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Abstract: The mean dissipation rate of turbulent energy reaches a constant value at high Taylor–
Reynolds numbers (Rλ). This value is associated with the well-scaling dissipation spectrum in
Kolmogorov units, where the maximum corresponds to the bottleneck peak. Even the scalar dissipa-
tion rate at the high Rλ considered in the present direct numerical simulations attains a constant value
as Sc increases. In this scenario, the maximum of the scalar dissipation spectra reaches its peak within
the bottleneck, starting at Sc > 0.5. A qualitative explanation for the formation of the two bottlenecks
is related to the blockage of energy transfer from large to small scales in the inertial ranges. Within the
bottleneck, the self-similar, ribbon-like structures transition into the rod-like structures characteristic
of the exponential decay range. Investigating the viscous dependence of the bottleneck’s amplitude
may be aided by examining the evolution of a passive scalar. As Sc decreases, the scalar spectra
undergo changes across the wave number k range. The bottleneck is dismantled, and at very low Sc
values, the spectrum tends towards Batchelor’s theoretical prediction, diminishing proportionally to
k−17/3. To comprehend the flow structures responsible for the bottleneck, visualizations of θ∇2θ and
probability density functions at various Sc values are presented and compared with those of ui∇2ui.
The numerical method employed for generating three-dimensional spectra and quantities such as
energy and scalar variance dissipation in physical space must be accurate, particularly in resolving
small scales. This paper additionally demonstrates that the second-order finite difference scheme
conserving kinetic energy and scalar variance in the inviscid limit in viscous simulations accurately
predicts the exponential decay range in one-dimensional and three-dimensional turbulent kinetic
energy and scalar variance spectra.

Keywords: passive scalar; turbulence; direct numerical simulation

1. Introduction

In a previous work by Orlandi and Pirozzoli [1], direct numerical simulations (DNS)
of forced isotropic turbulence at a relatively high Taylor–Reynolds number, driving passive
scalars at various values of Sc, were performed. This study follows the trend of previous
simulations by Bogucki et al. [2], Wang et al. [3], Watanabe and Gotoh [4], Donzis et al. [5],
Donzis et al. [6], and experiments by Dillon and Caldwell [7], and Oakey [8] that focused
on values of Sc > 0.5. In Orlandi and Pirozzoli [1], the DNS results reported the formation
of a k−1 spectrum range starting from Sc = 2, with its width increasing with the Sc number.
This result was also predicted by Gibson [9], suggesting that the occurrence of the k−1

range does not need Sc >> 1, based on the Batchelor [10] arguments. The other limit of
scalar spectra for Sc << 1, arising from the theory of Batchelor et al. [11] and Gibson [9]
leads to scalar spectra with a wide range of k−17/3. All the ranges of Schmidt numbers
have been investigated by DNS, whose exhaustive list is reported by Sreenivasan [12].
To better understand the formation of these ranges, it is worth analyzing the normalized
scalar dissipation spectra (Bogucki et al. [2]). At high and intermediate values of Sc the
maximum of scalar dissipation does not depend on Sc, with the peak at a normalized wave
number equal to 0.25, consistent with the oceanic data by Oakey [8]. In previous studies
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was not investigated at which value of Sc < 1 the collapse of the spectra ended, and this
is one of the goals of the present research. The interest of the physics of passive scalar at
Sc << 1 was less investigated due to few real applications that those at Sc >> 1. The
theoretical Batchelor’s prediction was confirmed by the DNS of Yeung and Sreenivasan [13].
At Sc > 1 the analysis of mixing is relevant in oceanography, in combustion and in many
industrial applications. The Sc < 1 conditions are of interest, for instance, to have directions
how to take into account the distortion of rays by the atmospheric turbulence on modern
astronomical observations. In high speed flows in several conditions the mixing occurs in
Sc << 1 conditions. In the present paper the DNS at Sc < 1 are used to understand how
the spectra change with respect to the Sc ≈ 1, in particular in the range of wave numbers
before the peak of the scalar dissipation spectra.

The DNS results of Orlandi and Pirozzoli [1], focusing briefly on the differences be-
tween the bottleneck that occurs in the three-dimensional and one-dimensional energy
and scalar spectra, support the conclusion of Dobler et al. [14], who argued that a strong
bottleneck is observed only in numerical simulations in which three-dimensional spectra
can be evaluated directly. In contrast, experimental spectra are generally derived from fre-
quency spectra using the Taylor hypothesis, which explains why a clear spectral bottleneck
is not deeply investigated. Orlandi and Pirozzoli [1] also observed that at Sc > 0.5 the
amplitude of the bottleneck of the scalar spectra is larger than that of the energy spectra.
The analysis was performed by evaluating quantities aligned with the principal axes of the
strain field. The study shows that the enstrophy is primarily influenced by the vorticity,
which is aligned with the intermediate principal strain axis, while the scalar gradient is
mainly controlled by the compressive strain. This suggests that compressive strain plays a
crucial role in determining the presence of the k−1 region in the scalar spectra within the
bottleneck, supporting the absence of a k−1 region in the energy spectrum dominated by
the vorticity structures aligned with the intermediate strain. In this work, we further our
understanding of the complex physics by examining flow visualizations of 1

Re ui∇2ui and
1

Pe θ∇2θ at different Schmidt (Sc) numbers, where Pe = Re · Sc is the Péclet number. These
two quantities, representing the rate of change in kinetic energy and scalar variance, can be
locally positive or negative. However, their total contribution is negative, corresponding to
the rates of energy and scalar dissipation. Notably, the positive contribution of 1

Pe θ∇2θ may
vary with Sc, a behavior that has been analyzed through the Probability Density Function
(PDF) of its fluctuating component and through flow visualizations in a plane.

2. Numerical Setup

The momentum and continuity equations for incompressible flows are as follows:

∂ui
∂t

+
∂uiuj

∂xj
= − ∂p

∂xi
+

1
Re

∂2ui
∂xj∂xj

+ Fi;
∂uj

∂xj
= 0, (1)

where ui are the components of the velocity vector in the i directions, p is the pressure, x1,
x2 and x3 are the three orthogonal space directions, and Fi is the external forcing to prevent
decay of the turbulence kinetic energy q =< u2

i > /2. The passive scalar θ is transported
by the velocity field, according to

∂θ

∂t
+

∂θuj

∂xj
=

1
ReSc

∂2θ

∂xj∂xj
+ Fθ , (2)

where Fθ is introduced to prevent the decay of the passive scalar variance, Θ = <θ2>/2. The
numerical simulations are initiated with velocity and scalar fields with random phases,
representing flows without structures but with high energy at low wave numbers and small
energy at large wave numbers. The initial kinetic energy spectrum is given by the equation
E(k) = 64(k/8)4e−(k/8)/8, with q =

∫
E(k) = 1.5 and

∫
k2E(k) = 180. The reference
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velocity is urms = 2q/3, and the Taylor–Reynolds number (later defined) is related to the
initial spectrum E(k) through

Re = Re0

(
3

20

)1/2 (2
∫

k2E(k)
)1/2

∫
E(k)

.

The value of Re is determined by assigning a value to Re0, as well as specifying the values
of Sc. The same spectrum is used to generate the initial distribution of the passive scalar
field Θ. The velocity components and the passive scalar in physical space are obtained
using the method described by Rogallo [15].

The equations subjected to periodic boundary conditions are solved in the compu-
tational domain that is a cube of side 2π discretized by N uniform intervals. The finite
difference scheme described in Orlandi [16] is summarized here. For the time integration,
an implicit Crank–Nicholson scheme was used for the viscous terms, while a third-order
Runge–Kutta scheme was employed for the convective terms. The staggered ordering
of the velocity components by Harlow and Welch [17] effectively eliminated all odd de-
coupling phenomena, ensuring the discrete conservation of the total kinetic energy in the
inviscid limit, as also confirmed and extended by Grammeltvedt [18]. The dimensionless
temperature θ was placed at the same location as u2, which is particularly advantageous
in the presence of mean stratification, since it preserves the sum of potential and kinetic
energy. In the Appendix A are reported the results demonstrating the conservation prop-
erties of energy and scalar variance. To facilitate the implementation of MPI (Message
Passing Interface) coding, the computational domain was divided into layers parallel to
the x2 direction.

It is important to report what has been written in Orlandi and Pirozzoli [1] about
forcing, since we believe that the differences between some of the global results on energy
and passive scalar dissipation rate could be attributed to the type of forcing necessary to
reach a statistical equilibrium state. Various forcing methods were discussed by Eswaran
and Pope [19] based on the concept that at high Reynolds numbers the dynamics of the
small scales should be decoupled from the large scales. However, manipulation of the
large scales can affect the rate of energy dissipation. A statistical equilibrium state is
reached when the dissipation rate oscillates around a constant value over time. Without
forcing, the mean square velocity qi(t) =< u2

i >=
∫

Ei(k, t)dk at any time has a total
energy component qi(t) =

∫
Ei(k, t)dk smaller than the initial energy qi(0) =

∫
Ei(k, 0)dk.

By selecting a threshold wave number |k|F, the energy δqi(t) within the range |k| ≤ |k|F
is evaluated to determine the quantity Fi = (qi(0)− qi(t))/δqi(t), which represents the
fraction of energy lost. By modifying the ûi(n) components for |k| ≤ |k|F by ûi =

√
Fiûi(n),

the total energy qi can be kept constant over time. In the simulations described here, a
numerical scheme in physical space is used so that three-dimensional FFT operations are
used for the transition between physical and wave number space. Within the wave number
space, the ûi components are modified for |k| ≤ |k|F. Then, an inverse three-dimensional
FFT is applied to obtain the modified velocity in physical space. To save computational
time, forcing is applied only during the last of the three Runge–Kutta steps used for time
progress. The same forcing approach is also used in solving the passive scalar transport
equation, resulting in a constant Θ(t) =

∫
Eθ(k, t)dk throughout the time evolution.

In contrast to the forcing scheme just described, Donzis et al. [6] used a forcing term
for the scalar transport equation of the type Fθ = −uidθ/dxi, which mimics the action
of a mean passive scalar gradient found in natural convection flows. They assumed a
constant gradient dθ/dxi = 1. In this scenario, not only does the rate of scalar dissipation
vary with time, but also the magnitude Θ(t) is subject to time variations. Both forcing
methods described by Eswaran and Pope [19] and Donzis et al. [6] were used in Orlandi
and Pirozzoli [1]. Based on the results obtained, the present DNS was performed with a
forcing that keeps the total energy and the total scalar variance constant.
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3. Results
3.1. Scaling

The numerical simulations were performed at various Reynolds and Schmidt numbers,
with the resolution chosen so that the maximum resolved wave number is k∗M ≈ 1, where
the superscript ∗ indicates the normalization in Kolmogorov units. The following defini-
tions are needed to obtain this normalization from non-dimensional computational units:

u′ =
√∫

2Edk/3, Dv =
∫

Ek2dk, ϵ = 2Dv/Re, η = (ϵRe3)−1/4,

λ =

√
10

∫
Edk

ϵRe
, Rλ = Reλu′, SE = (ϵRe5)−1/4, (3)

T′ =
√∫

Eθdk, Dθ =
∫

Eθk2dk, χ =
2Dθ

ReSc3/2 , ηb = η/
√

Sc

These quantities have been evaluated through the three-dimensional energy E = 0.5Ei
and scalar variance Eθ spectra. As usual, ϵ and χ indicate the energy and scalar variance
dissipation that are necessary to evaluate the Kolmogorov η and Batchelor ηb scales. The
Taylor scale λ allows to obtain Rλ, usually used in isotropic turbulent flows. The energy
spectra in Kolmogorov units are obtained by scaling the velocity spectra by SE, which is the
normalization factor for the energy. Similarly, the rms velocity is normalized by SU = SE/η.

The scalar energy spectrum is scaled by ST = χη5/3

ϵ1/3 , while the passive scalar rms value is
normalized by SR = ST/ηb.

3.2. Global Flow Parameters and Validation

The objective of Donzis et al. [5]’s work was focused on the scalar dissipation rate.
Therefore, the global results they reported were given to look at the trend of dissipation
as a function of Rλ. Along with their results, they have published tables by other authors,
e.g., Bogucki et al. [2], Wang et al. [3], Watanabe and Gotoh [4], and several experiments
cited by Donzis et al. [5] with questionable data as discussed in Donzis et al. [5] and in
Wang et al. [3]. The present data are reported in Table 1 in the same format as that of the
tables in Donzis et al. [5].

One significant difference between our simulations and the findings reported in
Donzis et al. [5] is that, in our setup, both u′ and T′ remain constant, whereas in their simu-
lations, variations are observed. This choice has the consequence of reducing the variation
in the quantities of our primary interest, namely, ϵ and χ. In Table 1 of Donzis et al. [5],
the global results are reported at very low and moderately high values of Rλ, limiting the
comparison to their results in a range of Rλ similar to our current study. Additionally,
similar to the rate of dissipation, our present integral length scales also exhibit smaller
variations compared to their data. Figure 1a illustrates the variations in the normalized
energy dissipation rate versus Rλ in both numerical simulations, emphasizing a constant
behavior in both cases. This observation aligns with previous investigations that suggest
Dv increases with the Reynolds number, while ϵ remains constant, one of the fundamental
concepts in the Kolmogorov theory. Furthermore, the behavior reported by Watanabe and
Gotoh [4] indicates a constant value slightly smaller than ours, which may be attributed to
differences in the forcing methodology. Another contributing factor may be related to the
dealiazing procedure in the pseudospectral numerical method. As depicted in Figure 3 of
Watanabe and Gotoh [4], the normalized energy dissipation spectrum at k∗ > 0.8 exhibited
a slight rise near the cutoff wave number, implying an inadequate resolution of the smallest
scales. In contrast, our current numerical method yields an exponential decay at k∗ > 0.8,
as it is discussed later on. Our present simulations encompass the evolution of the passive
scalar over a broad range of Sc numbers, spanning from 0.0025 to 6.5. It is crucial to empha-
size that the highest value chosen can be viewed as a limiting threshold, as the normalized
spectra do not largely change at higher values. This phenomenon was previously observed
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in the DNS conducted by Orlandi and Pirozzoli [1], where they observed Eθ stabilizing
around (k∗b)

−1 starting at Sc = 2. At even higher Sc numbers, this range widens, aligning
with the theoretical predictions made by Batchelor [10].

Table 1. The present global data in the same format as that in the table of Donzis et al. [5], with
Lu = π

2u′2
∫ E

k dk and LT = π
2T′2

∫ Eθ
k dk.

Rλ u′ Lu ϵ ν103 Sc T ′ LT χ N

306.3 1.00 1.30 0.44 3.71 0.00250 1.73 1.37 2.26 768
313.5 1.00 1.30 0.42 3.71 0.01250 1.73 1.12 1.89 768
306.3 1.00 1.30 0.44 3.71 0.02500 1.73 1.14 1.54 768
313.5 1.00 1.30 0.42 3.71 0.12500 1.73 1.02 1.62 768
306.3 1.00 1.30 0.44 3.71 0.25000 1.73 0.98 1.63 768
306.3 1.00 1.30 0.44 3.71 0.50000 1.73 0.98 1.53 768
313.5 1.00 1.30 0.42 3.71 0.75000 1.73 0.93 1.68 768
313.5 1.00 1.30 0.42 3.71 1.00000 1.73 0.95 1.56 768
166.2 1.00 1.12 0.54 10.21 1.00000 1.73 0.88 1.83 1024
162.6 1.00 1.09 0.56 10.21 1.50000 1.73 0.89 1.63 1024
166.2 1.00 1.12 0.54 10.21 2.00000 1.73 0.95 1.58 1024
162.6 1.00 1.09 0.56 10.21 2.50000 1.73 0.81 1.75 1024
166.2 1.00 1.12 0.54 10.21 4.00000 1.73 0.86 1.60 1024
162.6 1.00 1.09 0.56 10.21 4.50000 1.73 0.83 1.61 1024
166.2 1.00 1.12 0.54 10.21 6.00000 1.73 0.84 1.58 1024
162.6 1.00 1.09 0.56 10.21 6.50000 1.73 0.84 1.57 1024
302.3 1.00 1.23 0.44 3.71 0.50000 1.73 0.91 1.70 1152
309.9 1.00 1.21 0.42 3.71 0.75000 1.73 0.93 1.70 1152
302.3 1.00 1.23 0.44 3.71 1.00000 1.73 0.84 1.69 1152
309.9 1.00 1.21 0.42 3.71 0.75000 1.73 0.93 1.70 1152
302.3 1.00 1.23 0.44 3.71 1.00000 1.73 0.84 1.69 1152
309.9 1.00 1.21 0.42 3.71 1.50000 1.73 0.99 1.46 1152
309.9 1.00 1.21 0.42 3.71 2.00000 1.73 0.81 1.76 1152
264.9 1.00 1.19 0.43 4.95 2.50000 1.73 0.86 1.64 1152
264.9 1.00 1.19 0.43 4.95 3.00000 1.73 0.85 1.63 1152
264.9 1.00 1.19 0.43 4.95 4.00000 1.73 0.84 1.62 1152
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Figure 1. a) Normalized energy dissipation rate versus Rλ, b) scalar dissipation rate normalized
with Lu/u′ in the inset of b) LT/Lu versus Sc; present: red solid circle Sc > 1 indicated by HSC,
blue open circle Sc < 1 indicated by LSC; green solid circle Watanabe and Gotoh [4], orange solid
circle Donzis et al. [5].
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a forcing that keeps the total energy and the total scalar variance constant.123

3. results124

3.1. Scaling125

The numerical simulations were performed at various Reynolds and Schmidt num-
bers, with the resolution chosen so that the maximum resolved wavenumber is k∗M ≈ 1,
where the superscript ∗ indicates the normalization in Kolmogorov units. The follow-
ing definitions are needed to obtain this normalization from non-dimensional compu-
tational units

u′ =
√∫

2Edk/3, Dv =
∫

Ek2dk, ǫ = 2Dv/Re, η = (ǫRe3)−1/4,

λ =

√
10

∫
Edk

ǫRe
, Rλ = Reλu′, SE = (ǫRe5)−1/4, (3)

T′ =
√∫

Eθdk, Dθ =
∫

Eθk2dk, χ =
2Dθ

ReSc3/2 , ηb = η/
√

Sc

These quantities have been evaluated through the three-dimensional energy E = 0.5Ei126

and scalar variance Eθ spectra. As usual ǫ and χ indicates the energy and scalar variance127

dissipation, that are necessary to evaluate the Kolmogorov η and Batchelor ηb scales.128

The Taylor scale λ allows to get Rλ usually used in isotropic turbulent flows. The energy129
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ǫ1/3 , while the passive132

scalar rms value is normalized by SR = ST/ηb.133

3.2. Global flow parameters and validation134

The objective of Donzis et al. [5]’s work was focused on the scalar dissipation rate.135

Therefore, the global results they reported were given to look at the trend of dissipa-136

tion as a function of Rλ. Along with their results, they have published tables by other137
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periments cited by Donzis et al. [5] with questionable data as discussed in Donzis et al.139
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that of the tables in Donzis et al. [5].141

Figure 1. (a) Normalized energy dissipation rate versus Rλ; (b) scalar dissipation rate normalized
with Lu/u′ in the inset of (b) LT/Lu versus Sc; present: red solid circle Sc > 1 indicated by HSC,
blue open circle Sc < 1 indicated by LSC; green solid circle, Watanabe and Gotoh [4], orange solid
circle, Donzis et al. [5].

In Figure 1b, we depict the scalar dissipation rate normalized by χLu/(u′T′2) as a
function of the Schmidt number . Notably, differences emerge when compared to the results
of Watanabe and Gotoh [4] and Donzis et al. [5]. Across all the simulations considered,
different values of χLu/(u′T′2) are evident at the same Sc, indicating an influence of Rλ.
Our present findings reveal a declining trend in the normalized scalar dissipation rate,
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with a high probability of reaching a constant value, approximately equal to 0.6. The ratio
LT/Lu, despite some scattered data, decreases with increasing Sc, as illustrated in the inset
of Figure 1b.

4. Dissipation Spectra: The Exponential Decay Range

The primary objective of this study is to investigate the formation of a bottleneck
which, as emphasized by Dobler et al. [14], is more pronounced in three-dimensional
energy and scalar spectra. Figure 2a demonstrates, at Rλ = 310, that in the compensated
transverse one-dimensional spectra (green and black lines), the bottleneck is barely visible,
and that it disappears in the longitudinal one. On the other hand, the bottleneck has a
rather large amplitude in the three-dimensional spectra (red solid symbols). Figure 2b
demonstrates that the amplitude and location of the bottleneck are independent of Rλ if
all dissipative scales are resolved. The bottleneck forms only when the exponential decay
range is reproduced, which is associated with the inhibition of energy transfer from large
to small scales in the inertial range. The energy cascade in this range is driven by self-
similar ribbon-like structures that transform into rod-like shapes at a viscosity-determined
size within the exponential decay range. As a result, the bottleneck region scales well in
Kolmogorov units.

As shown by Orlandi and Pirozzoli [1], in the dissipation spectra, the bottleneck
exhibits a higher amplitude compared to the compensated energy spectra, allowing for a
better sign of the dissipating flow structures. Figure 2b–d displays these spectra in semi-
logarithmic plots, which are also suitable for examining the accuracy of the resolution of
small scales. In Figure 2b, the black dashed line, which fits the present data, exhibits an
exponential decay with a prefactor value of 4.4. The one-dimensional spectra measured by
Saddoughi and Veeravalli [20] in an experiment conducted at very high Reynolds numbers
found an exponential decay with a value of 5.2. To investigate whether the exponential de-
cay rate for the three-dimensional spectrum differs from that of the one-dimensional spectra,
semi-logarithmic plots of the present and of the Jiménez et al. [21] compensated one- and
three-dimensional spectra indicate that the one-dimensional longitudinal and transverse
spectra fit well an exponential decay with a prefactor equal to 5.2 in perfect agreement
with Saddoughi and Veeravalli [20]. Moreover, the dissipation energy spectrum reported
by Jiménez et al. [21] fits approximately A exp(−4.4k∗) with A = 8, while the results from
Ishihara et al. [22] differ from both the present findings and those of Jiménez et al. [21].
This figure demonstrates that the present finite difference second-order numerical method
does not introduce any numerical viscosity. Conversely, the pseudospectral method leads
to an energy pile-up at the smallest scales. The dealiazing procedure may have a slight
effect on the exponential decay range, as evidenced by comparing the trends of the two
pseudospectral simulations.

In Figure 2c, the scalar dissipation spectra that Batchelor scaled at Sc ≥ 1 show a
notable collapse of the results that fit an exponential decay, similar to that of the energy
dissipation spectra with a value A = 12 instead of A = 8. This collapse of the spectra is
particularly pronounced for k∗b < 1 and indicates that the maximum is reached at approxi-
mately k∗b ≈ 0.25, consistent with the oceanic spectra measurements by Oakey [8] and the
data shown in Figure 3 of Watanabe and Gotoh [4]. Conversely, the results in Figure 2d at
Sc ≤ 1 reveal the significant impact of decreasing Sc numbers on the exponential decay
range, as well as an effect on the low k∗b which we will analyze in more detail later. This
figure underscores that at Sc = 0.0025, the dissipation spectrum up to k∗b = 4 fits rather
well with the spectrum predicted by the Batchelor et al. [11] theory, with (k2

bEθ)
∗ ≈ k−11/3∗

b .
Our present findings indicate a continuous trend towards this decay and a simultane-
ous reduction in the amplitude of the bottleneck, which we will delve into further in the
next section.
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Figure 2. (a) Three- (red solid) and one-dimensional (lines) compensated energy spectra at Rλ = 310,
with yellow longitudinal and green and black transverse; (b) energy dissipation rate compared
with the DNS of the Jiménez et al. [21] black line and the Ishihara et al. [22] orange line; (c) scalar
dissipation rate at high Sc; (d) scalar dissipation rate at low Sc; in (b), the black dashed line is
≈8.0e−4.4k∗ , in (c), the red dashed line is ≈12.0e−4.4k∗b , and in (d) the black line is ≈0.21k−11/3∗

b ; the
values of Sc are in the legend of (c,d), and the values of Rλ in the legend of (b).

5. The Bottleneck in the Energy and Scalar Variance Dissipation Spectra

The same dataset utilized to generate Figure 2 is also presented in Figure 3, where
we employ the conventional log–log scales for spectral analysis. These log–log scales are
typically used to examine spectra, and in the case of three-dimensional energy dissipation
spectra, they help to emphasize the enstrophy-containing structures. These structures are
the ones responsible for dissipating energy, contributing to the 1

Re ui∇2ui term in the turbu-
lent energy transport equation. The same principle applies to the scalar variance transport
equation, where dissipating scalar structures contribute to 1

Pe θ∇2θ. These two quantities,
which represent the rates of change in kinetic energy and scalar variance, can be locally
positive or negative, although their total contribution is negative, corresponding to the
rates of energy and scalar dissipation. Each term can be expressed for the velocity variance

as ui
∂2ui
∂x2

i
=

∂2u2
i /2

∂x2
i

− ( ∂ui
∂xi

)2 and for the scalar variance as θ ∂2θ
∂x2

i
= ∂2θ2/2

∂x2
i

− ( ∂θ
∂xi

)2. In homo-

geneous isotropic flows (Pope [23] pg. 132), the first term on the right-hand side has a zero
total contribution, while the second term defined as pseudo-dissipation corresponds to the
usual rate of energy dissipation: ϵ = 2ν < sijsji >= ν < ( ∂ui

∂xi
)2 >= ν < ωiωi >, with sij

the rate of strain tensor and ωi the components of the vorticity vectors. For the scalar field,
the second term gives the rate of scalar dissipation χ = 1

ReSc3/2 < ( ∂θ
∂xi

)2 >.



Fluids 2024, 9, 285 8 of 16

Version November 8, 2024 submitted to Fluids 9 of 17

10-2

10-1

100

10-2 10-1 100

(k
2 E

)∗

k∗

100

10-2 10-1

a=2
a=5/3

(k
a E

)∗

k∗a) b)

10-2

10-1

100

10-2 10-1 100

10-1

100

10-2 10-1 100

(k
2 bE

θ
)∗

k∗b

10-2

10-1

100

10-2 10-1 100

k∗bc) d)

Figure 3. Spectra of a) energy dissipation rate compared with the DNS of Jiménez et al. [21] (black
line) and that by Ishihara et al. [22] (orange line), the black dashed line is ≈ k∗2/3 and the orange
one is ≈ k∗1/3 , b) are plotted the (kaE)∗ a = 2 (red) and the a = 5/3 (green) by Ishihara et al. [22]
(open circles) and for one of the present DNS (solid circles), the dotted fitting lines have values
discussed in the text, c) scalar dissipation rate at high Sc, d) scalar dissipation rate at low Sc, in
c) and in d) the black solid line is ≈ k∗b , in c) the blue solid line is ≈ k1/3∗

b , in d) the black dashed
line is ≈ 0.21k−11/3∗

b : the values of Sc are in the legend of figure 2, in the inset of c) are plotted
the (k2E)∗ (red) and the (k2

bEθ)
∗ at Sc = 4 (blue), the blue line is 0.5k∗b the red line is 4.64k2/3∗ the

vertical dashed are at k∗ = 0.175 and at k∗b = 0.35.

Figure 3. Spectra of (a) energy dissipation rate compared with the DNS of Jiménez et al. [21] (black
line) and that by Ishihara et al. [22] (orange line). The black dashed line is ≈k∗2/3 and the orange
one is ≈k∗1/3; in (b) are plotted the (kaE)∗ a = 2 (red) and the a = 5/3 (green) by Ishihara et al. [22]
(open circles) and for one of the present DNS (solid circles). The dotted fitting lines have values
discussed in the text; (c) scalar dissipation rate at high Sc; (d) scalar dissipation rate at low Sc; in
(c,d), the black solid line is ≈k∗b ; in (c), the blue solid line is ≈k1/3∗

b ; in (d), the black dashed line is
≈0.21k−11/3∗

b : the values of Sc are in the legend of Figure 2 and in the inset of (c) are plotted the
(k2E)∗ (red) and the (k2

bEθ)
∗ at Sc = 4 (blue); the blue line is 0.5k∗b , the red line is 4.64k2/3∗, and the

vertical dashed are at k∗ = 0.175 and at k∗b = 0.35.

As the Taylor Rλ number increases, the width of the inertial range in the energy spectra
also widens, as demonstrated in Figure 3a through the comparison among our spectra,
those of Jiménez et al. [21] at moderate Rλ and Ishihara et al. [22] at high Rλ. Notably, in
Figure 3b, the compensated energy spectra in green (k5/3E(k))∗ exhibit a flat slope in the
inertial range, while the (k2E(k))∗ spectra in red have a n = 1/3 slope. Ishihara et al. [22]
observed that their (k2E(k))∗ spectrum closely follows the orange dashed line (3.25k∗1/3)
over a wide range and touches the line 4.177k∗1/3 at k∗ = 0.125, corresponding to the
maximum of the bottleneck in the compensated energy spectrum (k5/3E(k))∗. Figure 3b
demonstrates that our spectra align quite well with the Ishihara et al. [22] spectrum. For the
range 0.04 < k∗ < 0.125, the (k2E(k))∗ spectra in Figure 3a fit the black dashed line (≈k2/3),
corresponding to E∗ ≈ k−4/3. As indicated in Figure 2a, the (k2E(k))∗ spectra start to
exhibit exponential decay for 0.4 < k∗, which implies that the most significant contribution
to energy dissipation comes from structures within the range of 0.03 < k∗ < 0.45. In the
inset of Figure 3a, one of our spectra, along with the Ishihara et al. [22] spectrum, obtain
(k2E(k))∗ > 1 indicating the formation of a bottleneck in the spectrum. From the Ishihara
et al. [22] spectrum, it has been inferred that within the range of 0.03 < k∗ < 0.45, these
structures contribute to 10% of the total energy and to 72% of the total energy dissipation.
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In Figure 3c, the normalized scalar dissipation three-dimensional spectra for Sc ≥ 1 in
Batchelor scales are superimposed on each other, particularly in the region of the bottleneck.
For a significant portion of k∗b , the spectra fit well with the black line represented by 5k∗b ,
which corresponds to a scalar spectrum E∗

θ ≈ k∗−1
b . It is worth noting that Watanabe

and Gotoh [4] have shown in their Figure 3 that at Sc = 1 the compensated energy and
scalar spectra have different shapes, with the energy spectrum peaking at k∗ = 1.5 and the
scalar spectrum peaking at k∗ = 2.0. Additionally, they observed that the amplitude of
the bottleneck is greater for E∗

θ than for E∗. Similar differences were discussed in Orlandi
and Pirozzoli [1] by plotting the energy and scalar dissipation spectra. In the inset of
Figure 3c, the (k2

bEθ)
∗ and (k2E)∗ results for the DNS corresponding to that at Sc = 4 in

Figure 2c are presented on a different scale. This clearly illustrates the distinct trends in
the spectra beyond the short inertial range. Notably, for 0.03 < k∗b < 0.9, scalar dissipation
contributes to 94% of the total, which is comparable to the energy dissipation evaluated by
the Ishihara et al. [22] spectrum at high Rλ. The rightward shift of the k∗b corresponding to
the maximum of (k2

bEθ)
∗ indicates that the scalar dissipation structures are smaller than

the energy structures.
In Figure 3d, the normalized scalar dissipation three-dimensional spectra for Sc ≤ 1 in

Batchelor scales exhibit a notably different trend as the Schmidt number decreases. The well-
defined k∗−1

b trend in Figure 3c becomes less visible. This absence is gradually accompanied
by a reduction in the amplitude of the bottleneck, which disappears at Sc = 0.125. This
transition occurs directly from the inertial range to the exponential decay range, as may be
depicted by the profile of E∗

θ versus k∗b . For Sc < 0.125, even the inertial range is disrupted,
and E∗

θ decays at low wave numbers with a steeper slope than n = 5/3. This slope increases
at higher wave numbers and eventually reaches at Sc = 0.0025, in agreement with the DNS
by Yeung and Sreenivasan [13], the theoretical prediction by Batchelor et al. [11] for very
low Sc, where E∗

θ ≈ (k−17/3
b )∗.

Three-dimensional spectra provide a representation of the distribution of energetic or
dissipating scales. When appropriately normalized, these spectra reveal that the large-scale
characteristics of energy and scalar fields are influenced by the Reynolds and Schmidt
numbers. Conversely, for Sc ≥ 1, the dissipating energy and scalar structures appear to
be largely unaffected by changes in Re and Sc. However, in the case of scalar structures
transported in flows with Sc ≤ 1, their strength experiences a significant decrease. DNS
enables the evaluation of various quantities, particularly the dissipating terms in the
kinetic energy and scalar variance transport equations. Further insights into the spatial
distributions of these terms are discussed in the following section.

6. Visualizations of the Dissipative Structures

The spectra presented in Figure 3 offer valuable insights into the changes in the rate
of scalar dissipation concerning the Schmidt number. However, they do not provide
an insight on the shape and on the spatial distribution of the structures contributing
to the spectra bottlenecks in Figure 3c,d. When appropriately scaled, these structures
appear independent of Sc at high Schmidt numbers (Figure 3c), suggesting a degree of
physical similarity. Conversely, as Sc decreases, the bottleneck diminishes in amplitude and
eventually disappears (Figure 3d), indicating changes in the scalar dissipation structures.

These structures are generated by a velocity field exhibiting a bottleneck in the spec-
trum due to the rate of kinetic energy dissipation, which is shifted to lower wave numbers
compared to that of scalar dissipation, as shown in the inset of Figure 3c. Consequently,
vortical and scalar gradient structures should exhibit distinct shapes. Among the various
simulations discussed previously, four specific cases have been selected: the first two at
Sc = 1 and Sc = 4 with Rλ = 166.2, representative of the cases in Figure 3c, and two at
Sc = 0.5 and Sc = 0.0025 with (k2

bEθ)
∗ spectra as in Figure 3d and Rλ = 306.3. For the

case at Sc = 4, the (k2
bEθ)

∗ spectrum in Figure 3c shows a short range with (k2
bEθ)

∗ ≈ k1/3
b

(short blue line) followed by a relatively long range with (k2
bEθ)

∗ ≈ k1
b fitting the black line.

In contrast, for the case at Sc = 0.0025, the (k2
bEθ)

∗ spectrum exhibits a decay fitting the
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k−11/3
b power law at high wave numbers (the black symbols in Figure 3d), differing from

the exponential decay range at Sc ≈ 1 (refer to Figure 2d).
From the values of Dv = 1

Re ui∇2ui and Dθ = 1
Pe θ∇2θ in the entire computational

domain and for a single realization, the mean values Dv and Dθ are calculated. These mean
values are then used to compute their fluctuating variables D′ = D−D

<(D′)2>1/2 . Subsequently,
these fluctuating values are used to determine their probability density functions (PDF)
denoted as p(D′) and standardized moments (µn =

∫
(D′)n p(D′)dD′), with µ2 = 1. While

the D terms are typically negative and equal to −
∫

k2Edk, there may be several locations
with positive D, indicating a local generation of kinetic energy or scalar variance.

Table 2 provides data for the two simulations scrutinized in this section, including
the values of D, the total negative contribution (<D−>

D
), < (D′)2 >1/2, and the values of

the µ3 and µ4 standardized moments. This table highlights that positive rate of change
(<D+>

D
= <D−>

D
− 1) for the kinetic energy is slightly smaller than that for scalar variance;

the former increases with increasing Rλ, while the latter remains relatively constant for
Sc ≥ 1. Conversely, the <D+>

D
decreases as Sc decreases for Sc ≤ 0.025. This outcome

is closely related to the shape of small-scale energy-dissipating structures, which tend to
be more rod-like compared to the scalar variance-dissipating structures influenced by the
Schmidt number. In high Sc scenarios, these structures are thin and convoluted, as will be
illustrated later through contours of Dθ/ < (D′

θ)
2 >1/2 in a plane.

Table 2. Global quantities related to the rate of energy (the rows with ui), and scalar variance
dissipation (the rows with the value of Sc): the five rows on the top are related to the simulation at
Rλ = 166.2, the others at Rλ = 306.3 .

Case, Sc D <D−>
D

< D2′ >1/2 µ3 µ4 10ρD′
v ,D′

θ

ui −0.330 1.493 1.177 −3.573 35.524
1.000 −0.731 1.663 3.203 −3.401 33.858 0.0534
2.000 −0.577 1.796 2.899 −3.589 37.126 0.0875
4.000 −0.619 1.764 3.087 −3.593 36.812 0.2203
6.000 −0.581 1.727 3.079 −3.573 41.619 0.1370

ui −0.301 1.691 1.266 −3.046 31.359
0.5000 −0.828 1.843 4.725 −3.889 44.702 0.0888
0.2500 −0.692 2.006 4.170 −3.001 38.300 −0.0073
0.0250 −0.842 1.795 3.861 −1.945 22.652 −0.1080
0.0025 −1.193 1.340 2.937 −1.551 8.594 −0.0188

The root mean square (rms) values of D′ and their higher moments in Table 2 indicate
that, despite the significantly greater values of < (D′

θ)
2 >1/2 compared to < (D′

v)
2 >1/2,

the higher moments for the former are close to those for the latter. Furthermore, Table 2
emphasizes that these statistics are relatively independent of Sc for Sc > 1 and their values
decrease as Sc decreases for Sc < 1. To give an explanation of these results, we will further
explore the PDF of D′, the joint PDF J(D′

v,D′
θ), and visualizations in a horizontal plane

of D
<(D′)2>1/2 . We recognize the importance of using three-dimensional visualizations to

distinguish rod-like or ribbon-like structures. Clear visual representations were provided
by Orlandi and Pirozzoli [1], where the vorticity and scalar gradient components were pro-
jected onto the principal axes of the strain field. However, three-dimensional visualizations
of D′ fail to convey the formation of adjacent positive and negative layers of D′

θ at high Sc
numbers and their disappearance at low Sc numbers.

The simulation at Rλ = 166.2 involved the transport of four scalars at Sc = 1, 2, 4, 6.
Initially, a cursory examination of the PDF p(D′

θ) suggests its independence from Sc, as
shown by the superposition of the four p(D′

θ) curves in Figure 4a. Minor differences are
observed, particularly at high negative and positive values of D′

θ . It is noteworthy that
the distribution of p(D′

θ) exhibits a highly negative skew, resembling the distribution of
p(D′

v). The higher value of the p(D′
θ) at Sc = 6 than those at the Sc ≥ 1 may be related
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to a insufficient resolution suggesting, how the visualizations are shown in Figure 4 at
Sc = 1 and Sc = 4. The similar distribution of PDFs of D′

θ and D′
v may suggest a similarity

between the structures corresponding to Dv
<(D′

v)2>1/2 and those of Dθ

<(D′
θ)

2>1/2 . Indeed, the

visualizations show that these structures are different, and that the size of the scalar
dissipating structures decrease by increasing the Sc number. Figure 4d clearly illustrates
that the intense energy-dissipating structures exhibit, in certain locations, a rod-like shape, a
phenomenon previously discussed by Orlandi and Pirozzoli [1]. This shape is attributed to
the alignment of the vorticity vector with the intermediate principal axes strain component.
The positive red contours, which have smaller amplitudes than the blue-coloured patches,
are situated in close proximity to them. This suggests a diffusive contribution that is
effectively balanced by the nearby negative contributions. Consequently, the total energy
dissipation Dv primarily stems from the contribution of the intense blue patches, which
have a more rounded shape.
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Figure 4. (a) PDF of D′
v (dashed lines) and D′

θ (open symbols) with the Sc numbers indicated in the
labels; contour lines in x − z planes for −1 < x, z < 1 at y = 0 in (b) of Dv

<(D′
v)

2>1/2 , in (c) of Dθ

<(D′
θ)

2>1/2

at Sc = 1, and in (d) at Sc = 4, red is positive and blue is negative with increment ∆ = 0.25; the
quadrant contributions to ρD′

v ,D′
θ

for Sc = 1 are 0.0799 for QI , −0.101 for QI I , 0.111 for QI I I , and
−0.0841 for QIV : for Sc = 4 the contributions are 0.0730 for QI , −0.0822 for QI I , 0.0955 for QI I I , and
−0.0726 for QIV .

The correlation coefficients ρD′
v ,D′

θ
are evaluated by the J(D′

v,D′
θ), that, being similar,

are not shown. The values of the correlation coefficients in Table 2 stress a weak correlation
between the energy and scalar variance rate of change that cannot be gathered looking at
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the visualizations in Figure 4. The Ql quadrants contribution obtained by the J(D′
v,D′

θ)
given in the caption of Figure 4d leads to the establishment of a prevalence of the I I I
positive on the I I negative quadrants and a balance between the small contribution of the
I and IV quadrants. A qualitative comparison of Dθ

<(D′
θ)

2>1/2 at Sc = 1 in Figure 4c and at

Sc = 4 in Figure 4d emphasizes that regions of intense scalar variance rate of change may
be disconnected from those exhibiting a high rate of change in energy, as seen in Figure 4b.

Additional insights on the evolution and interaction of passive scalars with dif-
ferent diffusivity can be provided by evaluating correlation coefficients following the
method described by Fox [24]. Preliminary evaluations of the correlation coefficients

ρα,β =
<θ′α ,θ′β>√

<(θ′α)2><(θ′β)
2>

between two scalars, one at Sc = 1 and the other at Sc = 4, yield

ρ1,4 ≈ 0.5. From the weak correlation between the two scalar variances and the even smaller
values of ρD′

v ,D′
θ

in Table 2, it can be inferred that a passive scalar with a high Sc value has
its own distinct time evolution. Consequently, in applications involving combustion or
pollution, passive scalars with different diffusivities transported by a turbulent flow may
have a low probability of interacting with each other.

For Sc < 1, the simulations were conducted at Rλ = 302.3. The probability density
functions and the visualizations, similar to those presented in Figure 4, are provided in
Figure 5. In these conditions, the PDFs of the energy rate of change in Figure 5a exhibit
notable differences compared to the rate of change in scalar variance at Sc < 0.5 but align
closely with those at Sc = 0.5. The subtle distinctions observed at the extremes of D′

in Figure 5a account for the disparities between the third and fourth moments reported
in Table 2. Figure 5c,d reveal significant disparities in the spatial distributions of the
respective rates of change in scalar variance. Notably, Dθ

<(D2′
θ )2>1/2 is small or nearly absent

in regions characterized by strong Dv
<(D′

v)2>1/2 in Figure 5b. Even in this case at Sc = 0.5 in
Figure 5d, the rate of change in scalar variance tends to concentrate within structures of a
more convoluted nature compared to those associated with the rate of change in kinetic
energy. However, both types of structures, thin and elongated, are primarily characterized
by positive red values, which are counterbalanced by adjacent blue regions. The rather
good correspondence of the white regions in Figure 5d with those in Figure 5c may suggest
that the scalar correlation coefficient ραβ, with α representing θ at Sc = 0.5 and β θ at
Sc = 0.0025, is likely greater than that computed for Sc = 1 and Sc = 4. Indeed, a value of
approximately ρ0.5,0.025 ≈ 0.8 has been determined. Even if the scalar variance correlations
at Sc < 1 increase with respect to that at Sc > 1, the weak correlation between energy and
scalar variance rate of change is stressed by the values of ρD′

v ,D′
θ

in Table 2. The quadrants
contribution (in the caption of Figure 5) obtained by the J(D′

v,D′
θ) show that for Sc < 1

there is also a prevalence in the I I I positive on the I I negative quadrants and a balance
between the small contribution of the I and IV quadrants.
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7. Conclusions

The appearance of a bottleneck is more pronounced in three-dimensional spectra
rather than one-dimensional spectra, which can be assessed through numerical simulations.
The time evolution of three-dimensional spectra can be investigated by spectral closures
like EDQNM (Eddy Dumped Quasi-Normal Markovian) [25] using a model to calculate
the transfer term in the transport equation of the energy spectrum. In the energy spectra,
the bottleneck forms at the end of the inertial range, signifying the conclusion of the energy
cascade resulting from self-similar structures. [25] in the EDQNM closure demonstrated
that in the inertial range, the triadic interaction entering in the transfer function is locally
prevalent. The symmetry of the non-local interactions leads to an irrelevant contribution.
At the end of the inertial range, the symmetry reduces and the non-local triadic interactions
contribute to give the maximum of the transfer function in correspondence to the peak of
the bottleneck. The simulation of two colliding dipoles by Orlandi et al. [26] allowed the
investigation of the formation of three-dimensional spectra similar to those occurring in
forced isotropic turbulence. Therefore, it was possible to see that at the end of the inertial
range, the ribbon-like unstable structures evolve into the rod-like structures typically found
in the exponential decay range. This scenario for kinetic energy remains unaltered at rather
high Reynolds numbers and serves as the foundation for the Kolmogorov theory.

On the flip side, in the context of scalar variance, variations in the Schmidt number
can result in the complete disruption of the bottleneck at specific values when Sc << 1.
This disruption has been convincingly demonstrated in this study through the analysis
of scalar variance dissipation spectra. Furthermore, it has been shown that when Sc > 1,
the inertial range undergoes a transition towards exponential decay with different slopes
depending on Sc, eventually converging toward the well-established k−1 range, as reported
by Sreenivasan [12]. Whether Sc << 1 or Sc >> 1, the dissipating scalar structures exhibit
significant differences. However, the joint probability density function of the fluctuating
change in energy and scalar variances is rather independent of the Sc number, establishing
that they are not correlated.

Having established that numerical simulation is the most appropriate tool to generate
three-dimensional spectra and quantities such as the changes in energy and scalar variance
in physical space, it should be demonstrated that the numerical method used is accurate,
particularly in resolving small scales. Typically, pseudospectral numerical methods are
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employed, heavily relying on dealiazing procedures. This paper further demonstrates that
a conservative second-order finite difference scheme predicts the correct behavior of the
exponential decay range in one-dimensional and three-dimensional turbulent kinetic energy
and scalar variance spectra. This understanding is crucial for advancing the knowledge of
the complex physics governing the flow and scalar structures, which are responsible for
the similarities and differences in the bottlenecks observed in the respective spectra.

In the direct numerical simulation (DNS) discussed in this paper, several scalars were
transported by a single turbulent flow, providing a setup conducive to a more comprehen-
sive exploration of differential diffusion in passive scalars, similarly to the study conducted
by Yeung et al. [27]. Such research could be particularly relevant to combustion-related
issues, where statistics derived from DNS can inform the development of models applicable
at high Reynolds numbers. However, it is essential to clarify that this in-depth study lies
beyond the scope of the present paper.
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Appendix A. Conservation Properties of the Numerical Method

The second-order finite difference scheme, with staggered velocity components located
at the cell center, has been widely used in simulations of turbulent flows. However,
several scholars still do not believe that the results from this method can be comparable
to or even better than those obtained from pseudospectral simulations under certain
conditions. A comparison of the present solver with fourth-order accurate schemes and
pseudospectral methods was reported by Duponcheel et al. [28], demonstrating that in
terms of energy conservation and time-reversibility, it produces results that are comparable
to, and sometimes superior to, the other methods. The Taylor–Green vortex has often been
used in inviscid simulations (Chichowlas and Brachet [29]) to investigate the occurrence of
a finite time singularity (FTS) in the Euler equations. This initial condition concentrates
kinetic energy at a single wave number, meaning that the evolution towards a turbulent
state requires significant energy transfer from large to small scales before any considerable
energy appears in the small-scale spectra. Theoretical considerations suggest that, near
an FTS, the energy spectrum should develop an infinite k−3 range. In pseudospectral
simulations, the dealiazing procedure often produces an energy pile-up followed by an
exponential energy decay. However, such oscillations are not observed in finite difference
spectra, allowing for the easier formation of a wide k−3 range.

In this work, the Taylor–Green vortex is used to demonstrate the conservation of kinetic
energy and scalar variance in inviscid simulations as ∆t → 0. Unresolved simulations
should lead to equipartition spectra characterized by a k2 range at small scales. Two
simulations were performed using the initial velocity distributions, u1 and u2, from the
Taylor–Green vortex in Chichowlas and Brachet [29], and a passive scalar distribution
given by θ = |ω3|/ω3,max (where ω3 is the vorticity component). Figure A1a shows the
evolution of errors, ev = 1 − q(t)/q0 and eθ = 1 − Θ(t)/Θ(0), obtained from two coarse
1283 simulations. One simulation uses a Courant–Friedrichs–Lewy (CFL) condition of
|Ui∆t/∆xi| = 0.25, while the other a value of 0.1. A significant reduction in errors for
both energy and scalar variance is observed with a lower CFL condition. The evolution
of energy and scalar spectra in Figure A1b shows that, at t = 5, the k2 range at large k is
not visible. Instead, a wide spectrum is present, with small-scale content being generated
from large-scale structures. This behavior is nonphysical, but it highlights the necessity of
the proper discretization of the nonlinear terms. A physical explanation why the error of
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the turbulent energy is smaller than that for the scalar variance is linked to the difference
discussed above, where the energy dissipating structures or the enstrophy are more rod-like
while the scalar dissipating ones are ribbon-like.

Figure A1. (a) Evolution of the errors ev and eθ in time open CFL = 0.25 solid symbols CFL = 1: red
scalar, green kinetic energy; (b) energy and scalar spectra: closed symbols t = 0, green energy, and
red scalar at t = 60; the black solid line is the theoretical k2 equipartition distribution.
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