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Abstract: Physics-informed neural networks (PINNs) have emerged as a promising approach for
simulating nonlinear physical systems, particularly in the field of fluid dynamics and turbulence
modelling. Traditional turbulence models often rely on simplifying assumptions or closed numerical
models, which simplify the flow, leading to inaccurate flow predictions or long solve times. This
study examines solver constraints in a PINNs solver, aiming to generate an understanding of an
optimal PINNs solver with reduced constraints compared with the numerically closed models used
in traditional computational fluid dynamics (CFD). PINNs were implemented in a periodic hill
flow case and compared with a simple data-driven approach to neural network modelling to show
the limitations of a data-driven model on a small dataset (as is common in engineering design). A
standard full equation PINNs model with predicted first-order stress terms was compared against
reduced-boundary models and reduced-order models, with different levels of assumptions made
about the flow to monitor the effect on the flow field predictions. The results in all cases showed
good agreement against direct numerical simulation (DNS) data, with only boundary conditions
provided for training as in numerical modelling. The efficacy of reduced-order models was shown
using a continuity only model to accurately predict the flow fields within 0.147 and 2.6 percentage
errors for streamwise and transverse velocities, respectively, and a modified mixing length model
was used to show the effect of poor assumptions on the model, including poor convergence at the
flow boundaries, despite a reduced solve time compared with a numerically closed equation set.
The results agree with contemporary literature, indicating that physics-informed neural networks
are a significant improvement in solve time compared with a data-driven approach, with a novel
proposition of numerically derived unclosed equation sets being a good representation of a turbulent
system. In conclusion, it is shown that numerically unclosed systems can be efficiently solved using
reduced-order equation sets, potentially leading to a reduced compute requirement compared with
traditional solver methods.

Keywords: data-driven model; flow predictions; numerically closed; periodic hill; physics-informed
neural network; turbulence modelling

1. Introduction

Flow modelling is an important part of the engineering design process, allowing for
optimisation of the aerodynamics of a design, design validation for hydraulic or other
fluid transporting components/mechanisms, and safety and power validation of complex
designs including aircraft turbine engines. In many of these engineering applications, tur-
bulent flow is a common physical phenomenon to be accounted for during flow modelling
for design validation. Generally, only averaged flow calculations are performed due to the
prohibitive cost of a transient numerical solver [1].

Two promising approaches for turbulent flow modelling include utilisation of neural
networks, specifically data-driven modelling and a physics-informed modelling approach.
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A data-driven approach uses data from previous numerical solvers to create a generalised
map of the nonlinear dynamics between the input geometry and the output flow fields [2]
for a large set of training data. The benefit of this approach is an almost instant solve time,
after an initial training phase, and provided that the model is generalisable the same model
can be used to predict on several different geometries.

Physics-informed neural networks (PINNs) are a predictive solving method for per-
geometry solutions, like CFD, where geometry and boundary conditions are defined rather
than training on a large dataset. They are therefore not governed by comparing predictions
to data, but rather to a governing set of equations. PINNs have developed from simple
modelling of ODEs and PDEs [3], to solving more complex PDE systems such as the
Schrodinger and Burgers equations [4]. PINNs have been used to converge using the
Navier–Stokes equations to accurately solve flow cases including cylinder flow [5]. Current
research involves modelling of turbulent flow, including the Falkner–Skan boundary with
adverse pressure gradient, APG turbulent boundary layer, and a periodic hill [6], giving
promising results for streamwise and transverse velocity predictions. Several governing
equation sets were also tested on a backwards-facing step [7]; however, predictions only
including boundary conditions were poor, requiring additional data to be fed to the neural
network to converge to the correct solution.

In all these implementations, a mostly numerically closed system has been used to
govern the loss function; however, a benefit of the backpropagation method used in a
neural network architecture compared with traditional solvers is that the system does not
need to be fully defined to provide a solution. This potentially allows for the equation set
to be either simplified, or boundary data to be removed, to allow for a faster solve time or a
more flexible solving method than a traditional numerical solver.

Reduced-order modelling (ROM) is a method used to reduce the complexity of a
system of equations while still remaining representative of the dynamics of the system. It
has been successfully implemented in problems such as the Helmholtz decomposition to
reduce the complexity of the system by reducing the number of components to solve [8].
Reduced-order modelling (ROM) has also previously been investigated using PINNs with
a data-driven component by Fu et al. [9], where an interesting approach to generating
ROMs is used with snapshot data. This method is highly versatile and computationally
efficient, but this generation relies on an understanding of either the geometry or having
snapshot data to use in the data-driven component.

A very interesting application that will not be explored in this paper is the generation
of ROMs using neural networks. It was shown by Brunton et al. [10] that neural networks
are capable of parametrising parametric systems successfully and simply as the system may
be traditionally defined. Neural networks have also been successfully used to reduce the
dimensionality of a governing equation to simplify the characteristic function [11]. Finding
a unique and simple characteristic equation for a given system using neural networks
could be an interesting separate topic, but this paper will focus on a numerical approach
to generating a ROM for the physical system of equations. This is to simplify the scope
and ensure that results are directly comparable to numerical solutions that could be easily
generated using commercial numerical solvers.

Contributions listed have been very focused on reduced-order modelling and PINNs,
but a wide range of uses for PINNs have been outlined by Vinuesa and Brunton [12],
including accelerating DNS models and LES modelling. ROMs are also discussed, includ-
ing autoencoders, which generate a reduced coordinate system to represent a reduced
dynamic system.

The aim was to analyse reduced-order models in several configurations, including a
full numerically closed model, reduced-boundary-enforced model(s), a reduced-equation
model, a numerically closed turbulence model with assumptions, and the same turbulence
model with the least accurate assumptions removed, generated with no previous under-
standing of geometry or snapshots of data, only from boundary conditions similar to a
numerical solver. The analysis shows the effect on the solutions and solve time, and com-
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pares this against a simple implementation of a data-driven approach. The motivation for
this topic was to provide recommendations for solver inputs and equations for simple 2D
incompressible flow cases, along with benchmark data for several turbulence models run
using PINNs on a widely available dataset, with a direct data-driven comparable model.

Formulation of the Problem

A difficulty in turbulence modelling for flow simulations comes from the calculation
and approximation of the first-order stress terms, often referred to as turbulence closure or
the closure problem. The 2D incompressible Reynolds-averaged Navier–Stokes (RANS)
equations are given,

∂ū
∂x

+
∂v̄
∂y

= 0 (1)

ū
∂ū
∂x

+ v̄
∂ū
∂y

−
(
−1

ρ

)
∂ p̄
∂x

− ν

(
∂2ū
∂x2 +

∂2ū
∂y2

)
+ v′

∂u′

∂y
+ u′ ∂u′

∂x
= 0 (2)

ū
∂v̄
∂x

+ v̄
∂v̄
∂y

−
(
−1

ρ

)
∂ p̄
∂y

− ν

(
∂2v̄
∂x2 +

∂2v̄
∂y2

)
+ v′

∂v′

∂y
+ u′ ∂v′

∂x
= 0 (3)

where ū is the averaged flow velocity in the streamwise (x) direction, v̄ is the averaged flow
velocity in the transverse (y) direction, ρ is fluid density, p̄ is the averaged pressure, ν is the
fluid kinematic viscosity, and the prime represents fluctuating flow components. For the
full derivations, see Appendix A. The first-order stress terms are given,

∂τ′
xx

∂x
+

∂τ′
xy

∂y
= v′

∂u′

∂y
+ u′ ∂u′

∂x
(4)

∂τ′
yx

∂x
+

∂τ′
yy

∂y
= v′

∂v′

∂y
+ u′ ∂v′

∂x
(5)

It should also be noted that, since the flow is incompressible in this case,

∂τ′
xy

∂y
=

∂τ′
yx

∂x
(6)

This can be physically interpreted as the lack of a preferred direction in the turbulent
fluctuations of an incompressible flow. The turbulent fluctuations are equally likely to
cause a shear stress in the x-y and y-x planes, as the flow is isotropic.

The first-order stress terms are not made up of averaged flow components, but fluctu-
ating values of the velocity in the streamwise and transverse directions. Since the RANS
equations are arranged to solve flow in terms of averaged flow quantities, these quantities
must be either related to the mean flow quantities (without relying on time series data,
which in this case is not available) or predicted separately as a function of geometry or
other physical domain features using a turbulence closure model. This is often inaccurate
when using simple models such as mixing length [13], or computationally inefficient using
complex models such as RSM [14].

2. Periodic Hill

A periodic hill flow condition was chosen as the CFD benchmark case. It is commonly
used in CFD benchmarks [15–17], partially due to well-defined geometry, simplifying setup.
Additionally, the presence of rich turbulent phenomena including vortex shedding, flow
separation, and reattachment and transition regions challenges traditional CFD solvers
including RANS models. Due to their common use as a turbulence modelling benchmark,
there are a large number of CFD data available, which are required to train a data-driven
model. The dataset selected is provided by Xiao et al. [18], and the solver used is the
high-order flow solver Incompact3d. This solver uses a sixth-order compact finite differ-
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ence scheme on a monobloc Cartesian mesh. The source code for this solver is publicly
available on GitHub [19]. From recent literature, this dataset provides the most detail on
validation and solving, and was developed with data-driven models in mind, making it a
suitable dataset to compare data-driven and nonlinear dynamics-informed approaches to
modelling turbulence.

The DNS solve the forced incompressible Navier–Stokes equations for a fluid field.
The equations are given in [18] as,

∇ · u = 0 (7)

∂u
∂t

= −1
ρ
∇p − 1

2
[∇(u ⊗ u)+(u · ∇)u] + ν∇2u + f (8)

where p is the pressure field, u is the velocity field, x is the spatial domain (from div opera-
tors), t is the temporal domain, and ⊗ denotes the vector outer-product. In this equation
set, the forcing term f is used to enforce a specified mass flux at the boundary through the
immersed boundary method. Incompressible here indicates that spatial variation of the
fluid density is ignored in these equations as a simplification. Validation of the code can be
found in [20].

It is important to note that, although the data provided from these equations are a
steady-state flow case, they are not run using the RANS equations, which average the
velocity and pressure fields over a discrete time. These data are provided by running a
transient solver to a point of steady-state flow, which the RANS equations would give as in
this dataset, and the steady-state flow condition is maintained over the observed time.

The dataset contains 29 different periodic hill flow geometries for a Reynold’s number
of the flow of 5600. The geometries are parameterised by a set of third-order equations
(Appendix B). A subset of the geometries are shown in Figure 1.

Figure 1. Geometries varying a parameter defining the slope characteristics, α, and a parameter
defining the domain length, l. Five of 25 examples shown, varying slope and domain length. More
information provided by [19].

3. Methods
3.1. Data-Driven Model
3.1.1. Network Architecture

The architecture of the data-driven model is a simple dense multilayer perceptron
(MLP) network, consisting of 9 hidden layers of varying node numbers, from 128 reduced
to 8 nodes to improve the consistency of convergence of the model (shown in Table 1). This
was chosen as the most basic data-driven architecture for time-averaged data, to give a
basic benchmark against PINNs models, and highlight areas for improvement in this type
of modelling should a data-driven approach be taken. The input to the neural network is a
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tensor containing six independent variables for a given nodal position in any of the training
dataset. These variables include the x and y positions of the node, the calculated distance,
d, between the node and the bottom wall, and three geometric parameters to describe the
periodic hill geometry. These are hill slope parameter, α, domain length, l, and domain
height, h, to help characterise the overall domain geometry for the nodal predictions. The
output tensor of the neural network is six dependant variables, including the time-averaged
streamwise velocity, u, the time-averaged transverse velocity, v, and the time-averaged
pressure, p, and the first-order Reynold’s stress terms u′u′, u′v′, and v′v′.

For completeness, note that Table 2 presents the architecture for the data driven model,
Table 3 outlines the computational settings, Table 4 includes a summary of the PINNs
models implemented, and data driven metrics are presented in Table 5. The full model
constraints for all models can be seen in Table 6.

Table 1. Data-driven neural network architecture.

Layer Type Output Shape Activation Function Batch Normalisation

Input Layer (6,) – –
Dense (128,) ReLU Yes
Dense (64,) ReLU Yes
Dense (64,) ReLU Yes
Dense (32,) ReLU Yes
Dense (32,) ReLU Yes
Dense (16,) ReLU Yes
Dense (16,) ReLU Yes
Dense (8,) ReLU Yes
Dense (8,) ReLU Yes

Output Layer (6,) – –

Table 2. Data-driven neural network architecture.

Layer Type Output Shape Activation Function Batch Normalisation

Input Layer (input shape,) – –
Dense (20,) tanh No
Dense (20,) tanh No
Dense (20,) tanh No
Dense (20,) tanh No
Dense (20,) tanh No
Dense (20,) tanh No
Dense (20,) tanh No
Dense (20,) tanh No

Output Layer (output shape,) – –

Table 3. Computational settings.

Computer AORUS 15P XD Laptop (Singapore, Rep. Singapore)

Processor 11th Gen Intel ® Core i7-11800H (Intel, Santa Clara, CA, USA)

RAM 32 GB

OS Windows 11 23H2

Modules TensorFlow 2.14.0
pyDOE 0.3.8
keras 2.14.0

numpy 1.26.0
matplotlib 3.8.0

scipy 1.11.3

Instruction Set CPU
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Table 4. PINNs methods summary.

Method Name Neural Network
Inputs

Neural Network
Outputs

Governing Flow Equations Enforced Bound-
aries

Direct Reynolds
Stress

(
x
y

) 
u
v
p

u′u′

u′v′
v′v′


2D incompressible Continuity, Momentum in x,
Momentum in y
∂u
∂x + ∂v

∂y = 0

u ∂u
∂x + v ∂u

∂y −
(
− 1

ρ

)
∂p
∂x − ν

(
∂2u
∂x2 + ∂2u

∂y2

)
+ v′ ∂u′

∂y + u′ ∂u′
∂x = 0

u ∂v
∂x + v ∂v

∂y −
(
− 1

ρ

)
∂p
∂y − ν

(
∂2v
∂x2 + ∂2v

∂y2

)
+ v′ ∂v′

∂y + u′ ∂v′
∂x = 0


u
v
p

u′u′

u′v′
v′v′



Direct Reynolds
Stress with Reduced

Boundary
Enforcement

(
x
y

) 
u
v
p

u′u′

u′v′
v′v′


2D incompressible Continuity, Momentum in x,
Momentum in y
∂u
∂x + ∂v

∂y = 0

u ∂u
∂x + v ∂u

∂y −
(
− 1

ρ

)
∂p
∂x − ν

(
∂2u
∂x2 + ∂2u

∂y2

)
+ v′ ∂u′

∂y + u′ ∂u′
∂x = 0

u ∂v
∂x + v ∂v

∂y −
(
− 1

ρ

)
∂p
∂y − ν

(
∂2v
∂x2 + ∂2v

∂y2

)
+ v′ ∂v′

∂y + u′ ∂v′
∂x = 0

(
u
v
p

)
(

u
v

)
Continuity Only

Model

(
x
y

) (
u
v

)
2D incompressible Continuity
∂u
∂x + ∂v

∂y = 0

(
u
v

)

Mixing Length

(
x
y
d

) (
u
v
p

)

2D incompressible Continuity, Momentum in x,
Momentum in y, First-order Stresses, Turbulent Viscosity, Mixing Length,
Strain Tensor
∂u
∂x + ∂v

∂y = 0

u ∂u
∂x + v ∂u

∂y −
(
− 1

ρ

)
∂p
∂x − ν

(
∂2u
∂x2 + ∂2u

∂y2

)
+ v′ ∂u′

∂y + u′ ∂u′
∂x = 0

u ∂v
∂x + v ∂v

∂y −
(
− 1

ρ

)
∂p
∂y − ν

(
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∂x2 + ∂2v

∂y2

)
+ v′ ∂v′

∂y + u′ ∂v′
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2µt
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∂u
∂x + ∂u
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∂y

)
τyy = 2µt

(
∂u
∂x + ∂v

∂y + ∂v
∂y

)
τxy = τyx = µt

(
∂u
∂x + ∂v

∂y

)
µt = l2

m

√
G

lm = min(0.419d, 0.09dmax)

G = 2
(

∂u
∂x

)2
+ 2
(

∂v
∂y

)2
+
(

∂u
∂y + ∂v

∂x

)2

(
u
v
p

)

Turbulent Viscosity
(

x
y

)  u
v
p
µt



2D incompressible Continuity, Momentum in x,
Momentum in y, First-order Stresses, Turbulent Viscosity, Mixing Length,
Strain Tensor
∂u
∂x + ∂v

∂y = 0

u ∂u
∂x + v ∂u

∂y −
(
− 1

ρ

)
∂p
∂x − ν

(
∂2u
∂x2 + ∂2u

∂y2

)
+ v′ ∂u′

∂y + u′ ∂u′
∂x = 0

u ∂v
∂x + v ∂v

∂y −
(
− 1

ρ

)
∂p
∂y − ν

(
∂2v
∂x2 + ∂2v

∂y2

)
+ v′ ∂v′

∂y + u′ ∂v′
∂x = 0 τxx =

2µt

(
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∂x + ∂u

∂x + ∂v
∂y

)
τyy = 2µt

(
∂u
∂x + ∂v

∂y + ∂v
∂y

)
τxy = τyx = µt

(
∂u
∂x + ∂v

∂y

)

(
u
v
p

)

Turbulent Viscosity
and Turbulent Kinetic

Energy

(
x
y

)  u
v
p
µt



2D incompressible Continuity, Momentum in x,
Momentum in y, First-order Stresses, Turbulent Viscosity, Mixing Length,
Strain Tensor
∂u
∂x + ∂v

∂y = 0

u ∂u
∂x + v ∂u

∂y −
(
− 1

ρ

)
∂p
∂x − ν

(
∂2u
∂x2 + ∂2u

∂y2

)
+ v′ ∂u′

∂y + u′ ∂u′
∂x = 0

u ∂v
∂x + v ∂v

∂y −
(
− 1

ρ

)
∂p
∂y − ν

(
∂2v
∂x2 + ∂2v

∂y2

)
+ v′ ∂v′

∂y + u′ ∂v′
∂x = 0 τxx =

µt
(

∂u
∂x + ∂u

∂x

)
− 2

3 ρk
τyy = µt

(
∂u
∂y + ∂v

∂x

)
τxx = µt

(
∂v
∂y + ∂v

∂y

)
− 2

3 ρk

(
u
v
p

)

Table 5. Data-driven metrics for all dataset geometries. Runs 2 and 3 can be found in Appendix F *.

Slope Parameter Domain Length
(m)

Domain Height
(m) Solve Time (hrs) Epochs to

Converge u Error (%) v Error (%) p Error (%)

5 10.0710 2.0240 4.14 64 10.7 53.6 107.4

5 10.0710 3.0360 4.30 71 3.8 25.3 109.1

5 10.0710 4.0480 6.43 100 2.4 23.7 117.2

5 4.0710 2.0240 6.57 100 9.1 69.3 157.6

5 4.0710 3.0360 3.14 51 2.8 67.5 215.9

5 4.0710 4.0480 6.40 98 2.9 60.7 253.9

5 7.0710 2.0240 6.15 100 5.3 39.6 110.4

5 7.0710 3.0360 6.07 100 2.9 30.0 123.3

5 7.0710 4.0480 6.00 98 2.2 23.8 135.1
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Table 5. Cont.

Slope Parameter Domain Length
(m)

Domain Height
(m) Solve Time (hrs) Epochs to

Converge u Error (%) v Error (%) p Error (%)

7.5 8.0355 3.0360 2.16 35 19.2 127.6 130.5

10 12.0000 2.0240 4.07 62 8226.0 52,713.0 7328.0

10 12.0000 3.0360 3.36 55 19.3 77.7 113.0

10 12.0000 4.0480 3.91 62 18.4 103.6 114.7

10 6.0000 2.0240 1.98 31 17.4 117.0 118.2

10 6.0000 3.0360 4.14 67 9.8 95.4 147.0

10 6.0000 4.0480 2.56 40 10.0 146.4 174.7

10 9.0000 2.0240 2.97 46 21.0 81.3 106.6

10 9.0000 3.0360 2.11 35 14.8 90.0 114.9

10 9.0000 4.0480 3.65 59 10.6 83.4 119.9

12.5 9.9645 3.0360 6.13 100 1169.5 1431.7 1372.3

15 10.9090 2.0240 4.59 74 12.0 39.2 103.6

15 10.9090 3.0360 1.89 31 18.4 87.3 106.3

15 10.9090 4.0480 2.40 40 5.5 30.2 106.6

15 10.9090 2.0240 3.70 59 31.4 109.9 108.9

15 13.9290 3.0360 2.90 48 25.2 95.5 108.4

15 13.9290 4.0480 1.94 31 30.7 103.2 110.5

15 7.9290 2.0240 2.22 34 25.4 98.6 104.4

15 7.9290 3.0360 2.39 39 17.7 97.9 111.8

15 7.9290 4.0480 3.93 61 14.0 110.3 119.5

Median Average 3.70 ± 1.51 59 ± 25 12.0 ± 8.73 83.4 ± 34.5 114.7 ± 35.6

* See Appendix E for calculation method.

Table 6. Solver metrics and overall accuracy.

Neural Network
Name

Neural Network
Abbreviation

Training Time
(hrs) Prediction Time u Error (%) * v Error (%) * p Error (%) * Description

Dense MLP Data
Driven Data Driven 3.14 11.0 2.85 67.512 215.897 See Section 3.1

Direct Reynold’s
Stress Model DRSM 1.61 - 0.613 9.244 4.78 See Section 3.2.4

Direct Reynold’s
Stress Model—

Reduced
Boundary

Enforcement,
u, v, p

Enforcement

RBMuvp 1.36 - 0.309 3.487 5.783 See Section 3.2.5

Direct Reynold’s
Stress Model—

Reduced
Boundary

Enforcement, u, v
enforcement

RBMuv 1.82 - 0.233 3.28 253.675 See Section 3.2.5

Continuity Only
Model COM 0.74 - 0.147 2.563 - See Section 3.2.6

Mixing Length
Model MLM 0.83 - 6.923 15.692 15.255 See Section 3.2.7

Turbulent
Viscosity Model TVM 2.38 - 0.636 9.394 9.52 See Section 3.2.8

Turbulent
Viscosity and

Turbulent Kinetic
Energy Model

TVKEM 1.63 - 0.47 5.616 6.186 See Section 3.2.9

* See Appendix E for calculation method.

3.1.2. Loss Function

A neural network loss function is the method that is used by the network to converge
to the correct solution. The defining trait of a data-driven model is that the values predicted
from the neural network (in this case, u, v, p, u′u′, u′v′, and v′v′) are directly compared
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against the DNS values from the dataset. The loss function for the data-driven model is a
simple MAE (mean-averaged error). The error is calculated using,

Loss = MAEdata =
1
N

N

∑
i=1

∣∣Yi − Ŷp
∣∣ (9)

where Yi is the value from the dataset, and Ŷp is the predicted value from the neural
network. More information on neural networks for regression can be found in Appendix C.

3.1.3. Training

When using NNs for regression, it is common to normalise the input data between 0
and 1 as the nonlinearity introduced by the activation function is also between 0 and 1, and
thus the model will converge more quickly when in this range [21]. While the architecture
for the data-driven model uses ReLU, which scales between 0 and infinity, this would not
account for any extreme values. The backpropagation calculates Euclidean distance, which
cannot be computed accurately with features of different scales [22]. Therefore, the data
will be normalised between 0 and 1 before being input into the neural network, using the
range of each variable as the scale for that variable only.

The dataset procured contains the flow cases for 29 periodic hill geometries, 28 of
which will be used for training and the final for testing. For a data-driven model to
successfully extract nonlinear dynamics, it requires sufficient inputs to characterise the
fluid flow individually, as discussed previously. It also requires a large training dataset
to be able to represent the general flow case correctly. It is predicted that the simple MLP
dense network with this dataset will capture main flow features and make predictions that
are close but miss smaller scale or less common turbulence features due to this lack of data.

Overfitting is an issue in regression tasks when the neural network testing data
validation does not improve or becomes worse relative to the training validation [23]. The
model will implement early stopping, where a threshold of epochs with no improvement
will cause the network to finish, reverting to the weights that give the best validation loss,
to prevent overfitting the model.

The learning rate will start at 1× 10−3, and the threshold for the learning rate reduction
is 12 epochs of no improvement to the validation loss. After these 12 epochs, the learning
rate will be multiplied by 0.2, with a minimum bound of 1 × 10−6. The threshold for the
early stopping is 30 epochs of no validation loss improvement, where the best weights will
be restored on end. If this condition is not met, the training will finish at 100 epochs. The
batch size, or percentage of data fed into the network per epoch, is 128. The validation split
for the neural network is 0.2, meaning 20% of the data are used to validate the updated
weights, while 80% of the data are used to train the network to update the weights.

3.2. Physics-Informed Neural Network
3.2.1. Network Architecture

As with the data-driven model, the quantities to predict in the flow are the time-
averaged streamwise velocity, ū, the time-averaged transverse velocity, v̄, and the time-
averaged pressure, p̄. Additional requirements or compromises from these predictions
will be made based on the implementation of the governing dynamics equations, seen
in Sections 3.2.4–3.2.10. The network facilitates automatic backpropagation of nonlinear
dynamics equations using the TensorFlow function tape.gradient, used to calculate tensor
gradients such as the first-order partial differential terms in the governing flow equations.

The network architecture is adapted from a physics-informed network architecture
proposed by Eivazi et al. [6]. This architecture consists of a similar dense MLP architecture
as the data-driven model, but due to the nature of the loss function the convergence is less
of a concern, so a stack of 8 layers with 20 hidden nodes each will be used for simplicity.
The changes made to incorporate this implementation include the modification of the data
loading to accommodate the dataset, and modification of the governing equations and
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loss function, as well as changes to boundary condition enforcement and predictions to
accommodate different governing equation sets.

3.2.2. Loss Function

The loss function for the PINN is different from the data-driven model. The loss
function is a combination of calculated errors,

Loss = MSEbc + MSEpde (10)

There MSEbc is a mean averaged error taken at the boundary conditions, and MSEpde is
the mean squared error of the governing partial differential equations. The implementation
of boundary condition enforcement is an MSE error, like the MAE formula used in the
data-driven model. The formula for this MSE loss is given,

MSEbc =
1
N

N

∑
i=1

∣∣Yi − Ŷp
∣∣ (11)

For any closed system to converge to a single solution, boundary conditions must be
provided for each predicted variable. This does not necessarily mean that the equations
cannot be solved without all variables’ boundary conditions being provided, especially in
the case of a neural network that could potentially compensate for inaccurate predictions
with adjustment of the nodal weights based on flow features. This will be further explored
in the different models.

As proposed by Eivazi et al., the loss function will be split into two training steps,
‘supervised’ and ‘unsupervised’ steps. The supervised step will involve the MSEbc and
MSEpde, for a small number of iterations to ensure that the flow fields converge to the
correct flow state. When the boundary conditions are enforced, it is beneficial to remove
the MSEbc enforcement condition to reduce the number of calculations per iteration, and
thus reduce the solve time. After the initial training, the loss function will be reduced to
only the MSEpde term, to converge the flow field to the correct solution in an unsupervised
method. To monitor the impact of this, the inlet and outlet (used in this case as the boundary
conditions) velocity profiles in the streamwise and transverse directions will be monitored,
and if they are significantly different then the number of training iterations in the first step
may be changed. It was found that 1000 epochs was generally sufficient to converge to the
correct solution at the boundary, so this is used for all PINNs during testing.

3.2.3. Training

Like the data-driven model, the data will be normalised between 0 and 1 to improve
convergence before being input to the neural network. Unlike the data-driven model, the
only data-driven elements in this model are the data-enforced boundary conditions, with
the ‘test’ data being the remaining nodes in the flow domain, governed by the governing
equations. Like the data-driven model, an early stopping function is used to converge the
model within a specified loss threshold, where, when no improvement is seen in a certain
number of epochs, the model will stop training. This threshold is set to 50 epochs for the
PINNs models. It was found that, to converge the models within the desired threshold, a
learning rate scheduler was not required, so a constant learning rate of 1 × 10−3 is used for
all models.

3.2.4. Direct Reynolds Stress Model

The periodic hill flow conditions given in the dataset are governed by the 2D RANS
equations as given in Equations (1)–(3). These have been derived in time-averaged form to
match the flow field in the dataset, and separated into single partial differentials, which can
easily be calculated using the tape.gradient function from TensorFlow, the Python library
used to train the models. The equations are also rearranged to be equal to 0, which allows
them to be directly summed to form the partial differential loss function,
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MSEpde,1 = MSEcontinuity + MSEmomentum,x + MSEmomentum,y (12)

The MSEpde for all models will be similarly formed using the governing equations for
each model in Table 6. Since the PINN will minimise the loss, the first method will involve
a direct prediction of first-order stress terms, to directly close the momentum equations
without needing to calculate these values using a numerical method or turbulence model.
The full constraints of the model can be seen in Table 6.

3.2.5. Direct Reynolds Stress Model with Reduced Boundary Enforcement

Two more tests with direct Reynolds stress are performed, with alterations to be made
to which variables are enforced as part of the boundary condition. The first will include u
v, and p, but not first-order Reynolds stresses in boundary enforcement. The second will
include only u and v in boundary enforcement. Since the neural network will minimise the
loss function and can learn flow relationships, it is predicted that the neural network will
maintain correct predictions on the variables that are enforced on the boundary conditions,
and converge the variables that are not enforced on the boundary to a solution that follows,

N

∑
i=1

(Vbi) =
N

∑
i=1

(Vnbi) (13)

where Vbi represents the variables enforced at the boundary and Vnbi represents the vari-
ables not enforced at the boundary condition. This can also be interpreted that the sum of
the predicted variables for a given point will be equal, regardless of whether the boundary
condition is enforced. This will only be true based on the relationship between the variables
and the equations in which they are present, in this case for first-order Reynolds stresses in
the first test, and pressure and first-order Reynolds stresses in the second test.

It should be noted that, since the gradient forms of these variables are all that is
present in the governing flow equations, the actual predicted values will not be enforced
by Equation (13), but the gradients will, and this is what will be observed from the results
to validate this hypothesis. This is also likely constrained based on the convergence of the
neural network, as it is inherent with neural networks that they can converge to a solution
that is not entirely the same as the ground truth, and the consistency of the convergence
can vary based on the neural network, architecture, and convergence problem.

3.2.6. Continuity Only Model

It is proposed that the nature of a physics-informed neural network will converge a
solution provided that the system is defined correctly, but this does not require the system
to be numerically closed. In a direct numerical solver, continuity would not be sufficient
by itself to close the system as it contains both u and v, which both vary in space, thus
requiring the additional momentum equations to solve numerically. However, assuming
that predictions of time-averaged streamwise and transverse flows are sufficient for the
application, it is proposed that the continuity will converge to the correct solution. The full
model constraints can be seen in Table 6.

3.2.7. Mixing Length Model

As direct prediction is not possible with a traditional solver, various models have been
developed to close the momentum equations. Most closure models use the Boussinesq
assumption,

τij = µt

(
2Sij −

2
3

∂uk
∂xk

δij

)
− 2

3
ρkδij (14)

where µt is the turbulent viscosity, Sij is the stress tensor, δij is the Kronecker delta, and k
is the turbulent kinetic energy. Derivations can be found in Appendix A.3. This equation
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relates the first-order stresses to a derived turbulent viscosity term. This can be rewritten
for single partial derivatives as is required by the TensorFlow tape.gradient function,

τij = µt

((
∂ui
∂xj

+
∂uj

∂xi

))
− 2

3
ρkδij (15)

A model that directly predicts turbulent viscosity can be used to close the Boussi-
nesq assumption, which in turn can close the momentum and continuity equations. One
method of approximating the turbulent viscosity is using the Prandtl mixing length
model. This model, as used in [24], approximates the turbulent viscosity, µt, using the
following equation,

µt = l2
m
√

G (16)

where G is the strain tensor, and lm is the mixing length,

G = 2
(

∂u
∂x

)2
+ 2
(

∂v
∂y

)2
+

(
∂u
∂y

+
∂v
∂x

)2
(17)

lm = min(0.419d, 0.09dmax) (18)

where d is the distance from the wall. When approximating the first-order stress term, a
turbulent kinetic energy, k, is also required. In the mixing length model, the turbulent
kinetic energy is approximated using,

k =
1
2

uiuj =
1
2

(
u′u′ + v′v′

)
(19)

as outlined by [25], which allows the first-order stress terms to be defined,

τxx = 2µt

(
∂u
∂x

+
∂u
∂x

+
∂v
∂y

)
(20)

τyy = 2µt

(
∂u
∂x

+
∂v
∂y

+
∂v
∂y

)
(21)

τxy = τyx = µt

(
∂u
∂x

+
∂v
∂y

)
(22)

A full derivation can be found in Appendix A. Noting that some of the equations
above can be simplified further, but have been left in the form shown to more easily link to
the derivation presented. The full constraints of the model can be found in Table 6.

3.2.8. Turbulent Viscosity Model

It is known that the mixing length model is an oversimplification of the rich turbulence
dynamics that occurs in fluid flow, specifically the relation of turbulent viscosity to a mixing
length, implying that turbulent eddies maintain their identify over a certain distance, which
is a simplification to relate mixing length to geometry. Since the physics-informed neural
network will converge any included values to a solution that minimises the loss function,
it is implied that the turbulent viscosity can be predicted directly by the neural network.
This removes the reliance on the relation between geometry and mixing length and should
improve the prediction accuracy. To test this, another model will be tested, but the turbulent
viscosity will be directly predicted by the neural network. The same approximation for
turbulent kinetic energy will be used as in Equation (19). The full constraints on the model
can be seen in Table 6.

3.2.9. Turbulent Viscosity and Turbulent Kinetic Energy Model

The simplifications shown in Equation (19) can also be avoided by using the neural
network to predict the values directly for turbulent kinetic energy as well. The first-order
stress terms can then be directly predicted,
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τxx = µt

(
∂u
∂x

+
∂u
∂x

)
− 2

3
ρk (23)

τyy = µt

(
∂u
∂y

+
∂v
∂x

)
(24)

τxx = µt

(
∂v
∂y

+
∂v
∂y

)
− 2

3
ρk (25)

The full constraints on the model can be seen in Table 6.

3.2.10. Computation

The CPU TensorFlow instruction set was compared timewise against the CUDA
instruction set running through WSL (Windows Subsystems for Linux) on an Nvidia 3070
laptop GPU, as TensorFlow 2.14.0 does not support the CUDA instruction set on Windows
(NVIDIA, Santa Clara, CA, USA). The overhead from WSL leads to poor performance
and issues with RAM limitations loading the dataset into the neural network, so the CPU
instruction set is used for all runs on native Windows 11.

3.3. Summary of PINNs Methods

Figure 2 and Table 4 provide a summary of the PINNs models described, and the
conditions under which these models have been systematically evaluated.

DRSM

RBE(uvp)

RBE(uv)

COM

MLM

TVM

TVKEM

Remove pressure
boundary enforcement

Remove momentum
equations enforcement

Remove first order
stress boundary enforcement

Introduce turbulence model to
calculate first order stresses

Remove turbulent
viscosity assumption

Remove turbulent kinetic
energy assumption

Figure 2. Methods summary. First approach to reduce number of governing equations by taking
advantage of the ability to solve a numerically open system (right). Second approach by introducing
turbulence modelling assumptions to simplify predictions (left).

4. Results
4.1. Data-Driven Model

The data-driven model’s time-averaged streamwise velocity prediction in Figure 3
generally reflects the features of the DNS data. However, it fails to capture small-scale
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turbulence features including boundary conditions at the inlet and backflow conditions at
the trailing slope, where the model has not converged. Overall, the domain error is low
at 2.85%.

Figure 3. Time-averaged streamwise velocity, u, data driven vs. DRSM vs. DNS.

The transverse velocity prediction in Figure 4 exhibits a convergence towards correct
dynamics in bulk flow for the transverse velocity prediction by the data-driven model.
It captures features such as upflow at the leading edge but with poor accuracy and is
missing an upflow condition at the trailing slope. The domain error is much higher than
the streamwise velocity at 67.5%.

Figure 4. Time-averaged transverse velocity, v, data driven vs. DRSM vs. DNS.

While there is an approximate shape of the pressure gradient shown in Figure 5,
predictions are noisy and lack accuracy. The magnitude is overpredicted for negative
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pressure in the centre of bulk flow, and positive pressure near the trailing edge. Effects on
boundaries are also missed with very noisy predictions. The domain error is very high
at 215.9%.

Figure 5. Time-averaged pressure, p, data driven vs. DRSM vs. DNS.

4.2. PINNs Models

It is seen in Figure 3 that the DRSM can capture the flow much more accurately than
the data-driven model. Elements that are not predicted well by the data-driven model,
including the boundary condition at the inlet and outlet and the boundary at the trailing
slope, are captured much more accurately, with a lower total error in the streamwise flow
of 0.613%. This is evidenced visually through the streamwise velocity for PINNs models
(Figure 6).

The time-averaged transverse velocity prediction of the DRSM PINN is compared
against the DNS and the data-driven models in Figure 4. The DRSM predictions more
accurately capture flow features including the boundary feature on the inlet and outlet, as
well as central flow regions, as shown in Figure 7, Section 2. The overall domain error is
lower with the DRSM, with only a 9.24% error. It is noted that there is significantly more
error in the transverse velocity predictions than in the streamwise predictions.

Figure 5 shows that the DRSM PINN can predict the averaged pressure field much
more accurately than the data-driven model, with a significantly lower error of 4.78%. The
predictions are much more accurate in the bulk flow, and significantly improved in the
boundaries and on the leading and trailing edges; however, there are still differences at the
boundary of the trailing edge and the outlet condition.

The variables that were removed from the boundary conditions in the RBMuvp,uv are
not correctly predicted, as can be seen in the pressure field error of 253.68% for RBMuv.
However, it is interesting to note that, by reducing the enforced variables on the boundary,
the predictions for the variables that were enforced improve on average, with the error
for streamwise velocity reducing from 0.613% to 0.309% when not enforcing first-order
Reynolds stress terms, with a further drop to 0.233% when not enforcing pressure ρ either. A
similar trend is seen for transverse velocity. The effect of reducing the boundary conditions
on the solve time is not clear, with a reduction and increase (Table 6).

As shown in Figures 6 and 7, the COM produces the most accurate results for stream-
wise and transverse velocities, with overall domain errors of 0.147% and 2.562%, respec-
tively. This includes the most accurate capturing of flow features such as the boundary flow
at the leading and trailing slopes. The solve time is also comparatively low at only 0.74 h.
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Figure 6. Time-averaged streamwise velocity, u, PINNs compared.

Figure 7. Time-averaged transverse velocity, v, PINNs compared.

As shown in Figures 6–8, the MLM does not converge to an accurate solution near
the boundary conditions for the streamwise and transverse velocity fields, or the pressure
field, with the highest PINNs method error for streamwise velocity at 6.92%, and highest
enforced error for transverse velocity and pressure at 15.7% and 15.3%, respectively. The
predictions capture the general flow but are particularly poor for streamwise velocity near
the boundaries, especially the top boundary. The solve time however for this model is very
low, at only 0.74 h.

As shown in Figures 6–8, the TVM has a much higher accuracy than the MLM, with
the overall streamwise error reduced to 0.64%, transverse velocity error reduced to 9.29%,
and pressure field error reduced to 9.52%. The poor convergence at the boundaries seen in
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the MLM is not present, with much better convergence at the leading and trailing slopes.
The solve time is much higher than the MLM, at 2.38 h.

The accuracy is further improved with the TVKEM, shown in Figures 6–8. The overall
error is further decreased from the TVM, with the streamwise velocity error reduced to
0.47%, transverse velocity error reduced to 5.62%, and pressure field error reduced to 6.19%.
The solve time is still higher than the MLM at 1.63 h but is much lower than the TVM.

Figures 9 and 10 show the gradient of the first-order stress terms in the momentum in
x and momentum in y equations, respectively. It is shown that the bulk prediction for the
gradients is similar between all models and the DNS, with discrepancies at the boundaries
where large positive and negative gradients are present.

Figure 8. Time-averaged pressure, p, PINNs compared.

Figure 9. Gradient of u′u′ and u′v′ first-order stresses from x momentum equation for RBM models.
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Figure 10. Gradient of u′u′ and u′v′ first-order stresses from y momentum equation for RBM models.

5. Discussion
5.1. Data-Driven Model

The discrepancy between the data-driven model predictions and DNS is likely due
to the limited dataset. The small size of the dataset does not allow the neural network to
capture the complex nonlinear dynamics between geometric inputs and flow outputs for
a general case. Slices of streamwise velocity data (Appendix G) indicate similar profiles
among different geometry flow cases for the inlet, supporting the hypothesis that simi-
larity in the data leads to more accurate characterisation of flow and thus more accurate
prediction. Discrepancies at the boundary conditions at the trailing edge are likely due
to poor normalisation of data after concatenation into an array containing all datasets,
leading to differences in position when normalised, which affect predictions, especially at
domain edges.

The normalisation limitation of the data-driven model is clearer in the transverse
velocity prediction, where the backflow condition at the trailing slope is entirely missed
by the data-driven model. This flow feature is only present in three of the 29 flow cases
(Appendix G) at this normalised x value, which suggests that this prediction failure is a
result of the sparse data problem, where features that are sparse in the dataset are not
captured correctly because of the equal weighting of all features. This could be potentially
resolved by modification of the dataset to ensure that the domain lengths are similar
after normalisation. In this case, the backflow condition on the trailing slope would be
constant in position. This would aid the neural network in identification of this feature but
would still leave the inaccuracy issue seen in the rest of the flow features, e.g., on the inlet
flow condition.

The noisy and inaccurate predictions of the pressure field again suggest that the
dataset is not sufficient to capture the dynamics required to predict the pressure field. The
pressure field is significantly different in all flow cases, with similar gradients only between
a few of the flow cases (Appendix G). This supports the theory that the data in this case
are too different to provide accurate predictions, and more flow cases would be needed to
construct an accurate pressure field.

Again, it should be noted that the methods for this data-driven model are simple
as a based point of comparison; however, there are data-driven frameworks proposed in
literature that can make more accurate predictions. Volpiani et al. proposed a similar data-
driven architecture [26], with a larger set of input features, to allow the neural network to
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adapt to relevant features. This included turbulent flow features such as strain rate, rotation
rate, turbulent intensity, etc., and these were separately normalised with customised factors
to avoid moving turbulent features. While no error or accuracy metrics are provided, it can
be seen from the graphical results that the additional neural network inputs do improve
predictions, with both models tested capturing more streamwise velocity detail at the
boundary conditions, particularly the bottom wall. The transverse predictions are also
improved, more accurately predicting the downflow conditions at the leading slope as
the domain is normalised to preserve the turbulence model’s position. However, though
the predictions are improved, all models show some error compared with the proposed
PINNs approaches.

5.2. PINNs Models

Comparing the error between the DRSM and RBM, the RBMs generally have a lower
error in the enforced variables than the DRSM (Table 6). This is a result of the model
being constrained by fewer factors, and fewer constraints allows the model to converge
to a solution more quickly, as there are fewer variables that are being enforced. Since the
relationship between the variables in the governing equations is based on the gradient of
the variables (with respect to the streamwise or transverse direction), there is nothing to
enforce the singular correct solution in the base values, which explains the high overall
domain error. The results from Figures 9 and 10 prove this, as the gradient values that
are part of the governing equations for the bulk flow are very similar. There is still a
small deviation between the models, which is likely due to the limited iterations for the
PINN to converge, so the exact solution is not reached. It is hypothesised that a run that
is allowed to continue training to a lower convergence threshold would see the DRSM
coming closer and eventually surpassing the RBMs; however, in an engineering application,
time is an important consideration. Since there is no clear benefit to reducing the boundary
enforcement in terms of solve time, it is hypothesised that the reduction in time is dependent
on the initial weights in the neural network from the first training step, or the ‘first guess’
at these variables. If this value is reasonably close, then the time is reduced, whereas, if the
value is not close, the time is increased. Further testing is required to understand this effect,
and enforcing a single or very few nodes of data and comparing the time vs full boundary
enforcement for the variable would prove this hypothesis. Should this hypothesis be true,
the most efficient training method would be to include the full set of boundaries at the
initial 1000 epoch training, but remove them after to reduce the constraints on the model
while keeping the initial values close to the correct values.

There is a significant improvement in the implementation of this neural network
from [6], which produced higher errors of 2.8%, 19.7%, and 8.6% in streamwise velocity,
transverse velocity, and pressure, respectively, for a periodic hill test case. This is not directly
comparable, as the dataset and Reynolds number are different, and the improvement shown
is likely due to a different convergence threshold; however, it is useful to note that the
PINN can produce lower errors, given optimisation of the solver for the problem.

It is noted that the error in the predicted variables for the COM is the lowest of any
PINNs model. Since this model contains the fewest boundaries and equations to satisfy, the
solution is reached much more quickly, with each epoch taking less time as fewer gradients
and equations must be calculated. An obvious limitation of this model is that, by limiting
the equations, the predicted variables are also limited, as there are no predictions made for
the pressure field. Since any equations that govern the flow must be correct to converge to
a correct solution, and have boundary conditions provided, if these pressure predictions
are required then the momentum equations must be added to the loss function. However,
if only the velocity fields are needed, a continuity only model is shown to be effective with
low error and solve time. This is particularly interesting, as effects of pressure and first-
order stresses are being ignored in the loss function but appear to still affect the solution,
likely a result of the boundary enforcement technique used during training. Further work is
required to understand the difference in the nodal weight adjustment between a COM and



Fluids 2024, 9, 279 19 of 35

DRSM, or further proof is required on alternative flow cases, particularly cases with heavy
turbulence characteristics such as vortex shedding, flow layer separation, and backflow,
such as a backwards-facing step.

The lack of accuracy of the MLM at the boundary conditions can be explained by
the model and its assumptions. Prandtl’s mixing length model is known to have several
limitations, including the lack of a physical basis for the assumed proportionality between
the turbulent viscosity and the velocity gradients that make up the strain tensor [27,28].
The model includes an overly simplistic assumption of turbulent viscosity, which has
a constant mixing length for the flow case. This is likely the largest contributor to the
poor convergence near the boundaries, as the periodic hill has changing geometries on
the bottom boundary. This results in the value of the mixing length calculated not being
applicable across the whole domain due to the changes in geometry.

Removing this mixing length assumption and the modelling of the turbulent viscosity
without relying on the strain tensor by directly predicting the values resolves the conver-
gence issue at the boundary conditions. This indicates that this assumption is the limiting
assumption in the MLM between the mixing length assumption and the turbulent kinetic
energy assumption. However, the model still contains the turbulent kinetic energy assump-
tion, which is also a simplification. Removing both assumptions leaves a model that is not
numerically closed but relies only on the Boussinesq assumption. The improvement of the
TVKEM from the TVM implies that the TVKEM is significantly impacting the accuracy of
the model for this flow case. It is noted that using the Boussinesq assumption itself does not
impact the accuracy of the model; however, the poor assumptions that are used to calculate
the values required in the Boussinesq assumption should be avoided, where possible, as
they impact the solver accuracy.

In our current study, there is a novel proposition of exploiting numerically derived un-
closed equation sets to aid in efficient solving of problems related to turbulence. Specifically
where the equation sets used to constrain PINNs are based on a numerically derived re-
duced order model. Existing studies which employ a reduced order model, for turbulence,
can do so effectively but may require understanding of the geometry or an actual insight
into the data itself under given conditions [9]. It has been shown that neural networks
can reduce the dimensionality of a governing equation [11], and that they can be applied
successfully to parametric systems [10]. The results obtained in this current study are
broadly in agreement with literature, such as Pioch et al., 2023 [7] which indicate that
physics-informed neural networks are a significant improvement in solve time compared to
a data driven approach. However, so far turbulence problems have not evaluated unclosed
problems, where more variables are solved than equations sets available. This approach,
as used in our current study has been particularly effective when data-driven and PINNs
have been combined, leading to a time-efficient and high-accuracy solution. This approach,
while evaluated for a turbulence benchmark model, has wider applications where complex
complex flow is involved, such as in multi-phase and multi-scale flow models which when
solved using a traditional numerical modelling approach have long solution times.

6. Conclusions

This study compared a data-driven turbulence modelling approach to different con-
figurations of a PINNs architecture to predict flow fields of a period hill of Reynolds flow
5600, governed by 2D incompressible RANS equations. It was shown that the simple data-
driven model is accurate to 2.9% and 67.5% error in streamwise and transverse velocities,
respectively, and that this approach is constricted by the small number of flow cases and
sparse data of velocity features between the flow cases. The numerically closed DRSM
PINN was shown to have a significantly reduced error (1.2% and 6.4%, respectively), with
further improvement using reduced-boundary models and reduced-equation models, with
the COM having a dramatically reduced solve time and error in fluid velocity predictions
compared with all other approaches. It was also shown that introducing poor assumptions
in the governing equations affects the convergence of the solver, with the MLM model
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showing significant error at the boundary conditions. The evaluation of a turbulence bench-
mark has enabled the effectiveness of the PINNs to be assessed. Critically, this study has
evaluated a novel approach by which to implement a reduced order model. This approach
is time-efficient for solving turbulence problems in cases of sparse-data using an unclosed
approach to its solution. In conclusion, a numerically derived unclosed equation set can be
efficiently implemented with neural networks to reliably model turbulent systems.
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τij First-order Reynold’s stress wrt. i and j
α Geometric slope parameter
h Domain height (m)
l Domain length (m)
Yi Dataset value
Yp Neural network predicted value
Vbi Boundary-enforced variables
Vnbi Non-boundary-enforced variables
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d Distance from the wall (m)
G Strain tensor
lm Mixing length

Appendix A

Appendix A.1. 2D Stationary Equations—Continuity

The 2D continuity equation for incompressible flow is given by,

∂u
∂x

+
∂v
∂y

= 0 (A1)

The Reynolds decomposition can be used to separate the velocities into their mean
and fluctuating components,

u = v̄ + v′ (A2)

u = v̄ + v′ (A3)

where ū and v̄ are the mean velocity components, and the prime denotes fluctuating
components.

∂(ū + u′)

∂x
+

∂(v̄ + v′)
∂y

= 0 (A4)

Applying time averaging over time a,

1
ta

∫ ta

0

[
∂(ū + u′)

∂x
+

∂(v̄ + v′)
∂y

]
dt = 0 (A5)

1
ta

∫ ta

0

(
∂ū
∂x

+
∂u′

∂x
+

∂v̄
∂y

+
∂v′

∂y

)
dt = 0 (A6)

The Reynolds stress decomposition implies that, for stationary flow,

1
ta

∫ ta

0

∂u′

∂x
dt =

1
ta

∫ ta

0

∂v′

∂y
dt = 0 (A7)

Therefore,
1
ta

∫ ta

0

∂ū
∂x

dt +
1
ta

∫ ta

0

∂v̄
∂y

dt = 0 (A8)

Which simplifies to,
∂ū
∂x

+
∂v̄
∂y

= 0 (A9)

Appendix A.2. 2D Stationary Equations—Momentum in x and y

The 2D momentum equation is given by,

ρ

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)
= −∂p

∂x
+ µ

(
∂2u
∂x2 +

∂2u
∂y2

)
(A10)

By dividing by ρ on both sides,(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)
= −

(
1
ρ

)
∂p
∂x

+ ν

(
∂2u
∂x2 +

∂2u
∂y2

)
(A11)

The Reynolds stress composition for velocity and pressure is denoted,

u = ū + u′ (A12)

p = p̄ + p′ (A13)
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where ū and p̄ are the mean streamwise velocity and pressure components, respectively,
and the prime denotes fluctuating components. Substituting this into the momentum
equation, (

∂(ū + u′)

∂t
+ (ū + u′)

∂(ū + u′)

∂x
+ (v̄ + v′)

∂(ū + u′)

∂y

)
(A14)

= −
(

1
ρ

)
∂( p̄ + p′)

∂x
+ ν

(
∂2(ū + u′)

∂x2 +
∂2(ū + u′)

∂y2

)
Time averaging both sides,

1
ta

∫ ta

0

[
∂(ū + u′)

∂t
+ (ū + u′)

∂(ū + u′)

∂x
+ (v̄ + v′)

∂(ū + u′)

∂y

]
dt (A15)

=
1
ta

∫ ta

0

[
−
(

1
ρ

)
∂( p̄ + p′)

∂x
+ ν

(
∂2(ū + u′)

∂x2 +
∂2(ū + u′)

∂y2

)]
dt

This can be decomposed to,

1
ta

∫ ta

0

∂ū
∂t

dt +
1
ta

∫ ta

0

∂u′

∂t
dt (A16)

+

(
1
ta

∫ ta

0
ū

∂ū
∂x

dt +
1
ta

∫ ta

0
ū

∂u′

∂x
dt +

1
ta

∫ ta

0
u′ ∂ū

∂x
dt +

1
ta

∫ ta

0
u′ ∂u′

∂x
dt
)

+

(
1
ta

∫ ta

0
v̄

∂ū
∂y

dt +
1
ta

∫ ta

0
v̄

∂u′

∂y
dt +

1
ta

∫ ta

0
v′

∂ū
∂y

dt +
1
ta

∫ ta

0
v′

∂u′

∂y
dt
)

=
1
ta

∫ ta

0

(
−1

ρ

)
∂ p̄
∂x

dt +
1
ta

∫ ta

0

(
−1

ρ

)
∂p′

∂x
dt +

ν

ta

∫ ta

0

(
−1

ρ

)
∂2ū
∂x2 dt

+
ν

ta

∫ ta

0

(
−1

ρ

)
∂2u′

∂x2 dt +
ν

ta

∫ ta

0

(
−1

ρ

)
∂2ū
∂y2 dt +

ν

ta

∫ ta

0

(
−1

ρ

)
∂2u′

∂y2 dt

Time averages of fluctuating components as implied by the Reynolds stress decompo-
sition,

1
ta

∫ ta

0

∂u′

∂t
dt =

ū
ta

∫ ta

0

∂u′

∂x
dt =

v̄
ta

∫ ta

0

∂u′

∂y
dt =

1
ta

∫ ta

0

(
−1

ρ

)
∂p′

∂x
dt =

ν

ta

∫ ta

0

(
−1

ρ

)
∂2u′

∂x2 dt

(A17)

=
ν

ta

∫ ta

0

(
−1

ρ

)
∂2u′

∂y2 dt = 0

However, it is important to note that, while the time average of velocity and pressure
fluctuation is zero, the variance is not zero. In this case,

1
ta

∫ ta

0
u′ ∂u′

∂x
dt ̸= 0,

1
ta

∫ ta

0
u′ ∂u′

∂x
dt ̸= 0 (A18)

The average velocity does not change with time,

∂ū
∂t

= 0 (A19)

Which leaves,(
1
ta

∫ ta

0
ū

∂ū
∂x

dt +
1
ta

∫ ta

0
u′ ∂u′

∂x
dt
)
+

(
1
ta

∫ ta

0
v̄

∂ū
∂y

dt +
1
ta

∫ ta

0
v′

∂u′

∂y
dt
)

(A20)

=
1
ta

∫ ta

0

(
−1

ρ

)
∂ p̄
∂x

dt +
ν

ta

∫ ta

0

(
−1

ρ

)
∂2ū
∂x2 dt +

ν

ta

∫ ta

0

(
−1

ρ

)
∂2ū
∂y2 dt
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This can be simplified,

u
∂u
∂x

+ v
∂u
∂y

+ u′ ∂u′

∂y
+ u′ ∂u

∂x
=

(
−1

ρ

)
∂p
∂x

+ v
∂2u
∂x2 + v

∂2u
∂y2 (A21)

This can be rearranged,

u
∂u
∂x

+ v
∂u
∂y

−
(
−1

ρ

)
∂p
∂x

− ν

(
∂2u
∂x2 +

∂2u
∂y2

)
+ v′

∂u′

∂y
+ u′ ∂u′

∂x
= 0 (A22)

where the final two terms represent the first-order Reynolds stresses. The same can be
performed for the momentum equation in y,

ρ

(
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

)
= −∂p

∂y
+ µ

(
∂2v
∂x2 +

∂2v
∂y2

)
(A23)

Which gives,

u
∂v
∂x

+ v
∂v
∂y

−
(
−1

ρ

)
∂p
∂y

− ν

(
∂2v
∂x2 +

∂2v
∂y2

)
+ v′

∂v′

∂y
+ u′ ∂v′

∂x
= 0 (A24)

Appendix A.3. Mixing Length Model

The 2D stationary momentum equations read,

u
∂u
∂x

+ v
∂u
∂y

−
(
−1

ρ

)
∂p
∂x

− ν

(
∂2u
∂x2 +

∂2u
∂y2

)
+ v′

∂u′

∂y
+ u′ ∂u′

∂x
= 0 (A25)

u
∂v
∂x

+ v
∂v
∂y

−
(
−1

ρ

)
∂p
∂y

− ν

(
∂2v
∂x2 +

∂2v
∂y2

)
+ v′

∂v′

∂y
+ u′ ∂v′

∂x
= 0

With the first-order stress terms given by,

τii = u′ ∂u′

∂x
, τij = u′ ∂v′

∂x
, tauji = v′

∂u′

∂x
, τjj = v′

∂v′

∂x
(A26)

According to the Boussinesq assumption, the Reynolds stresses can be given,

τij = µt

(
2Sij −

2
3

∂uk
∂xk

δij

)
− 2

3
ρkδij (A27)

where, µt is a turbulent eddy viscosity and Sij is the stress tensor, given by,

Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
(A28)

The time average of the stress tensor is given,

Sij = Sij −
1
3

∂uk
∂xk

δij (A29)

Taking the time average of the Boussinesq assumption by applying the Reynolds
decomposition,

uk = uk + u′
k (A30)

τij = µt

(
2
(

Sij −
1
3

∂(uk + u′
k)

∂xk
δij

)
− 2

3
∂(uk + u′

k)

∂xk
δij

)
− 2

3
ρkδij (A31)

τij = µt
(
2(Sij)

)
− 2

3
ρkδij (A32)
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τij = µt

((
∂ui
∂xj

+
∂uj

∂xi

))
− 2

3
ρkδij (A33)

Since the time average of a time average is that same time average, and the equation
must be written to deal with these time averages, this can be re-written,

τij = µt

((
∂ui
∂xj

+
∂uj

∂xi

))
− 2

3
ρkδij (A34)

Since the no turbulent kinetic energy, k, is calculated here, it is approximated,

k =
1
2

u′
iu

′
i =

1
2
(u′u′ + v′v′) (A35)

The first-order stress τii therefore reads,

τii = µt

((
∂u
∂x

+
∂u
∂x

))
− 2

3
ρ

[
1
2
(u′u′ + v′v′)

]
(A36)

where,
u′u′ = −τii (A37)

v′v′ = −τjj (A38)

Therefore,

τii = µt

(
∂u
∂x

+
∂u
∂x

)
− 2

3
ρ

[
1
2
(−τii +−τjj)

]
(A39)

τii = µt

(
∂u
∂x

+
∂u
∂x

)
− 1

3
ρ
[
(−τii +−τjj)

]
(A40)

The first-order stress τjj similarly reads,

τjj = µt

(
∂v̄
∂y

+
∂v̄
∂y

)
− 1

3
ρ[(−τii +−τjj)] (A41)

These equations can be reduced,

τii

(
1 − 1

3
ρ

)
= τjj

(
1
3

ρ

)
+ µt

(
∂u
∂x

+
∂u
∂x

)
(A42)

τjj

(
1 − 1

3
ρ

)
= τii

(
1
3

ρ

)
+ µt

(
∂v
∂y

+
∂v
∂y

)
(A43)

Therefore,

τii =
τjj

(
1
3 ρ
)
+ µt

(
∂u
∂x + ∂u

∂x

)
(

1 − 1
3 ρ
) (A44)

τjj =
τii

(
1
3 ρ
)
+ µt

(
∂v
∂y + ∂v

∂y

)
(

1 − 1
3 ρ
) (A45)

Substitution of τjj into τii gives,

τii

(
1 − 1

3
ρ

)
= −

τii

(
1
3 ρ
)
+ µt

(
∂v
∂y + ∂v

∂y

)
(

1 − 1
3 ρ
) (

1
3

ρ

)
+ µt

(
∂u
∂x

+
∂u
∂x

)
(A46)
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τii

(
1 − 1

3
ρ

)(
1 − 1

3
ρ

)
= τii

(
1
3

ρ

)
+ µt

(
∂v̄
∂y

+
∂v̄
∂y

)(
1
3

ρ

)
+ µt

(
∂ū
∂x

+
∂ū
∂x

)(
1 − 1

3
ρ

)
(A47)

τii

(
1 − 1

3
ρ

)(
1 − 1

3
ρ

)
− τii

(
1
3

ρ

)
= µt

(
∂v̄
∂y

+
∂v̄
∂y

)(
1
3

ρ

)
+ µt

(
∂ū
∂x

+
∂ū
∂x

)(
1 − 1

3
ρ

)
(A48)

τii

(
1 − 1

3
ρ

)2
− τii

(
1
3

ρ

)
= µt

(
∂v̄
∂y

+
∂v̄
∂y

)(
1
3

ρ

)
+ µt

(
∂ū
∂x

+
∂ū
∂x

)(
1 − 1

3
ρ

)
(A49)

τii

(
1 − 2

3
ρ − 1

9
ρ2
)
− τii

(
1
3

ρ

)
= µt

(
∂v̄
∂y

+
∂v̄
∂y

)(
1
3

ρ

)
+ µt

(
∂ū
∂x

+
∂ū
∂x

)(
1 − 1

3
ρ

)
(A50)

Since the density of water is around 1 g/m2,

τii

(
1 − 2

3
− 1

9

)
− τii

(
1
3

)
= µt

(
∂v̄
∂y

+
∂v̄
∂y

)(
1
3

)
+ µt

(
∂ū
∂x

+
∂ū
∂x

)(
1 − 1

3

)
(A51)

1
3

τii =
1
3

µt

(
∂v̄
∂y

+
∂v̄
∂y

)
+

2
3

µt

(
∂ū
∂x

+
∂ū
∂x

)
(A52)

τii = µt

(
∂v̄
∂y

+
∂v̄
∂y

)
+ 2µt

(
∂ū
∂x

+
∂ū
∂x

)
(A53)

τii = 2µt

(
∂ū
∂x

+
∂ū
∂x

+
∂v̄
∂y

)
(A54)

Similarly, the first-order stress for τjj can be derived,

τjj = 2µt(
∂ū
∂x

+
∂v̄
∂y

+
∂v̄
∂y

) (A55)

The first-order stresses τii and τjj do not require turbulent kinetic energy terms due to
the Kronecker delta. As the fluid is incompressible,

τij = τji = µt

(
∂u
∂y

+
∂v
∂x

)
(A56)

The turbulent viscosity of the mixing length model is given based on the relation,

µt = l2
m
√

G (A57)

where the mixing length, lm, is given,

lm = min(0.419d, 0.09dmax) (A58)

where d is the distance from the wall. The mean strain rate tensor, G, is given,

G = 2
(

∂ū
∂x

)2
+ 2
(

∂v̄
∂y

)2
+

(
∂ū
∂y

+
∂v̄
∂x

)2
(A59)

Appendix A.4. K-Omega Model

The general form of the turbulent kinetic energy, k, equation reads,

∂(ρk)
∂t

+
∂(ρujk)

∂xj
= P − β∗ρωk +

∂

∂xj

[(
µ + σk

ρk
ω

)
∂k
∂xj

]
(A60)
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where the production term is given,

P = τij
∂ui
∂xj

(A61)

According to the Boussinesq assumption, the Reynolds stresses can be given,

τij = µt

(
2Sij −

2
3

∂uk
∂xk

δij

)
− 2

3
ρkδij (A62)

where µt is a turbulent eddy viscosity and Sij is the stress tensor, given by,

Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
(A63)

The time average of the stress tensor,

Sij = Sij −
1
3

∂uk
∂xk

δij (A64)

Taking the time average of the Boussinesq assumption by applying the Reynolds
decomposition,

uk = uk + u′
k (A65)

τij = µt

(
2
(

Sij −
1
3

∂(uk + u′
k)

∂xk
δij

)
− 2

3
∂(uk + u′

k)

∂xk
δij

)
− 2

3
ρkδij (A66)

τij = µt
(
2(Sij)

)
− 2

3
ρkδij (A67)

τij = µt

((
∂ui
∂xj

+
∂uj

∂xi

))
− 2

3
ρkδij (A68)

Since the time average of a time average is that same time average, and the equation
must be written to deal with these time averages, this can be re-written,

τij = µt

(
∂ūi
∂xj

+
∂ūj

∂xi

)
− 2

3
ρkδij (A69)

And the turbulent viscosity, µt, is calculated,

µt =
ρk
ω̂

(A70)

where,

ω̂ = max

ω, Clim

√
2SijSij

β∗

 is simpli f ied to ω̂ = ω (A71)

This can be used to calculate the time average of the production term,

P = τij
∂ui
∂xj

(A72)

This can be used to calculate the time average of the k equation,

∂(ρk̄)
∂t

+
∂(ρuj k̄)

∂xj
= P̄ − β∗ρωk̄ +

∂

∂xj

[(
µ + σk

ρk̄
ω

)
∂k̄
∂xj

]
(A73)
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In this case, since k and ω are unknowns, and their fluctuating components are not
known or used, we can assume that the fluctuating components are zero, and hence leave
them as they are in the equation. It should be noted that since k is the turbulent kinetic
energy of averaged quantities, therefore,

∂ρk
∂t

= 0 (A74)

As k does not change with time. This leaves,

∂(ρūjk)
∂xj

= P̄ − β∗ρωk +
∂

∂xj

[(
µ + σk

ρk
ω

)
∂k
∂xj

]
(A75)

Which can be expanded for the 2D stationary domain into,

∂(ρuk)
∂x

+
∂(ρvk)

∂y
=

(
τxx

∂u
∂x

+ τxy
∂u
∂y

+ τyx
∂v
∂y

+ τyy
∂v
∂y

)
− β∗ρωk (A76)

+
∂

∂x

[(
µ + σk

ρk
ω

)
∂k
∂x

]
+

∂

∂y

[(
µ + σk

ρk
ω

)
∂k
∂y

]
Using the product rule,

∂(ρuk)
∂x

+
∂(ρvk)

∂y
= ρ

((
u

∂k
∂x

+ k
∂u
∂x

)
+

(
v

∂k
∂y

+ k
∂v
∂y

))
(A77)

Giving,

ρ

((
ū

∂k
∂x

+ k
∂ū
∂x

)
+

(
v̄

∂k
∂y

+ k
∂v̄
∂y

))
=

(
τ̄xx

∂ū
∂x

+ τ̄xy
∂ū
∂y

+ τ̄yx
∂v̄
∂y

+ τ̄yy
∂v̄
∂y

)
− β∗ρωk

(A78)

+
∂

∂x

[(
µ + σk

ρk
ω

)
∂k
∂x

]
+

∂

∂y

[(
µ + σk

ρk
ω

)
∂k
∂y

]
The general form of the turbulent kinetic energy dissipation, ω, is given,

∂(ρω)

∂t
+

∂(ρujω)

∂xj
=

γω

k
P − βρω2 +

∂

∂xj

[(
µ + σω

ρk
ω

)
∂ω

∂xj

]
+

ρσd
ω

∂k
∂xj

∂ω

∂xj
(A79)

Which can be similarly rewritten,

ρ

((
ū

∂ω

∂x
+ ω

∂ū
∂x

)
+

(
v̄

∂ω

∂y
+ ω

∂v̄
∂y

))
=

γω

k

(
τ̄xx

∂ū
∂x

+ τ̄xy
∂ū
∂y

+ τ̄yx
∂v̄
∂y

+ τ̄yy
∂v̄
∂y

)
− βρω2

(A80)

+
∂

∂x

[(
µ + σω

ρk
ω

)
∂ω

∂x

]
+

ρσd
ω

∂k
∂x

∂ω

∂x
+

∂

∂y

[(
µ + σω

ρk
ω

)
∂ω

∂y

]
+

ρσd
ω

∂k
∂y

∂ω

∂y

Appendix B

Equations for the geometry, as provided in [19]
ŷ = min(1 : 1 + 2.42 × 10−4 x̂2 − 7.588 × 105 x̂3), x̂ ∈ [0, 0.3214]
ŷ = 0.8955 + 3.4844x̂ − 3.629 × 10−3 x̂2 + 6.749 × 10−5 x̂3, x̂ ∈ [0.3214, 0.5]
ŷ = 0.9213 + 2.931 × 10−2 x̂ + 3.243 × 10−3 x̂2 + 5.809 × 10−5 x̂3, x̂ ∈ [0.5, 0.7143]
ŷ = 1.445 − 4.927 × 10−2 x̂ + 6.95 × 10−4 x̂2 − 7.394 × 10−6 x̂3, x̂ ∈ [0.7143, 1.071]
ŷ = 0.6401 + 3.1123 × 10−2 x̂ + 1.988 × 10−3 x̂2 + 2.242 × 10−6 x̂3, x̂ ∈ [1.071, 1.429]
ŷ = max(0 : 2.0139 − 7.18 × 10−4 x̂ + 5.875 × 10−4 x̂2 + 9.553 × 10−7 x̂3, ) x̂ ∈ [1.1429, 1.929]
where x̂ = x

H and ŷ = y
H are normalised horizontal and vertical coordinates, respectively.
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Appendix C

Neural networks are used to model relationships between independent variables such
as geometry and dependant variables such as flow fields and stress terms in the case of
turbulence modelling. When referring to a neural network that makes an exact prediction
rather than classification, this is known as regression.

The simplest form of neural networks used for regression are dense multilayer percep-
tron (MLP) or feed-forward neural networks. A dense MLP network is characterised by its
unidirectional information flow from input nodes to a set of interconnected nodes that are
weighted to transform data as they are passed from one node to another.

The neural network can be conceptually simplified into a simple polynomial approxi-
mation, where the hidden nodes represent the equation relating the independent variables
to the dependent variables, in the same way a simple transformer might behave. The
training of the neural network is simply the method of determining the correct nodal
weights to correctly characterise the transformer, to ensure that it is representative of the
correct nonlinear dynamics between the independent and dependent variables. This ar-
chitecture is represented in a general form in Figure A1. The method of training is via
calculation of some loss, as discussed in the Methods section. Backpropagation is used for
optimising this loss function by adjusting weights according to gradients calculated via
chain rule-based computation on losses relative to node weights and biases resulting from
the backpropagation method. These gradients are then employed within an optimiser such
as Adam, which uses them iteratively to recalibrate node weights, ensuring convergence
towards accurate solutions.

Once the neural network has been trained, it can predict the value of independent
variables from new dependant variables, and, provided that the weights have adjusted
sufficiently to capture the nonlinear dynamics of the data, the predictions should be accurate
and representative of the test data.

Input Layer Hidden Layer Hidden Layer Hidden Layer Output Layer

Figure A1. General dense MLP neural network architecture.

Appendix D

Appendix D.1. Methods

The k omega model is a two-equation turbulence model that defines mean flow in
terms of turbulence kinetic energy, k, which is closed using the kinetic energy dissipation
rate, ω. The 2D stationary conservation equations are written,
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These can be simplified and rewritten in a singular partial differential form for mean
flow,

ρ

((
ū
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∂x

+ k
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Turbulent viscosity for this model is calculated,

µt =
ρk
ω̂

(A85)

where,

ω̂ = max

ω, Clim

√
2SijSij

β∗

 is simpli f ied to ω̂ = ω (A86)

A full derivation can be found in Appendix A. See Table A1 for full constraint list.

Appendix D.2. KOM Model

Table A1. KOM model summary.

Method Name Neural Net-
work Inputs

Neural Network
Outputs

Governing Flow Equations Enforced
Boundaries

K-Omega
(

x
y

) u
v
k
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
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Turbulent viscosity:
µt =

ρk
ω̂

Turbulent kinetic energy dissipation rate limit:
ω = ω̂
First-order stresses:
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Table A2. Solver metrics and overall accuracy.

Neural
Network

Name

Neural
Network Ab-

breviation
Training
Time (s)

Prediction
Time u Error (%) * v Error (%) * p Error (%) * Description

K-Omega
Model KOM 1.83 - 0.161 2.28 -

Learning
Rate of

1 × 10−2

required for
convergence,

compared
with

1 × 10−3 for
rest.

Compared
with others,
time should

be slower
than shown.

* See Appendix E for calculation method.

Appendix D.3. KOM Results

The KOM is not entirely comparable with the other results, as the KOM model failed
to converge with the same solver parameters. To allow the model to solve, the learning
rate was increased to 1 × 10−2 from 1 × 10−3 to provide faster initial convergence. The
model has low error, close to the accuracy of the COM model, with a streamwise error of
0.161% and transverse velocity error of 2.28%. There are no pressure predictions for the
KOM model, as pressure is not a variable present in the governing equations. The solve
time is still much higher than the COM at 1.83 h, despite the learning rate decreasing the
solve time.

Figure A2. Time-averaged streamwise velocity, u, PINNs compared with KOM.
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Figure A3. Time-averaged transverse velocity, v, PINNs compared with KOM.

Appendix D.4. KOM Discussion

The KOM results show that the continuity form of the two equation models is sufficient
to govern the model, and the results shown are fairly accurate. However, it is noted that the
number of unknowns in each equation is higher than any other model, and governing this
many unknowns using only two equations is likely the cause of the inability to converge
within the same threshold using the same small learning rate as the other models. While
this means the model is not directly comparable, this model is promising, avoiding the
poor assumptions as in the MLM while directly predicting k and omega. In this manner,
the number of equations being solved can be reduced from the TVKEM model, but the
convergence threshold or learning rate will need to be adjusted to produce results. This
shows that this form is accurate, but highlights the limitations of under-constrained models
with a low number of governing equations and a high number of variables across them,
with convergence issues being the most important.

Appendix E

The formula used to calculate the overall error per variable in the fluid domain is given,

Total Domain Error (%) =
∥ref − pred∥2,(1,2)

∥ref∥2,(1,2)
× 100 (A87)

where ref and pred are the lists of reference and predicted fluid domain values, and ∥a∥2,(1,2)
denotes the values on the specified axis, which represent the points and variables.

It should be noted that there are several limitations with this method of calculating
average domain error. This function is inherently sensitive to outliers. If there are extreme
differences in the percentage error between the reference and predicted points in the
domain, this can disproportionately affect the error calculation. This can lead to large
errors being cancelled, skewed error, and other effects leading to a lower or higher overall
percentage error than might accurately represent the flow.
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Appendix F

Table A3. Data-driven metrics for all geometries. Runs 1, 2, and 3 solve time and epochs.

Testing Geometry
(Filename) Run 1 Time (hrs) Run 2 Time (hrs) Run 3 Time (hrs) Run 1 Epochs Run 2 Epochs Run 3 Epochs

05-10071-2024 4.1465 4.8044 2.3025 64 75 36
05-10071-3036 4.2917 6.0054 3.6440 71 100 60
05-10071-4048 6.4153 4.5389 3.6440 100 72 58
05-4071-2024 6.5736 6.5935 6.5516 100 100 100
05-4071-3036 3.1383 3.3755 2.1277 51 54 34
05-4071-4048 6.4042 3.8653 4.8055 98 58 75
05-7071-2024 6.1510 6.2457 6.1696 100 100 100
05-7071-3036 6.0619 2.7623 5.9172 100 44 95
05-7071-4048 6.0049 6.1623 4.4935 98 100 73
075-80355-3036 2.1614 2.0215 3.5191 35 32 57
10-12-2024 4.0714 2.6690 6.3826 62 41 100
10-12-3036 3.3554 6.1844 3.9754 55 100 66
10-12-4048 3.9153 3.6145 2.6540 62 57 43
10-6-2024 1.9820 6.6085 6.2423 31 100 94
10-6-3036 4.1323 4.1945 6.1153 67 68 100
10-6-4048 2.5583 4.5273 4.4232 40 70 69
10-9-2024 2.9653 6.6347 2.7177 46 100 41
10-9-3036 2.1101 2.4105 2.9650 35 39 48
10-9-4048 3.6485 2.6676 6.5280 59 42 98
125-99645-3036 6.1283 6.2453 6.0690 100 100 100
15-10929-2024 4.5933 4.5386 4.1385 74 72 67
15-10929-3036 1.8833 6.0567 1.9385 31 100 32
15-10929-4048 2.3954 2.1975 2.0831 40 36 35
15-13929-2024 3.7073 2.3868 2.1093 59 37 33
15-13929-3036 2.9063 2.2772 2.6044 48 38 44
15-13929-4048 1.9373 2.0007 1.9445 31 32 31
15-7929-2024 2.2224 3.0369 3.5955 34 46 55
15-7929-3036 2.3923 1.9600 3.7755 39 32 61
15-7929-4048 3.9381 6.1410 3.5175 61 96 55

Median Average 3.6485 2.2772 3.7755 59 69 61

Table A4. Data-driven metrics for all geometries. Green is the geometry used for PINNs initial testing.
Red show highest error (anomalous). Runs 1, 2, and 3 errors.

Testing Geometry u Error (%) v Error (%) p Error (%)

(Filename) Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 Run 1 Run 2 Run 3

05-10071-2024 10.7 8.1 7.4 53.6 39.9 36.0 107.4 108.3 107.2
05-10071-3036 3.8 2.4 3.6 25.3 16.9 19.6 109.1 111.3 110.9
05-10071-4048 2.4 2.4 3.9 23.7 15.8 30.9 117.2 115.9 114.7
05-4071-2024 9.1 10.0 10.1 69.3 61.1 68.4 157.6 166.3 146.5
05-4071-3036 2.8 4.1 3.5 67.5 66.6 64.0 213.9 222.6 215.8
05-4071-4048 2.9 3.5 6.1 60.7 64.7 84.8 253.9 241.9 251.6
05-7071-2024 5.3 5.9 6.0 39.6 36.7 44.6 110.4 110.1 111.9
05-7071-3036 2.9 3.4 2.5 30.0 33.3 23.6 123.3 125.1 122.3
05-7071-4048 2.2 1.8 1.9 23.8 24.9 23.8 135.1 133.4 130.5
075-80355-3036 19.2 15.1 13.1 127.6 109.5 94.0 130.5 127.6 112.5
10-12-2024 8226.0 33.7 34.2 5213.0 113.8 116.5 7328.0 111.4 111.8
10-12-3036 19.3 15.6 14.9 77.7 86.9 61.3 113.0 110.9 111.8
10-12-4048 18.4 15.0 18.1 103.6 84.4 92.2 114.7 113.2 113.7
10-6-2024 17.4 16.9 15.6 117.0 114.0 112.5 118.2 117.7 118.0
10-6-3036 9.8 6.2 9.7 95.4 60.9 101.4 147.0 146.9 147.4
10-6-4048 10.0 9.4 9.3 146.4 133.7 135.0 174.7 175.0 178.9
10-9-2024 21.0 21.4 21.0 81.3 79.8 94.3 106.6 108.5 108.6
10-9-3036 14.8 14.0 10.0 90.0 88.4 49.9 114.9 114.0 114.6
10-9-4048 10.6 9.9 6.3 83.4 81.3 56.7 119.9 120.9 119.1
125-99645-3036 1169.5 34.7 28.6 1431.7 110.7 126.6 1372.3 96.5 102.4
15-10929-2024 12.0 10.1 10.4 39.2 33.9 39.0 103.6 103.6 103.3
15-10929-3036 18.4 5.0 4.6 87.3 29.1 26.0 106.3 106.9 106.3
15-10929-4048 5.5 5.4 5.3 30.2 26.4 31.6 106.6 107.5 108.5
15-13929-2024 31.4 7519.2 146,994.1 109.9 86,986.4 135,865.8 108.9 28,905.0 417,257.2
15-13929-3036 25.2 27.9 20.0 95.5 105.6 110.7 108.4 109.9 106.4
15-13929-4048 30.7 20.8 120.3 103.2 105.5 6150.2 110.5 110.7 184.9
15-7929-2024 25.4 25.5 23.6 98.6 98.6 91.0 104.4 104.7 105.4
15-7929-3036 17.7 18.9 18.0 97.9 97.8 99.0 111.8 110.1 111.6
15-7929-4048 14.0 14.3 14.9 110.3 94.2 98.7 119.5 118.3 116.7

Median Average 12.0 10.0 10.0 83.4 80.5 68.4 114.7 112.3 112.5
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Appendix G

Figure A4. DNS compared for steamwise velocity at x = 0, x = 3.

Figure A5. DNS compared for transverse velocity at x = 0, x = 3.
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Figure A6. DNS compared for pressure at x = 0, x = 3.

Appendix H

Figure A7. Data distribution for alph05-4071-3036.dat.
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