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Abstract: Data obtained by direct numerical simulations (DNS) of the Zero-Pressure-Gradient Turbu-
lent Boundary Layer were analyzed and compared to a mathematical model of the mean velocity
profile (MVP) in the range 1000≤ Reθ ≤ 6500. The mathematical model is based on the superposition
of an accurate description of the inner law and Coles’ wake function with appropriately chosen pa-
rameters. It is found that there is excellent agreement between the mathematical model and the DNS
data in the inner layer when the Reynolds number based on momentum thickness, Reθ, is greater
than 1000. Furthermore, there is very good agreement over the entire boundary layer thickness, when
Reθ is greater than 2000. The diagnostic functions Ξ and Γ based on DNS data are examined and their
characteristics are discussed in relation to the existence of a logarithmic layer or a power law behavior
of the MVP. The diagnostic functions predicted by the mathematical model are also presented.

Keywords: turbulent boundary layer; direct numerical simulation (DNS); composite mean velocity
profile; diagnostic functions

1. Introduction

In the framework of Computational Fluid Mechanics, turbulent flows are usually
simulated using the Reynolds Averaged Navier Stokes (RANS) equations, augmented by
empirical turbulence models, which were calibrated with experimental data of simple
turbulent flows and contain several simplifying assumptions. These disadvantages can be
avoided by using the direct numerical simulation (DNS) methodology. The DNS method is
considered to be capable of resolving even the smallest eddies on the spatial and temporal
scales of turbulence. This requires the use of extremely dense grids, making DNS solutions
costly in terms of computation time and memory. Although the DNS method does not
require additional turbulence closure equations, it creates the need for very dense computa-
tional grids as well as extremely small integration time—steps in order to achieve accurate
solutions. Consequently, the scope of the DNS method is currently limited to flows with
relatively low Reynolds numbers [1–3].

In the context of routine engineering applications, an accurate and convenient method
of calculating the average velocity profile is often sufficient. By “convenient method”, we
mean that three conditions should be satisfied: that the profile is given in the form of a
closed mathematical expression, that the velocity is given explicitly as a function of the wall
distance, i.e., as a function u(y) and not in an implicit form y(u), and that the interval of
validity of the mathematical expression covers the entire thickness of the boundary layer. In
this paper, we briefly describe a mathematical model which has been originally introduced
by Liakopoulos [4]. For convenience, the model will be referred to as the AL84 model in the
remainder of the paper. Naturally, the accuracy of a model must first be documented by the
verification and validation process, through comparison with experimental or DNS data. In
the present work, we focus on comparisons with DNS results. The model will be described,
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verified, and validated for two—dimensional incompressible turbulent boundary layer
flows, developing on smooth surfaces with zero pressure gradient. The model can be
generalized to describe boundary layers growing under the influence of pressure gradient,
positive or negative.

2. Modelling the Mean Velocity Profile Methodology

The standard model of the turbulent boundary layer is the three-zone model which
includes the inner zone, the outer zone, and the overlap zone where the logarithmic law
applies. We remind the reader that for the mathematical description of the inner zone,
suitable variables are y+ = yuτ

ν and u+ = u
uτ

, where y is the distance normal to the solid
surface, u is the velocity component in the main direction of flow, ν is the kinematic viscosity
coefficient and uτ is the shear velocity at the wall [5,6]. It is worth pointing out that the
logarithmic law u+ = 1

κ lny+ + B is valid in the interval [y+
low, y+

high]. The values of y+
low

and y+
high depend on the value of the Reynolds number Reθ (defined by the boundary

layer momentum thickness θ) and differ between researchers. A common approach when
analyzing experimental data for turbulent boundary layer is to use the values κ = 0.40 or
0.41 for von Kármán’s constant and B = 5.0.

Suitable variables for the mathematical description of the velocity profile in the outer
zone are y

δ and u
uτ

where δ is the local boundary—layer thickness. Coles [7] analyzed the
available experimental measurements and proposed the modeling of the outer layer with a
wake function, w, defined by

u+ =
1
κ

lny+ + B + g(Π,
y
δ
) (1a)

where
g(Π,

y
δ
) =

Π
κ

w(
y
δ
) (1b)

It is important to realize that Equation (1a,b) is the definition of the wake function.
At each position y, the value of the function g is the difference between the local time-
averaged fluid velocity and the value of the logarithmic law at the same position. The
wake function w, defined in Equation (1b), depends on the wake strength parameter Π,
which is often referred to as Coles’ parameter. The wake function affects the velocity profile
for y+ & 65 and provides an accurate fit to the experimental velocity data for turbulent
boundary layers.

To describe mathematically the mean velocity profile on a flat plate over the entire
boundary layer thickness we can postulate the existence of a function f that satisfies

u+ = f(y+) + g(Π,
y
δ
), 0 ≤ y ≤ δ (2)

In Equation (2), f(y+) is an approximation of the inner law which is valid over the inner
layer including the overlap layer. In order for Equations (1) and (2) to be compatible in the
outer zone, the function f(y+) must tend asymptotically to the logarithmic law 1

κ lny+ + B,
for high values of y+. Therefore, to approximate the composite velocity profile, we are
required to determine two functions, f and g, whose sum must accurately approximate the
velocity u+ for any y+, in the interval [0, δ+].

2.1. Inner Layer

A variety of mathematical expressions of varying levels of complexity and precision
have been proposed for the inner law. In this paper, we estimate the accuracy of the AL84
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model [4]. In this model, two alternative mathematical expressions for the function f(y+)
are proposed:

f
(
y+
)
= ln

 (y+ + 5.85)3.04

(y+2 − 9.25y+ + 58.5
)0.30

+ 4.16 tan−1(0.164y+ − 0.759)− 1.45 (3)

f
(
y+
)
= ln

 (y+ + 11)4.02

(y+2 − 7.37y+ + 83.3
)0.79

+ 5.63 tan−1(0.12y+ − 0.441)− 3.81 (4)

The method of developing Equations (3) and (4) is described in Liakopoulos [4]. In
Figure 1 we present the graphs of Equations (3) and (4). It is obvious that the difference
between Equations (3) and (4) is rather small, while the maximum of the difference occurs
at y+ = 10 and takes the value 0.32. For values of y+ ≥ 50, both functions tend asymptot-
ically to the logarithmic law with κ = 0.41 and B = 5.0, therefore any selection between
Equations (3) and (4) has no significant effect on the shape of the mean velocity profile.

Figure 1. (a) Graphical comparison of Equations (3) and (4). (b) Plot of the difference between
Equations (3) and (4).

2.2. Outer Layer

Coles [7] tabulated the wake function w( y
δ ) under the normalization conditions

w(0) = 0 and w(1) = 2. More convenient mathematical expressions have been proposed for
the function g (Finley et al., Granville and Dean [8–10]). Here, we mention the expressions

g(Π,
y
δ
) =

Π
κ

w(
y
δ
) =

2Π
κ

sin2
(π

2
× y

δ

)
(5)

and
g(Π,

y
δ
) =

1
κ
(1 + 6Π)

(y
δ

)2
− 1

κ
(1 + 4Π)

(y
δ

)3
(6)

In Equations (5) and (6) κ is the von Kármán’s constant while the Coles’ parameter
takes values in the range 0.3–0.6 [11] and affects the outer region of the velocity profile.
The graph of function g based on Equation (6) is presented in Figure 2 and used in the
remainder of the paper [12].
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Figure 2. The function g, Equation (6), for κ = 0.41 and Π = 0.3, 0.4, 0.5 and 0.6.

3. Mean Velocity Profiles

The assessment of the accuracy of the mean velocity profile model is carried out in
two stages. The first concerns the interval where the inner law applies, while in the second
stage, the comparison is made over the entire thickness of the boundary layer.

3.1. Inner Region: Comparison of f(y+) with ū(y+) Calculated by DNS

In order to confirm the validity of the model, we compare the data of the DNS turbulent
boundary layer simulation in a smooth plate with zero pressure gradient of Schlatter and
Örlü [13] with the inner law model of AL84.

As we described in Section 2.1, Equations (3) or (4) of the AL84 model approximate
the mean velocity profile (MVP) in the inner layer i.e., it includes the viscous sublayer,
the transition zone, and the overlap zone. In Figure 3, we present a comparison of the
time-averaged velocity profiles for the inner law region of the AL84 model and the results
of the direct numerical simulation (DNS) of Schlatter and Örlü [13] for three values of Reθ
in the range 1000 to 4060. Equation (4) was used to plot the profiles in Figure 3.

The agreement between the model and the DNS data is excellent and the deviation
from the logarithmic law for y+ & 270 (Reθ = 4060) simply demonstrates the need to add
the g function (see Section 2.1). The difference [u+(y+) − f(y+)] close to the wall is plotted
in Figure 4. The corresponding error statistics are listed in Table 1.

Table 1. Error quantification in the inner layer.

Statistics Reθ = 1000 Reθ = 3030 Reθ = 4060

Mean 0.1619 0.1518 0.1727
Standard Error 0.0162 0.0127 0.0127

Root Mean Square Error 0.2011 0.1928 0.2145
Mean Square Deviation 0.1205 0.1195 0.1279

Variance 0.0145 0.0143 0.0164
Range 0.3413 0.3849 0.4244
Min −0.015 −0.0177 −0.0182
Max 0.3264 0.3673 0.4062

Number of data points 55 89 102
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Figure 3. Comparison of f(y+) given by Equation (4) with the DNS MVPs of Schlatter and Örlü [13].
Reθ = 1000 (a), 2000 (b), 4060 (c). The deviation from the logarithmic law (for y+ ≥ y+high) points to
the need for the inclusion of a wake function.

Figure 4. Behavior of the difference [u+(y+) − f(y+)] in the inner layer. Reθ = 1000 (a), 3030 (b), 4060 (c).
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3.2. Comparison of the AL84 Composite Profile (f + g) with DNS Results over the Whole Boundary
Layer (0 < y < δ)

In this subsection, we present a comparison of the mean velocity profiles of the
numerical results of Schlatter and Örlü [13] and the AL84 composite model over the entire
thickness of the boundary layer.

The graphs in Figure 5 show the MVPs of Schlatter and Örlü [13] DNS results for
Reθ = 1000, 2000, and 4060. During the evaluation of the AL84 model, κ and Π were
assigned values of 0.41 and 0.55, respectively.

Figure 5. Mean velocity profile over the whole boundary layer (0 ≤ y ≤ δ). Comparison of the
composite profile, calculated by AL84 model [f + g], and the DNS results reported by Schlatter and
Örlü [13] for Reθ = 1000 (a), 2000 (b), 4060 (c). κ = 0.41, Π = 0.55.

The accuracy of the AL84 model is satisfactory for the low Reynolds number
Reθ = 1000 and improves significantly as Reθ increases. The agreement for the mod-
erate Reynolds number Reθ = 4060 is excellent. On the scale of Figure 5c, the differences
between the two curves are not noticeable except in the interval 20 . y+ . 60.

In order to quantify the difference, we evaluate the function e(y+) = u+ − [f + g] where
u+ is the DNS mean velocity profile considered here as the “true” velocity profile. The
graphical representation of the difference is shown in Figure 6 while the error quantification
is summarized in Table 2.

Table 2. Error quantification in the entire boundary layer thickness 0 ≤ y ≤ δ.

Statistics Reθ = 1000 Reθ = 3030 Reθ = 4060

Mean −0.3399 −0.0736 0.0255
Standard Error 0.0409 0.0143 0.0122

Root Mean Square Error 0.5273 0.204 0.179
Mean Square Deviation 0.4053 0.1908 0.1776

Variance 0.1643 0.0364 0.0315
Range 1.1498 0.6367 0.6561
Min −0.8778 −0.2781 −0.1496
Max 0.272 0.3586 0.5065

Number of data points 98 179 212
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Figure 6. Graphical representation of the error defined as e(y+) = u+(y+) − [f(y+) + g( y
δ , Π)] over the

entire boundary layer thickness 0 ≤ y ≤ δ. κ = 0.41, Π = 0.55. Reθ = 1000 (a), 3030 (b), 4060 (c).

4. Results Diagnostic Functions
Two distinct diagnostic functions can help to indicate if some portions of a mean

velocity profile can be approximated by a logarithmic law or by a power law. Both func-
tions require the calculation of the derivative du+

dy+
. The numerical evaluation of the first

derivative of u+ with respect to y+ is calculated using the following formula (Equation (7))
for unequally spaced data:

du+

dy+
= u+(y+i−1)

2y+ − y+i − y+i+1

(y+i−1 − y+i )(y+i−1 − y+i+1)
+ u+(y+i )

2y+ − y+i−1 − y+i+1

(y+i − y+i−1)(y
+
i − y+i+1)

+ u+(y+i+1)
2y+ − y+i−1 − y+i

(y+i+1 − y+i−1)(y
+
i+1 − y+i )

(7)

It should be stressed that comparisons in terms of the diagnostic functions present a
more stringent check of accuracy since the numerical differentiation of u+(y+) acts as an
error amplifier and thus, differences in MVPs are accentuated.

4.1. The Diagnostic Function Ξ

The function Ξ(y+) = y+ du+

dy+
serves as a tool for answering some fundamental questions

concerning the mathematical form of the inner law. In the first place, as a diagnostic tool,
we can easily prove that if a mean velocity profile (MVP) includes an interval [y+

low, y+
high]

where the classical logarithmic law (see Section 2) holds, then the function Ξ(y+) must attain
a constant value, equal to 1/κ, in the interval [y+

low, y+
high]. Examining the semi-log plot

of function Ξ in Figure 7, we conclude that the MVP reported by Schlatter and Örlü [13]
for the moderately large Reθ = 4060 does not exhibit an interval where Ξ(y+) is strictly
constant. Thus, the existence of a logarithmic layer is justified only as an approximation in
this set of DNS data. This issue is further discussed in Section 4.1.3.
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Figure 7. Schlatter and Örlü [13] data do not exhibit a logarithmic layer for the moderately large
Reθ = 4060.

4.1.1. The Diagnostic Function Ξ as Predicted by the AL84 Model

It is worth exploring the behavior of function Ξ as predicted by the AL84 mathe-
matical model for the Schlatter and Örlü [13] data. Referring to Figure 7, we see that the
function Ξ reaches approximately a plateau in the interval [65, 135] where it takes the
value Ξ = 2.558. Since the existence of the logarithmic law is presupposed in the AL84
model and is incorporated in the construction of the function f of the model with κ = 0.41
(see Section 2) this value is quite close to the expected value. However, it is not exactly
equal to 1/0.41 = 2.439. To understand better this difference it is worth studying further the
inner workings of the AL84 mathematical model. For completeness of the presentation, we
list the parameters of DNS profiles considered in this section in Table 3.

Table 3. Parameters of DNS MVP profiles and the AL84 model.

Reference AL84 Parameters DNS Parameters

κ Π Reθ Reτ uτ θ

Borrell,
Sillero and

Jimenez,
2013 [14]

0.41 0.55 4500 1437.066 0.0384 1.2836
0.41 0.55 5500 1709.493 0.0374 1.5691
0.41 0.55 6000 1847.654 0.0371 1.712
0.41 0.55 6500 1989.472 0.0368 1.855

Reference AL84 Parameters DNS Parameters

κ Π Reθ Reδ* Reτ Cf

Schlatter
and Örlü,
2010 [13]

0.41 0.55 1000 1459.397 359.38 0.0043
0.41 0.55 3030 4237.594 974.18 0.0032
0.41 0.55 4060 5633.318 1271.54 0.003

The fact that the validity of a logarithmic law, with parameters κ and B independent
of Reθ, is presupposed in the AL84 model is verified in Figure 8. The function Ξ1 = y+ df+

dy+

of AL84 (Equation (4)) is shown for Reθ in the range [1000, 6500]. When y+ ≥ 150, the
function Ξ1 becomes equal to 2.45 for all values of Reθ.



Fluids 2023, 8, 260 9 of 18

Figure 8. The function Ξ1 = y+ df+

dy+ as predicted by AL84. For y+ ≥ 150 Ξ1 = constant = 2.45.

Ideally, the function g (Equation (6)) should not modify the MVP and its derivative
close to the wall. In reality, function g has an influence on the inner law for small values of

Reθ as can be seen in Figure 9 where Ξ2 = y+ dg+

dy+
is plotted.

Figure 9. The function Ξ2 = y+ dg
dy+ as predicted by AL84.

By superposing the graphs of Figures 8 and 9, we obtain the graph of function
Ξ = Ξ1 + Ξ2 as calculated using the complete AL84 model (see Figure 10).
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Figure 10. Function Ξ based on the complete AL84 model [f + g].

4.1.2. The Function Ξ Based Exclusively on the DNS Data

Turning now to the DNS data, per se, we present, in Figure 11, the graphs of function
Ξ over the whole boundary layer thickness.

Figure 11. Function Ξ based on DNS data.

For y+ ≤ 100 all curves collapse on a single curve according to the classical view of an
inner law independent of Reθ. Some minor differences appear near the first local maximum
of Ξ (“inner peak”) at approximately y+ ≈ 9.5. The magnitude of the inner peak as well
as the position where it is located are listed in Table 4. The “inner peak” of Ξ is located
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within the buffer zone of the MVP and tends to “oscillate” slightly with respect to its mean
location (see Table 4).

Table 4. The inner peak of function Ξ for various DNS datasets: location and value.

Datasets Reθ Position y+ Where Ξmax Appears Ξmax

Schlatter and Örlü, 2010 [13] 4060 9.427 5.599
Borrell, Sillero and Jimenez, 2013 [14] 4500 9.263 5.604
Borrell, Sillero and Jimenez, 2013 [14] 5500 9.041 5.595
Borrell, Sillero and Jimenez, 2013 [14] 6000 10.225 5.598
Borrell, Sillero and Jimenez, 2013 [14] 6500 10.149 5.606

For y+ & 100 the graphs of Ξ separate in accordance with the view that in the outer
layer, there are evident Reθ effects on MVPs when plotted in inner law variables. A second
local maximum of Ξ (“outer peak”) is formed around y+ ≈ 1150. Table 5 summarizes the
“outer peak” values of Ξ as well as the location of the peak for Reθ in the range 4060 to 6500.

Table 5. The outer peak of function Ξ as a function of Reθ: location and value.

Datasets Reθ Position y+ Where Ξmax Appears Ξmax

Schlatter and Örlü, 2010 [13] 4060 916.807 5.397
Borrell, Sillero and Jimenez, 2013 [14] 4500 932.620 5.198
Borrell, Sillero and Jimenez, 2013 [14] 5500 1140.034 5.433
Borrell, Sillero and Jimenez, 2013 [14] 6000 1316.612 5.466
Borrell, Sillero and Jimenez, 2013 [14] 6500 1364.088 5.435

The variation in the magnitude of the peak is noticeable. The change in the trend
cannot be explained on physical grounds and may maybe an artifact introduced by the
different numerical methods used in the case of Reθ = 4060. In addition, the rough character
of the computed Ξ in the neighborhood of the “outer peak” may also contribute to the listed
values of Ξmax(Reθ). We stress here that no local smoothing of function Ξ was applied.
As the momentum Reynolds number increases, the location of the “outer peak” is always
shifted towards higher values of y+ (see Figure 12).

Figure 12. Location of “outer peak” of Ξ.
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Between the inner and outer peaks, function Ξ tends to form an approximate plateau
in the interval [60, 250]. This is discussed in Section 4.1.3.

4.1.3. Search for a Logarithmic Layer

Searching for evidence of a logarithmic layer in the DNS datasets in the range of Reθ
[3030, 6500] we focused on the y+ interval [60, 250]. In this interval, a local minimum
of Ξ is attained and possibly an approximate plateau is formed. Relevant results are
summarized in Table 6 and Figure 13. Based on the data under consideration, it is observed
that increasing the Reθ number leads to a larger interval of nearly constant value of Ξ and
thus, to a possible determination of the von Kármán’s constant.

Table 6. Local minima of function Ξ in the inner layer. Ξmin values and y+ values where Ξmin appears.

Datasets Reθ
Position y+

Where Ξmin Appears Ξmin “κmax”

Schlatter and Örlü, 2010 [13] 1000 53.321 2.461 0.406
H. Abe, 2020 [15] 1000 54.819 2.490 0.402

Schlatter and Örlü, 2010 [13] 4060 71.624 2.274 0.440
Borrell, Sillero and
Jimenez, 2013 [14] 4500 69.929 2.279 0.439

Borrell, Sillero and
Jimenez, 2013 [14] 5500 71.351 2.287 0.437

Borrell, Sillero and
Jimenez, 2013 [14] 6000 73.865 2.279 0.439

Borrell, Sillero and
Jimenez, 2013 [14] 6500 73.312 2.283 0.438

Figure 13. The behavior of Ξ in the y+ interval [30, 300].

In the case of a low Reynolds number, Reθ = 1000, there is a substantial difference in
the DNS data of Schlatter and Örlü [13] and Abe [15]. The minimum values, Ξmin, are 2.461
and 2.490 corresponding to estimates of the maximum values of von Kármán’s constant
equal to 0.406 and 0.402 respectively. Furthermore, the minimum value of Ξ appears at
y+ = 53.3 and y+ = 54.8 respectively (see Table 6). For the DNS data in the range Reθ = 4000
to Reθ = 6500, the minimum value of Ξ appears at y+ ≈ 74. The value of Ξmin shows a
remarkable consistency (Ξmin ≈ 2.27) corresponding to a maximum possible value κ ≈ 0.44
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for the von Kármán’s constant. This is remarkable since the DNS results of Schlatter and
Örlü [13] were obtained by a different numerical method than those of Borrell et al. [14].
However, even for these relatively large values of Reθ, there is no clear evidence of a
logarithmic layer (Ξ ≈ const.).

Examining Figure 13 we observe that in the interval [150, 300], as Reθ increases, the
slope of function Ξ gradually decreases. This behavior may reflect the initial stages of a
process in which the graph of function Ξ reaches gradually a plateau and Ξ converges
slowly to a value 1/κ = constant in the limit Reθ→∞. However, this is a purely speculative
remark in view of the limited number of DNS-calculated MVPs published at present and
the well—known limitations of DNS in computing flows at high Reθ. The graph of the
derivative dΞ/dy+ versus Reθ (Figure 14) shows quantitatively the diminishing slope but
reveals nothing with respect to the asymptotic behavior of Ξ as Reθ→ ∞.

Figure 14. Blue dots: estimates of the gradient of the diagnostic function for various Reθ. Dotted
black straight line: least square fit.

Laboratory experiments have been designed to study turbulent flows at higher
Reynolds numbers but they also face accuracy limitations. Very high Reynolds number
laboratory turbulent flows have been achieved mainly in straight pipes [16–22].

It should be clear to the reader that the approximate estimation of the Kármán constant
for the datasets analyzed is to some degree subjective. In contrast, for turbulent flows
in channels and pipes, there is overall agreement on upper and lower bounds of the
value of Kármán’s constant. Of course, channel and pipe flows are fully developed and
unidirectional. On the other hand, turbulent boundary layers are developing flows and the
mean flow only approximately may be classified as nearly parallel flow. Even with these
limitations in mind, we report on estimates of the Kármán constant (see Table 7).

Table 7. Estimates of von Kármán constant for finite Reθ.

Datasets Reθ κ

Schlatter and Örlü, 2010 [13] 1000 0.402
H. Abe, 2020 [15] 1000 0.398

Schlatter and Örlü, 2010 [13] 3030 0.403
Schlatter and Örlü, 2010 [13] 4060 0.392

Borrell, Sillero and Jimenez, 2013 [14] 4500 0.392
Borrell, Sillero and Jimenez, 2013 [14] 5500 0.379
Borrell, Sillero and Jimenez, 2013 [14] 6000 0.386
Borrell, Sillero and Jimenez, 2013 [14] 6500 0.391
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Assuming that the slopes of the Ξ curves are small enough to be considered negligi-
ble, a least—squares—based estimate of a Kármán constant representative in the range
1000 ≤ Reθ ≤ 6500, is found to be equal to κ ≈ 0.393. The dispersion of the data is shown
graphically in Figure 15.

Figure 15. Upper and lower bounds of the von Kármán’s constant. The black line represents the
mean value, κ ≈ 0.393.

A number of attempts have been made by researchers to modify the log-law with
mixed results. We mention here, as an example, the effort to use Lie group symmetry
methods (e.g., Oberlack [23]) to modify the classical log-law in order to improve the
agreement with experimental and DNS data close to the wall. Other researchers attempted
to modify the log-wake law (Guo et al. [24]). The discussion of these modifications is beyond
the scope of the present work. However, we can state that no proposed modification has
been widely and fully accepted by the research community.

4.2. The Diagnostic Function Γ

In order to investigate the possibility of a power law approximation in some interval

of the MVP, we examine the behavior of the function Γ = y+

u+
du+

dy+
over the whole boundary

layer thickness. It is straightforward to prove that if a power law of the form u+ = Ay+λ

(A and λ constants for a particular value of Reθ) approximates the function u+(y+) in an
interval [y+

low, y+
high], then Γ attains a constant value equal to λ in that interval.

The diagnostic function Γ, as calculated based on the DNS data, is plotted in Figure 16.
In the interval [70, 250], Γ attains a constant value, leading to the estimate λ = 0.145. Another
approximate plateau is formed in the interval [800, 1100] for “high” Reynolds numbers,
corresponding to an exponent λ = 0.209.
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Figure 16. Function Γ based solely on DNS data.

We note that the corresponding predictions of the AL84 model (for high Reθ numbers)
are λ = 0.155 for the interval 100 ≤ y+ ≤ 190 and λ ≈ 0.2 = 1/5 for 900 ≤ y+ ≤ 1200 (see
Figure 17).

Figure 17. Function Γ based on the complete [f + g] AL84 model. [κ = 0.41, Π = 0.55].

4.3. A Note on the Accuracy of the DNS Profiles

It should be noted that in this paper it was tacitly assumed that the DNS mean velocity
profiles (MVPs) were free of errors and they served as the “truth” in comparisons with
model AL84. Naturally, this cannot be true. Although the DNS data are of very high
quality there are still differences among the profiles computed by various researchers using
different numerical methods. For example, in Figure 18 we present the comparison of the Ξ
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function calculated based on the profiles reported by Schlatter and Örlü [13] and Abe [15]
for Reθ = 1000. It is evident that there are some noticeable differences. Comparisons of Ξ(y+)
and Γ(y+) present stringent accuracy tests because the numerical differentiation of u+(y+)
acts as an error amplifier, and thus, differences between computed MVPs are accentuated.

Figure 18. Differences in Ξ calculated based on Schlatter & Örlü [13] and Abe’s [15] DNS data for
Reθ = 1000.

5. Conclusions

This paper describes the comparison of the AL84 model with high precision and
low noise data from direct numerical simulations (DNS) of the zero-pressure-gradient
turbulent boundary layer. The influence of the Reθ number on the turbulent velocity profile
is analyzed in the range [1000, 6500]. It was deemed useful to divide the presentation into
two parts. One concerns the interval where the inner law applies, while in a second stage,
the comparison is made over the entire thickness of the boundary layer.

In the first part, the function f(y+) of Equation (4) was used. It was found that there is
a very good agreement between the results of the numerical simulation of Schlatter and
Örlü [13] and the AL84 model as long as the Reynolds number Reθ is greater than 1000.
For y+ & 150, the function f(y+) tends asymptotically to the logarithmic law.

To investigate the velocity profile over the entire thickness of the boundary layer, the
function g(Π, y

δ ) must be added to the function f(y+). For this purpose, in the second
part of the comparison, the use of Equations (2), (4), and (6) is proposed. It turns out that
there is agreement between the composite model AL84 and the DNS results, as long as the
Reynolds number based on the momentum thickness of the boundary layer is relatively
high. When Reθ ≥ 2000, we have very good agreement between the model and the results
of the direct numerical simulation of the turbulent boundary layer.

In Section 4 comparisons of the AL84 model with DNS data are presented in terms
of the diagnostic functions Ξ and Γ. The analysis of the DNS data per se does not reveal a
clear classical logarithmic layer in the range of Reθ studied. The possibility of the formation
of a logarithmic layer as Reθ → ∞ is discussed and approximate values for the Kármán
constant are estimated for each Reθ analyzed. An overall average value of the Karman
constant in the range 1000 ≤ Reθ ≤ 6500 is estimated ≈ 0.39. The power law assumption is
better supported by the analysis of the diagnostic function Γ. A clear plateau is formed in
the interval 70 . y+ . 250 for 4060 ≤ Reθ ≤ 6500 corresponding to a power law exponent
λ = 0.145 = 1/6.89 ≈ 1/7. In comparison for large Reθ the composite AL84 model exhibits a
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logarithmic behavior with κ ≈ 0.382 in the interval 80 . y+ . 150 and a power law behavior
in the interval 100 ≤ y+ ≤ 190 with λ = 0.155.

The AL84 model, as has been verified and validated, is useful in the development
and testing of turbulence models valid very close to solid walls [25] as well as in the
imposition of boundary conditions near solid surfaces via the wall functions methodology.
Furthermore, the explicit form of the AL84 model is very convenient for the imposition of
initial conditions in the numerical integration of parabolic Prandtl’s equations for turbulent
boundary layers.
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