Lateral Viscosity Variation Benchmark

This is the sharp viscosity variation benchmark which is often referred to as SolCx
(e.g., [24,40]. The fully developed analytical solution exists, and thus the convergence
of the proposed adaptive numerical method and correctness of the implementation can
be evaluated.

http://sites.google.com/site/sdvigus/
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8.1.1. Setup and Parameters

The model domain is defined as 1.0× 1.0 box with free slip boundary conditions on
all sides. The fluid flow is driven by density variation imposed by applying external force
X as:

X = ρ(x, y)
[

fx
fy

]T

where
ρ(x, y) = sin(πy) cos(πx)

fx = 0, fy = 1
(43)

The sharp lateral viscosity variation is defined as:

η(x, y) =

{
1, if 0 6 x 6 0.5
106, if 0.5 < x 6 1

(44)

The plots showing initial density and viscosity profiles are provided on Figure 10.

1 106

ρ η

Figure 10. Initial density (left) and viscosity (right) profiles.

8.1.2. Convergence Test

The series of numerical experiments were performed on adaptive and non-adaptive
Q1Q1-based grids of 128× 128, 256× 256, 384× 384, 512× 512 and 640× 640 efficient
numerical resolutions. In case of adaptive grid, the vx- and vy-velocity fields served as
adaptation criteria with a threshold ε = 10−5. Thus, the wavelet-based adaptation was
performed independently for each of velocity fields, and the results were combined to form
a common adapted mask.

The normalized error between numerical and analytical [41] solutions was com-
puted as:

‖error‖1 =
N

∑
i=1

(|v̄an
xi − v̄num

xi |+ |v̄
an
yi − v̄num

yi |)Vi (45)

where N is the total number of elements, v̄an
xi , v̄num

xi , v̄an
yi and v̄num

yi are arithmetic means of
analytical and numerical vx- and vy-velocities of i-element, Vi is i-element volume.

Dependence of the normalized error on the number of elements for both adaptive and
non-adaptive cases are shown in Figure 11. As it is clearly seen from the plots, both adaptive
and non-adaptive methods converge with the same rate, but the convergence curve for the
adaptive method is lower. Thus, the adaptive approach has a clear advantage—the higher
accuracy for the same number of elements.
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|| 1

non−adaptive grid
adaptive grid

Figure 11. Dependence of the normalized error ‖error‖1 on the number of elements.

8.2. Sinking Block Benchmark

To evaluate the general applicability of the proposed adaptive numerical method, we
performed the classical numerical benchmark of a sinking of a hard rectangular block into
a medium with a lower viscosity [26]. Although corresponding analytical solution is not
known, the numerical results can be evaluated in a qualitative sense.

8.2.1. Setup and Parameters

The model setup is shown on Figure 12, and employed physical and numerical
parameters are provided in Table 2. The numerical simulations were performed on Q1P0
and Q1Q1 adaptive grids of 6 × 12 → 96 × 192 (5 levels) resolution, and with about
1.7× 105 Lagrangian particles. The viscosity field was used as an adaptation criterion with
an adaptation threshold ε = 10−3.

x

y

all boundaries are free slip

g

0.4

0.4

ρm ηm

ρb ηb

Figure 12. Sinking block model setup.
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Table 2. Model parameters for the sinking block benchmark.

Parameter Value

Block viscosity ηb 102–107

Medium viscosity ηm 1.0
Block density ρb 2.0

Medium density ρm 1.0
Gravitational acceleration g −10.0

Time step ∆t 0.1

Since the viscosity interface between the block and the medium exists a priori, the
preliminary grid adaptation was performed before the actual numerical simulations were
started (Figure 13).

1 2

3 4

Figure 13. Preliminary grid adaptation.
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8.2.2. Effect of Viscosity Contrast

The results of numerical simulations on Q1Q1 adaptive grid with 102 and 107 viscosity
contrasts are shown on Figures 14 and 15 respectively. As it is seen from the figures, the
interface between the block and the medium is accurately captured by a multilevel grid
as simulation proceeds and the block sinks down. As expected from the physical point
of view, the block undergoes deformations in case of moderate viscosity contrast (102),
but these deformations vanish as viscosity contrast becomes high (107). The fact that the
shape of the block is preserved at high viscosity contrast also verifies that the implemented
numerical scheme is stress conservative.

time = 5.5 time = 37.5

Figure 14. Results of sinking block benchmark with viscosity contrast ηb
ηm

= 102. Material field with
imposed numerical grid is shown.

time = 5.5 time = 37.5

Figure 15. Results of sinking block benchmark with viscosity contrast ηb
ηm

= 107. Material field with
imposed numerical grid is shown.
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8.2.3. Checkerboard Pressure Problem with Q1P0 Element

The benchmark was performed using Q1P0 mixed approximation to evaluate its
applicability and make a comparison with Q1Q1 element.

While the general model evolution is similar for Q1Q1 and Q1P0 elements, the pressure
solution obtained with Q1P0 clearly shows strong checkerboard effect (Figure 16). This
problem is well known and is caused by the fact that Q1P0 is inherently unstable [16,17].
However, in our experience, the checkerboard effect is even more evident when multilevel
grid is employed. Thus, Q1P0 element has to be used with care, especially when non-linear
pressure-dependent rheology is used (see Section 8.3).

Q1Q1

Q1P0

Figure 16. Pressure field around the block obtained with Q1Q1 and Q1P0 elements.

8.2.4. Performance Analysis

The comparisons of average performance between Q1Q1 adaptive and non-adaptive
schemes were done at resolutions 6× 12→ 384× 768 (7 levels) in adaptive and 384× 768
in non-adaptive case, and with about 2.7× 106 Lagrangian particles in both cases. The
results obtained in sequential (1 CPU) and parallel (8 CPUs) modes are shown on Figure 17.

As it is seen from the plots, there is a very significant performance gain when adapta-
tion is employed, especially for the solution of the Stokes system. Due to the high cost of
Voronoi tessellation, the reordering of Lagrangian particles is relatively expensive in both
adaptive and non-adaptive cases. The potential solution to this problem is to implement
the Voronoi tessellation functionality in an external library using a low-level language, such
as C++.
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parallelized

Figure 17. Performance comparisons between adaptive and non-adaptive numerical schemes for
sinking block model; top: 1 CPU; bottom: 8 CPUs with MATLAB Parallel Computing Toolbox. Dual
AMD Opteron 8380 system was used.

The parallel speedup from 1 to 8 CPUs is significant but less than linear. This can
be explained by the fact that MATLAB Parallel Computing Toolbox is a relatively new
product, and an efficient parallelization using an interpreted dynamic language, such as
MATLAB, poses significant challenges.

8.3. Brittle Extension/Compression Benchmark

This benchmark was performed to test the capabilities of the proposed adaptive
approach to capture and resolve spontaneously forming shear zones in non-linear brittle
faulting models.

8.3.1. Setup and Parameters

The extension/compression model setup is shown on Figure 18, and model parameters
are given in Table 3 (physical parameters are from [14]). The numerical experiments were
performed on Q1Q1-based 12× 4→ 768× 256 (7 levels) adaptive and on 768× 256 non-
adaptive grids, and with about 1.8× 106 Lagrangian particles in both cases. Adaptive
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simulations were started on 384× 128 equidistant grid. The vx- and vy-velocity fields served
as adaptation criteria with a threshold ε = 10−3. Thus, the wavelet-based adaptation was
performed independently for each of velocity fields, and the results were combined to form
a common adapted mask. The multilevel grid, constructed from such a mask, efficiently
captures the gradients of the strain rate field.

x

y

right and left boundaries are Dirichlet with vbc
bottom boundary is free slip

top boundary is zero flux
g

sticky air

weak inclusion
0.04×0.04, ηw

ηm

or or

vbc vbc

Figure 18. Extension/compression model setup.

Table 3. Model parameters for brittle extension/compression benchmark.

Parameter Value

Weak inclusion viscosity ηw 1.0
Medium viscosity ηm 100.0

Weak inclusion and medium density ρ 1.0
Air viscosity ηa 0.01
Air density ρa 0.0

Gravitational acceleration g −10.0
Friction angle φ 0◦–30◦

Strain values ε1/ε2 0.0 / 0.1

Cohesion c1/c2
Extension 4.0 / 1.0

Compression 20.0 / 10.0

Boundary velocity vbc
Extension 0.05

Compression −0.5

Time step ∆t Extension 0.02
Compression 0.004

Nonlinear tolerance εnl 10−3

The strain softening/hardening behavior of brittle materials is modeled by adjusting
the cohesion c at each time step as:

c = c1 + (c2 − c1)min
{

1, max
{

0,
εpl − ε1

ε2 − ε1

}}
(46)

Thus, the cohesion value c is changed linearly from initial c1 to final c2 as accumulated
plastic strain εpl changes from ε1 to ε2. The softening behavior is imposed when c2 < c1, and
the hardening—when c2 > c1. The accumulated plastic strain εpl is defined on Lagrangian
particles, and is integrated by the forward Euler scheme as other particles properties:

εpl(t + ∆t) = εpl(t) + ε̇pl(t)∆t (47)

Here ε̇pl is the plastic strain rate computed as:

ε̇pl = ε̇ I I

(
1− ηeff

ηcreep

)
(48)

where ε̇ I I is the second invariant of the strain rate tensor, and ηcreep and ηeff and creep and
viscoplastic effective viscosities respectively.
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8.3.2. Shear Bands Formation

The brittle extension and compression numerical experiments were performed with
friction angles φ = 0◦, 10◦, 20◦ and 30◦ on both adaptive and non-adaptive grids. As
an example, the results of an extension numerical simulation with φ = 0◦ are shown on
Figures 19 and 20, and the results of a compression simulation with φ = 30◦ are shown
on Figures 21 and 22. As it is seen from the figures, the multilevel grid is progressively
adapted to capture and better resolve appearing brittle faults as simulation proceeds.

Figure 19. Extension model with φ = 0◦ after 0.07% strain; top: log(ε̇ I I) plot; middle: numerical grid;
bottom: zoom as marked by red rectangles.
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Figure 20. Extension model with φ = 0◦ after 0.53% strain; top: log(ε̇ I I) plot; middle: numerical grid;
bottom: zoom as marked by red rectangles.

Figure 21. Compression model with φ = 0◦ after 0.13% strain; top: log(ε̇ I I) plot; middle: numerical
grid; bottom: zoom as marked by red rectangles.
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Figure 22. Compression model with φ = 0◦ after 1.33% strain; top: log(ε̇ I I) plot; middle: numerical
grid; bottom: zoom as marked by red rectangles.

The orientations of the formed shear bands with respect to horizontal were measured
for both adaptive and non-adaptive models and compared against each other and against
Coulomb orientations (Figure 23). The results obtained on adaptive and non-adaptive grids
are very close, and show good agreement with Coulomb angles which are expected [14,42].
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Figure 23. Orientations of shear bands in extension/compression simulations with different fric-
tions angles.
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8.3.3. Long-Term Brittle Extension

It is interesting to compare long-term brittle model evolution simulated on adaptive
and non-adaptive grids. The material and strain rate fields from extension simulations
with φ = 0◦ after relatively high strains are shown on Figures 24–26. As it is seen from
the figures, the results obtained on adaptive and non-adaptive grids are almost identical.
Thus, for considered models, the adaptive scheme can be used instead of non-adaptive
with confidence.

non-adaptive grid

adaptive grid

Figure 24. Material fields and log(ε̇ I I) plots obtained with non-adaptive and adaptive grids for
extension model with φ = 0◦ after 12.33% strain.
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non-adaptive grid

adaptive grid

Figure 25. Material fields and log(ε̇ I I) plots obtained with non-adaptive and adaptive grids for
extension model with φ = 0◦ after 25.33% strain. See Figure 26 for zoom as marked by a red
rectangle here.

Figure 26. Results of adaptive extension simulation with φ = 0◦ after 25.33% strain. Top: numerical
grid; bottom: zoom as marked by a red rectangle here and on Figure 25.
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8.3.4. Performance Analysis

The comparison of average performance between adaptive and non-adaptive schemes
is shown on Figure 27. As in the sinking block benchmark (Section 8.2), the performance
gain for matrices construction and Stokes system solution is very significant when adaptive
grid is employed. However, the considered problem is non-linear and the Stokes system
has to be constructed and solved normally more than once at each time step. Thus, the
overall performance advantage of the adaptive approach is even more dramatic in this case.
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Figure 27. Performance comparison between adaptive and non-adaptive numerical schemes for
brittle extension model. Dual AMD Opteron 8380 system was used.

8.4. Incompressibility Issue with Q1Q1 Element

As was demonstrated by previous numerical experiments (Sections 8.2 and 8.3), the
results obtained with stabilized Q1Q1 element are adequate in many cases. However, in
many gravity-driven geodynamic models, the Q1Q1 element behaves unreliably due to the
issue of artificial incompressibility caused by the addition of the stabilization matrix V to
the Stokes system. This problem is discussed in the original works [18,19] and was also
confirmed in personal communications with P. Bochev.

To evaluate the issue, we performed the series of numerical simulations on Q1Q1- and
Q2P−1-based regular grids of a model containing square 1.0× 1.0 domain with uniform
ρ = 1.0 and η = 1.0 and applied gravity g = −10.0. Since the media is assumed to
be incompressible, one would expect vy-velocity to be zero everywhere. However, the
differences between normalized L2-norms of vy obtained with Q1Q1 and Q2P−1 elements
are almost 10 orders of magnitude (Table 4).

Table 4. Velocity norms ‖vy‖2 normalized by the number of elements.

Element Type Resolution
100 × 100 200 × 200 400 × 400 800 × 800

Q1Q1 8.35× 10−7 1.04× 10−7 1.30× 10−8 1.63× 10−9

Q2P−1 2.26× 10−17 2.31× 10−17 2.39× 10−17 2.89× 10−17

Thus, while the Q1Q1 element is stable and can be efficiently used in numerical
experiments like brittle faulting (Section 8.3), it has to be avoided in models which are
gravity-driven by a small density differences—such as Rayleigh-Taylor instability or sub-
duction simulations.
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8.5. Rayleigh-Taylor Instability Benchmark

This is the classical two-layer Rayleigh-Taylor instability benchmark. The correspond-
ing analytical solution is available, and thus the accuracy of the employed computational
scheme can be evaluated.

8.5.1. Setup and Parameters

The Rayleigh-Taylor model setup is shown on Figure 28, and model parameters
are provided in Table 5. The Q1Q1 element can not be used for this benchmark due to
incompressibility issue (see above), and thus biquadratic mixed approximation Q2P−1
was used. The numerical simulations were performed on 25× 25→ 400× 400 (5 levels)
adaptive and on 400× 400 non-adaptive grids, and with 1.6× 107 Lagrangian particles in
both cases. The material density field was used as an adaptation criterion with a threshold
ε = 10−5. Since the density interface between the layers exists a priori, the preliminary grid
adaptation was performed—as in the sinking block benchmark.

x

y
ρ2 η2

top and bottom boundaries are no slip
right and left boundaries are free slip

g

ρ1 η1small perturbation

h2

growth rate K

λ

Figure 28. Rayleigh-Taylor model initial setup.

Table 5. Model parameters for the Rayleigh-Taylor benchmark.

Parameter Value

Top layer viscosity η1 1–2000
Bottom layer viscosity η2 1–1000

Top layer density ρ1 1.1
Bottom layer density ρ2 1.0

Gravitational acceleration g −10.0
Courant number 0.8

8.5.2. Growth of Diapirs

The series of Rayleigh-Taylor numerical simulations were performed varying viscosity
contrast η1

η2
and thickness of bottom layer h2 on both adaptive and non-adaptive grids. The

growth factors were calculated after the first time step for both adaptive and non-adaptive
models and compared against each other and against analytical solution [43,44], the results
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are provided on Figure 29. As it is seen from the plots, growth factors obtained on adaptive
and non-adaptive grids are practically equal, and good agreement with analytical solution
is observed.
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Figure 29. Comparison of numerical and analytical growth rates for Rayleigh-Taylor model.

To illustrate the following diapiric growth, some results for subsequent simulation time
steps are shown on Figures 30–32. As it is seen from the figures, the interface between the
layers remains accurately captured and resolved by an adaptive grid as simulation proceeds.
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time=38774 time=50521

Figure 30. Results of Rayleigh-Taylor numerical experiment with η1
η2

= 103. top: material plot;
middle: numerical grid; bottom: vy-velocity plot.
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time=109 time=140

Figure 31. Results of Rayleigh-Taylor numerical experiment with η1
η2

= 1. top: material plot; middle:
numerical grid; bottom: vy-velocity plot.



Fluids 2022, 7, 221 31 of 35

Figure 32. Zoom in Figure 31 at t = 140, as marked by red rectangles.

8.5.3. Performance Analysis

The plots provided on Figure 33 show the measured time and memory requirements
for a single Cholesky factorization for numerical simulations on adaptive and non-adaptive
grids of 100× 100, 200× 200, 400× 400 and 800× 800 efficient numerical resolutions. The
power of adaptive approach is evident—both time and memory requirements can differ by
as high as 3 orders of magnitude (the 800× 800 case).
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Figure 33. Time (top) and memory requirements (bottom) for Cholesky factorization depending on
numerical resolution. Quad AMD Opteron 8220 system was used.
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8.5.4. Effect of Voronoi Tessellation

Due to the relatively large deformations, the Rayleigh-Taylor instability benchmark
serves as a good test to check the efficiency of the Voronoi tessellation algorithm to maintain
uniform distribution of Lagrangian particles. The numerical simulations of diapiric growth
with and without Voronoi algorithm were performed on Q2P−1-based 25× 25→ 100× 100
(3 levels) adaptive grid, and with 2.5× 105 Lagrangian particles. For the experiment with
enabled Voronoi tessellation, the minimum and maximum cell areas were AVmin = 1

50 and
AVmax = 1

12 . The effect of the Voronoi algorithm on a Lagrangian particle distribution is
illustrated on Figure 34, and dependency plot of the number of particles on time is provided
on Figure 35. As it is seen from the Figure 34, the Voronoi tessellation algorithm works very
efficiently in keeping uniform particle density across the domain.

Figure 34. Effect of the Voronoi tessellation algorithm on a Lagrangian particle distribution. The
tessellation is disabled (top)/enabled (bottom).
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Figure 35. Number of Lagrangian particles as a function of time when Voronoi tessellation algorithm
is disabled/enabled.

9. Conclusions

In this work, a new adaptive multiresolution finite element method for the Stokes flow
problems is presented (the implementation is available for download from http://sites.
google.com/site/sdvigus/ (last accessed on 28 June 2022)). The automatic grid adaptation
is supported for bilinear and biquadratic mixed discretizations and is implemented using
an original algorithm based on wavelet analysis [4,6]. The proposed method was applied to
linear (lateral viscosity variation, sinking block and Rayleigh-Taylor instability benchmarks)
and to non-linear (brittle extension/compression benchmark) problems. The obtained
numerical results are shown to be in an excellent agreement with those obtained on non-
adaptive grids and with analytical solutions. At the same time, computational requirements
of the method are up to few orders of magnitude lower compared to the non-adaptive grid
approach, in terms of both time and memory usage.
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