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Abstract: The discovery of the law of the wall, the log-law including the von Kármán constant, is seen
to be one of the biggest accomplishments of fluid mechanics. However, after more than ninety years,
there is still a controversial debate about the validity and universality of the law of the wall. In
particular, evidence in favor of a universal log-law was recently questioned by data analyses of the
majority of existing direct numerical simulation (DNS) and experimental results, arguing in favor
of nonuniversality of the law of the wall. Future progress requires it to resolve this discrepancy: in
absence of alternatives, a reliable and universal theory involving the law of the wall is needed to
provide essential guideline for the validation of theory, computational methods, and experimental
studies of very high Reynolds number flows. This paper presents an analysis of concepts used to
derive controversial conclusions. Similar to the analysis of observed variations of the Kolmogorov
constant, it is shown that nonuniversality is a consequence of simplified modeling concepts, leading
to unrealizable models. Realizability implies universality: there is no need to adjust simplified models
to different flows.

Keywords: wall-bounded turbulent flows; law of the wall; von Kármán constant

1. Introduction

One of the biggest challenges of computational fluid dynamics (CFD) is the reliable
and efficient prediction of turbulent flows at high Reynolds number (Re), in particular
wall-bounded turbulent flows usually seen in reality. Direct numerical simulation (DNS),
large eddy simulation (LES), and experimental studies are hardly applicable to extreme
Re regimes [1], and relatively cost-efficient hybrid RANS-LES, which combine LES with
Reynolds-averaged Navier-Stokes (RANS) equations, suffer from reliability issues [2].
There are very promising new developments as given by minimal error hybrid-RANS-LES
(which can act as resolving LES) [2–7], but these methods also need evidence for their
validity at high Re. A closely related challenge is the understanding of the nature of
turbulent flow in the limit of infinite Re.

The discovery of the law of the wall, the log-law including the von Kármán constant [8],
is of essential relevance in this regard. In particular, a proven universal law of the wall has
unique practical benefits which cannot be provided in any other way:

B1. It can be used to overcome a very essential problem: it can provide strict guideline for
the validation of experiments and computational simulation methods such as DNS,
LES, and hybrid RANS-LES for at least several canonical high Re flows [9–11].

B2. More specifically, minimal error hybrid RANS-LES were developed recently [2,4–7].
These methods overcome resolution limitations of existing methods, which offers huge
computational cost advantages. A universal law of the wall can provide evidence for
the validity of such predictions at very high Re.

B3. Usually applied turbulence models are developed on the basis of empirical notions.
A universal law of the wall can be applied for the design of exact turbulence models.
This was demonstrated recently by the derivation of an exact transport equation
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for the turbulent viscosity [12]. Such equations can support (not support) empirical
turbulence models.

B4. A theory involving a universal law of the wall can essentially contribute to our un-
derstanding of the structure of turbulent flows at high Re [13]. It can explain Re
requirements to observe the log-law, the structure of self-similar turbulence charac-
teristics, and convergence toward these structures. Such understanding provides a
valuable reference for other turbulent flow studies.

However, after more than ninety years, there is still debate about the validity and
universality of the law of the wall. The specific question is whether the mean streamwise
velocity U+ of at least several canonical wall-bounded flows is characterized by log-law
variations in absence of boundary effects, this means whether we have U+ = κ−1ln y+ + B
including the same von Kármán constant κ and constant B. The superscript + refers to
inner scaling; we use U+ = U/uτ and y+ = Reτy for the inner scaling wall distance, where
y is normalized by δ which is the half-channel height, pipe radius, or 99% boundary layer
thickness with respect to channel flow, pipe flow, and the zero-pressure gradient turbulent
boundary layer (TBL), respectively (the zero-pressure gradient TBL will be referred to
simply as TBL). The friction Reynolds number is defined by Reτ = uτδ/ν, where uτ is the
friction velocity and ν is the constant kinematic viscosity.

Figure 1 illustrates the steadily growing interest in these questions with about 1000
journal publications per year right now. The development of views over 80 years [14–41]
were reviewed, for example, by Örlü et al. [42], Marusic et al. [43], Smits et al. [44],
and Jiménez [45]. The Princeton superpipe (PSP) measurements (involving data up to
Reτ = 530,023) were available at this time [46], but concerns about the data accuracy still
exist [47]. Supported by increasing access to high Re data, the controversial debate of the
validity and universality of the law of the wall vibrantly continuous over the last 15 years:
traditional views in favor of universality are challenged by opposite views [48–65]. Recent
analyses in favor of universality were presented, e.g., in Refs. [56,66–70]. In particular, a
comprehensive analysis of available numerical and experimental data up to very high Re
was presented recently based on observational physics criteria [9,10]. The latter results
were recently questioned by data analyses of the majority of existing DNS and experimental
results, arguing in favor of nonuniversality of the law of the wall [47,57,71–73].

Figure 1. New journal publications per year that mention “law of the wall” and Kármán.

The motivation for this paper is to contribute to the clarification of these questions by
an identification of reasons leading to opposite conclusions regarding the universality of
the law of the wall and von Kármán constant. The latter clearly matters: this is simply about
whether or not there is a reliable universal theory involving the law of the wall which can be
used (in absence of alternatives) to validate methods restricted by resolution requirements
which are hard to satisfy for very high Re turbulent flows. The approach to address these
questions is to compare recent analysis results in favor of nonuniversality of the law of
the wall [47,57,71–73] with consequences of observational physics criteria [9,10] in the
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following. The frame of this discussion is illustrated in Table 1: the physical completeness
of models is discussed in conjunction with implications for the model realizability and
conclusions about universality. In regard to the model realizability, emphasis will be
placed on whether or not the methods considered satisfy Reynolds stress-realizability
constraints [1,2,74] and realizability constraints arising from the entropy concept. The latter
implies the need that the entropy of physically equivalent flows needs to be the same [9,10].

Table 1. Conceptual features of models considered (MN refers to the model of Monkewitz and
Nagib [73]).

Model Concept Physics Universality

PVM [9,10] Physics derived via observational analysis Realizable model Universal κ (3 canonical flows)
Cantwell [47] Neglect of self-similarity (entropy) scaling Unrealizable entropy Different κ for every Re & flow
MN [73] Highly simplified outer-scale model Unrealizable stress Different κ for every flow

2. Universal Velocity Models

A probabilistic velocity model (PVM) was introduced in Refs. [9,10] for Reτ ≥ 500
for turbulent channel flow, pipe flow, and the TBL. The model is provided in Table 2, and
a discussion of its mathematical structure can be found in the Appendix A. The model
was carefully validated against several observational physics requirements, including
evidence that both modeled variables and their relevant derivatives accurately represent
corresponding observations in regard to all relevant scalings. The model is supported
by a probabilistic interpretation: the probability density function (PDF) related to the
distribution function for the distribution of mean velocities along the wall-normal direction
represents a statistically most-likely PDF that maximizes the related entropy [9,10]. The
von Kármán constant κ involved represents an entropy measure.

Table 2. The analytical PVM model valid for Reτ ≥ 500 [9,10]. Here, BG() refers to the incomplete beta
function with subscript G, and (· · · , · · · , · · · ) refers to channel flow, pipe flow, and TBL. Correspond-
ing Reynolds shear stress models are given via the momentum balance S+ − ⟨u′v′⟩+ = M. Here, M
refers to the total stress given by M = (MCP, MCP, MBL) used in conjunction with MCP = 1 − y and
MBL = e−y6−1.57y2

.

U+ = U+
1 +

1
κ

ln
(

1 + Hy+/yκ

w + Ky

)
• H =

[
y+/h1

1 + y+/h1

]h3

, K = (0.933, 0.687, 0.285)

• U+
1 = a

[
cBG

(
c +

c
b

, 1 − c
b

)
+ G

c
b (1 − G)−

c
b − Gc+ c

b (1 − G)−
c
b

]
, G =

(y+/a)b/c

1 + (y+/a)b/c

• w = (wCP, wCP, wBL), wCP = 0.1(1 − y)2
[
6y2 + 11y + 10

]
, wBL = e−y(0.9+y+1.09y2)

S+ = S+
1 + S+

2 + S+
3 + SCP

1 + SCP
2

• S+
1 = 1 −

[
(y+/a)b/c

1 + (y+/a)b/c

]c

, κy+S+
2 =

1 + h3/[1 + y+/h1]

1 + yκ/(y+H)
, κy+S+

3 = − 1 + w′/K
1 + w/(Ky)

• SCP
1 = −yS+

1 (1)
1 − S+

1
1 − S+

1 (1)
, SCP

2 = −yS+
2

(
1 −

[
κReτS+

2 (1)
]−1

)
• κ = 0.40, yκ = 75.8, a = 9, b = 3.04, c = 1.4, h1 = 12.36, h3 = 6.47.

Figure 2 explains the PVM structure. The model involves the contributions S+
1 , S+

2 , and
S+

3 to the characteristic shear rate S+ = ∂U+/∂y+. These shear rate contributions imply
corresponding velocity contributions U+

1 , U+
2 , and U+

3 . The inner scaling contributions
S+

1 and S+
2 (which are only functions of y+) are the same for all three flows considered.

The outer scaling contribution κy+S+
3 (which is only a function of y) depends on the

flow geometry. There are two inner scale correction terms SCP
1 and SCP

2 which ensure the
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correct shear rate limit at the centerline for channel and pipe flow. These contributions
provide insignificant corresponding contributions to the mean velocity. As may be seen
in Figure 2a, the PVM clearly supports the validity and universality of the log-law. In
absence of boundary effects, the PVM implies U+ = κ−1ln y+ + 5.03 for all the three flows
considered, where κ = 0.40. A relevant conclusion of the PVM is that critical Reynolds
numbers for the observation of a strict log-law for channel flow, pipe flow, and the TBL
are given by about Reτ = 20,000, Reτ = 63,000, and Reτ = 80,000, respectively. The excellent
PVM performance in comparison to DNS and high-Re experimental data is illustrated in
Figures 3 and 4.
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Figure 2. The log-law indicator κy+S+ (with κ = 0.4) obtained from the PVM is shown in (a) for the
given Reτ and the three flows considered (channel flow: solid line; pipe flow: short dashes; TBL: long
dashes); (b) the mode contributions κy+S+

1 (red line), κy+S+
2 (cyan line), and κy+S+

3 (green lines) are
shown for Reτ = 106 in inner scaling; (c) mode contributions κy+S+

2 (cyan line) and κy+(S+
2 + S+

3 )

(green lines) are shown for Reτ = 106 in outer scaling. There is no visible κy+S+
1 mode.

Figure 3. The PVM (lines) compared to DNS data (dots) for the given Reτ (separated by ∆U+ = 5).
(a) Channel flow; DNS data of Lee & Moser [75,76]. (b) pipe flow; DNS data of Chin et al. [77].
(c) TBL; DNS data of Sillero et al. [78,79].
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Figure 4. The PVM (lines) compared to experimental data (dots) for the given Reτ (separated by
∆U+ = 5). (a) Channel flow; experimental data of Schultz & Flack [80]. (b) pipe flow; experimental
data of Hultmark et al. [81,82]. (c) TBL; Pitot experimental data of Vallikivi et al. [83].

There are other models that support the validity and universality of the log-law. One
such model is the model of Luchini [56,66]. The characteristic shear rate is described by
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S+ = 1/(κy+) + A1g/Reτ , where κ = 0.392, A1 = 1, and g = (1, 2, 0) for channel flow,
pipe flow, and the TBL, respectively. Luchini’s model may be seen as basis of the model
presented recently by Monkewitz and Nagib (MN) [73]; see the discussion below. The
difference is that Luchini does not make an attempt to introduce different von Kármán
constants and other constants for different flows considered. Another model that supports
the validity and universality of the log-law is the model of Laadhari [68]. The model reads
U+ = κ−1ln(y∗/a), where y∗ = y+2S+ and κ = 0.40. This model actually represents an
ordinary differential equation (ODE) for U+. It may be seen that this ODE is solved by
U+ = κ−1ln(y+/[aκ]) = κ−1ln(y+)− κ−1ln(aκ). The setting a = 0.334 (which is close to
a = 0.36 applied by Laadhari [68]) recovers U+ = κ−1ln y+ + 5.03 implied by the PVM,
i.e., Laadhari’s model recovers the implications of the PVM.

A relevant implication of the PVM can be seen by introducing a length scale ℓ =
(1 − S+

1 − S+
2 )1/2/(S+

1 + S+
2 ). Figure 5 illustrates the suitability of representing ℓ as

ℓ = fdκy+: Figure 5a shows the proportionality to κy+, Figure 5b shows that fd = (1 −
S+

1 − S+
2 )1/2/(S+

1 + S+
2 )/(κy+) represents a damping function. The definition of ℓ can be

used to represent S+
1 + S+

2 as function of ℓ,

(S+
1 + S+

2 )−1 =
[
1 +

√
1 + 4ℓ2

]
/2. (1)

Hence, the length scale ℓ fully determines the flow-independent inner scaling structure of
the velocity field. The exact Equation (1) corresponds to an interpolation of limit cases of
S+

1 + S+
2 = (1, 0) for ℓ = (0, ∞), respectively. For sufficiently large y+, Equation (1) implies

the log-law (S+
1 + S+

2 )−1 = κy+ because of fd = 1. Via ℓ = fdκy+, it is worth noting that
the von Kármán constant κ is the essential ingredient of inner scaling velocity variations.

An additional conclusion on κ is the following. In outer scaling, the PVM provides
y+S+ = [1 + κy+S+

3 ]/κ (see Figure 2), so κ can be determined by y+S+ → 1/κ for y → 0.
The PVM shows that the contribution of outer scaling variations given by y+S+

3 becomes
negligible compared to 1/κ for y → 0 (see Figure 2), i.e., the value of κ is independent of
y+S+

3 contributions. Hence, κ cannot be determined by the analysis of outer scaling y+S+

variations: κ characterizes inner scaling variations (see Equation (1)) which are independent
of flow-dependent outer scaling y+S+ variations.

Figure 5. Characteristic features of the length scale ℓ = fdκy+ (a) length scale and (b) damping
function involved.

Used in conjunction with models for the total stress M (see Table 2), we note that the
PVM also implies analytical models for the Reynolds shear stress, turbulence production,
turbulent viscosity, bulk velocity, skin-friction coefficient, and bulk Reynolds number [9,10].
Asymptotic limits of these variables are reported elsewhere [10]. A closer look at corre-
sponding implications of the PVM for the Reynolds shear stress is beneficial regarding the



Fluids 2024, 9, 63 6 of 12

discussion of nonuniversal velocity models below. By involving ℓ, an asymptotic Reynolds
shear stress implied by the PVM for sufficiently high Reτ is given by

−⟨u′v′⟩+∞ = Mℓ2(S+
1 + S+

2 )2, ℓ = fdκy+. (2)

Hence, ⟨u′v′⟩+ is characterized by self-similar separate variations with y (via M) and
with y+ (via ℓ(S+

1 + S+
2 )). As pointed out in Ref. [10], ⟨u′v′⟩+∞ approximates ⟨u′v′⟩+ for

Reτ = 500 already extremely well for all three flows considered. For Reτ ≥ 104, there is
no visible difference between ⟨u′v′⟩+∞ and ⟨u′v′⟩+. In particular, the maximum relative
deviation between ⟨u′v′⟩+∞ and ⟨u′v′⟩+ in percent is given by Euv = 1355/Reτ [10]. For
Reτ = (104, 105), we find in this way Euv = (0.14, 0.014)%.

3. Nonuniversal Velocity Models

A nonuniversal velocity model was presented recently by Cantwell [47]; see also
Ref. [71]. The model uses classical mixing length theory and an ad hoc model for the mixing
length λ,

−⟨u′v′⟩+ = λ2S+2, λ =
ky+[1 − e−(y+/a)m

]

[1 + yn/bn]1/n . (3)

By using Equation (3) in the momentum equation S+ − ⟨u′v′⟩+ = M we can find a model
for S+,

S+ = − 1
2λ2 +

1
2λ2

[
1 + 4λ2(1 − y)

]1/2
, (4)

where M = 1 − y for the pipe flow considered. This model involves five adjustable
parameters, k, a, m, b, n, where k corresponds to the von Kármán constant. Figure 15d
in Ref. [47] reveals that there is no strict log-law region with the influence of wall and
outer length scales on the intermediate region of the velocity profile persisting to all
Reτ [47]. A comparison of model predictions of the normalized turbulent viscosity ν+t =
−⟨u′v′⟩+/S+ and turbulence production P+ = −⟨u′v′⟩+S+ with DNS data and PVM
predictions is shown in Figure 6: it may be seen that the model does not accurately reflect
the flow structure. An interesting model feature is the following. The y contribution in
S+ is very small for sufficiently high Reτ , and its influence decreases with increasing Reτ .
For Reτ > 5000, there is no observable difference anymore between S+ calculated by
Equation (4) and S+ calculated by neglecting y. In this case, analysis of dP+/dλ = 0 shows
that the P+ maximum appears at λ = 21/2 (at S+ = 1/2), which provides a maximum
P+ = 1/4. A similar PVM analysis leads to a maximum at ℓ = 21/2 corresponding to
S+

1 + S+
2 = 1/2 and also P+ = 1/4.
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Figure 6. Normalized turbulent viscosity ν+t = −⟨u′v′⟩+/S+ (a) and turbulence production P+ =

−⟨u′v′⟩+S+ (b) predictions: pipe flow DNS data [77] (black lines), Cantwell model results [47]
(dashed green lines, Reτ = 1825), and PVM results. PVM predictions for Reτ = (2003, 105, 1010)

are shown by magenta, cyan, and orange lines. The inset in (b) shows production peak positions
according to Cantwell’s model for the given Reτ . (c) shows the entropy SE according to Cantwell’s
model for the given Reτ .
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The nonuniversality of Cantwell’s model [47] is reflected by the need to provide
k, a, m, b, n (which are determined from an analysis based on the whole velocity profile) as
functions of Reτ . The reason for this nonuniversality is the empirical introduction of Reτ

effects via y = y+/Reτ in λ leading to an unphysical dependence of ⟨u′v′⟩+ on Reτ . The
following provides evidence for this claim.

O1. The simplest way to support this claim is the comparison of Equation (3) with the
physics-based Equation (2): although the structures of Equation (2) and (3) are similar,
Equation (3) does not ensure a self-similar structure of the Reynolds shear stress in
contrast to Equation (2).

O2. The turbulence production peak position is known to be y+ = 11.07, unaffected by
Reτ for sufficiently high Reτ [9,10]: see Figure 6. For Reτ > 5000, Cantwell’s model
provides the production peak position at λ = 21/2. According to the definition λ =

ky+[1 − e−(y+/a)m
]/([1 + yn/bn]1/n) and the Reτ dependence of model coefficients,

this implies y+ peak positions which vary (randomly) with Reτ : see the inset in
Figure 6b. This behavior is unphysical and in contrast to DNS and experimental
results.

O3. More specifically, the model’s entropy is given by SE = 1 − ln(κ) = 1 − ln(k) [9]. We
find, therefore, random entropy changes for each Reτ and flow (see Figure 6c). This is
unphysical; the entropy needs to be the same under physically equivalent conditions.

Another nonuniversal velocity model was presented recently by Monkewitz and Nagib
(MN) [73]. Figure 7 demonstrates the model concept by a comparison with PVM results:
MN approximate the log-law indicator y+S+ in regard to outer scaling. By following MN,
the TBL results are shown in dependence on the boundary layer thickness Y, which differs
from the 99% boundary layer thickness [73]. The structure of MN assumptions is illustrated
in the insets of Figure 7: linear functions are used to characterize y+S+.

Re = 10t

6

Re = 10t

5

Re = 10t

4

y
S

+
+

y

( )a

y
S

+
+

y

Re = 10t

6

Re = 10t

5

Re = 10t

4

y
S

+
+

y

( )b

y
S

+
+

y

Re = 10t

6

Re = 10t

5

Re = 10t

4
y

S
+

+
( )c

y, Y

y
S

+
+

y, Y

Figure 7. The log-law indicator y+S+ in outer scaling obtained by the PVM (solid lines) versus
MN assumptions [73] (dashed lines) at the given Reτ for (a) channel flow, (b) pipe flow, and (c)
TBL. For the TBL, the MN assumption is shown depending on the boundary layer thickness Y. Reτ

effects are hardly visible. The insets show the corresponding MN assumptions [73]: y+S+ (dashed
lines) are shown for Reτ = 106 (there is no Reτ effect). Also shown are corresponding linear profiles
1/0.417 + 1.15y, 1/0.433 + 2.5y, 1/0.384, and 1/0.384 + 7.7(Y − 0.11) (purple lines), respectively.

In regard to MN’s model, there seems to be a reasonable agreement between the PVM
and MN assumptions. However, a closer look reveals an unphysical model behavior.

O4. MN uses flow-dependent outer scaling y+S+ variations (which scale with y) to deter-
mine κ based on y+S+ → 1/κ for y → 0. However, the PVM reveals that the value
of κ is independent of outer scaling y+S+ variations (given by y+S+

3 ): see the fourth
paragraph in Section 2 beginning with “An additional conclusion on κ”.

O5. MN presents models for S+ and U+ =
∫ y+

0 S+(s)ds. The MN assumptions imply that
both S+ and U+ diverge for y → 0 (which is the regime used by MN to determine κ).
There is no way to determine κ if the underlying S+ and U+ do not exist for y → 0.

O6. Figure 8 shows the correlation of S+ obtained by the PVM (S+
PVM) and MN (S+

MN).
Despite remarkable discrepancies, the most relevant observation is that S+

MN can
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exceed unity. Combined with the momentum equation −⟨u′v′⟩+ = M − S+, we see
that the MN model allows values of −⟨u′v′⟩+ outside 0 ≤ −⟨u′v′⟩+ ≤ 1, i.e., the MN
model violates stress realizability requirements [1,2].
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Figure 8. The correlation of S+ obtained by the PVM (S+
PVM) and MN (S+

MN) is shown for the given
Reτ for (a) channel flow, (b) pipe flow, and (c) TBL. There is no visible Reτ effect. The dashed lines
show the expected 1:1 relationships.

4. Summary

This paper addressed the ongoing controversial debate about the universality or
nonuniversality of the law of the wall. The resolution of such controversial conclusions is
needed to take advantage of the benefits B1–B4 pointed out in the introduction. According
to the observations O1–O6, the conclusion is that observed nonuniversality [47,57,71–73] is
a consequence of model assumptions that are in conflict with physics, whereas a universal
law of the wall implied by the PVM is found if physics requirements are honored.

More specific lessons learned from this analysis, which are summarized in Table 1, are
as follows.

• There is the simple question of which kind of physics a universal law of the wall
actually reflects. The PVM gives the answer: the universal log-law is a reflection of a
physical entropy and realizable turbulence (a realizable shear stress

√
−⟨u′v′⟩+ = u∗

which determines a realizable turbulence velocity scale u∗).
• Cantwell’s model [47,71] may be seen as a simplification of the PVM, where the

self-similarity (entropy) scaling is neglected. It reveals the relevance of the physical
entropy requirement: a nonuniversal model reflects an unphysical entropy that is
different under physically equivalent conditions; see observation O3.

• MN’s model [73] also represents a simplification of the PVM, a highly simplified
outer-scale model is used to determine κ. It shows the relevance of the realizability
requirement: a nonuniversal model reflects a model that violates the stress-realizability
requirement; see observation O6. Such a model cannot reflect reality.

An interesting overall conclusion is as follows. Similar to the von Kármán constant
κ, observations of the Kolmogorov constant are affected by significant variations [84].
An analysis of reasons for such variations revealed the influence of model completeness:
simplified models that neglect relevant physics provide Kolmogorov constant values
that differ significantly from conclusions of physically sound models. A corresponding
conclusion was found here in regard to κ: simplified models (Cantwell’s model [47,71] and
MN’s model [73]) that neglect relevant physics (unrealizable models) provide κ values that
differ significantly from conclusions of a realizable model (the PVM). Does this mean that a
universal velocity model needs to be complicated? This is not the case. As shown in the
Appendix A, the PVM is, basically, equivalent to the use of a simple analytical function.
In addition to κ, K, yκ , the PVM only depends on three required regime transition control
parameters ( f , H, 1 − w). The relevant requirement to ensure the universality of the model
considered is to honor the regime structure of Equation (A1), which is not the case in regard
to the nonuniversal models discussed here.
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Appendix A. Mathematical PVM Structure

The conclusion about the consequences of simplified modeling approaches obtained
here leads to the question about the mathematical structure of the PVM in comparison to
simpler modeling approaches. According to Table 2, the PVM can be written as

U+ = U+
1 +

1
κ

ln
(

1 + Hy+/yκ

w + Ky

)
, U+

1 =
∫ y+

0

[
1 − f (t)

]
dt, f (t) =

[
(t/a)b/c

1 + (t/a)b/c

]c

. (A1)

Hence, the PVM is given by a simple analytical function with the exception of the first
contribution on the right-hand side (RHS). The exact integration of this expression (U+

1 )
provides

U+
1 =

ac
b

[
BG

( c
b

,− c
b

)
− BG

(
c +

c
b

,− c
b

)]
. (A2)

Here, the subscript G in BG() is defined by G = (y+/a)b/c/[1 + (y+/a)b/c]. The function
BG() refers to the incomplete beta function, which is defined by

Bz(A, B) =
∫ z

0
sA−1(1 − s)B−1ds. (A3)

The latter function can be easily calculated by the expansion [85]

Bz(A, B) = zA
∞

∑
n=0

pnzn

A + n
. (A4)

The last expression introduces pn, which is defined via p0 = 1 and pn = pn−1(n − B)/n
for n ≥ 1. Hence, pn is finite for increasing n. The sum in Equation (A4) is obtained after
taking a few terms on the RHS into account. Thus, the PVM calculation via Equation (A1)
is, basically, equivalent to the use of a simple analytical function.

According to Table 2, there may be the impression that the PVM has a complicated
structure involving a variety of model parameters. A closer look shows the following.
In addition to depending on the constants κ, K, yκ , the PVM only depends on f , H, 1 − w
(it simplifies the following discussion to take reference to 1 − w instead of w). Figure A1
shows that these functions are non-decreasing functions varying between zero and unity.
Therefore, these functions play the role of distribution functions (i.e., integrals over PDFs),
which characterize regime transitions. The same applies to U+

1 /U+
1∞ (where U+

1∞ = 15.85)
implied by f , as can be seen in Figure A1a. Correspondingly, in addition to κ, K, yκ , the
PVM only depends on the three required regime transition control parameters f , H, 1 − w.
Appropriate approximations of the latter three functions will hardly affect the model perfor-
mance. The most relevant requirement to ensure the universality of the model considered
is to honor the structure of Equation (A1), which is not the case if the nonuniversal models
discussed here are applied.
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Figure A1. The transition functions f , H, and 1 − w are shown in (a–c), respectively. Figure (a) also
shows U+

1 /U+
1∞ (blue line). Figure (c) also shows 1 − w for channel and pipe flow (black line) and

the TBL (blue line). The dashed line shows 1 − w = 1 as a reference.
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