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Abstract: This study investigates how the use of a combination of high-pressure treatment, steak
marination and active packaging influences beef color and shear stress. A 2 × 2 × 2 × 3 factorial
design was applied, including pressure, marination, packaging and storage time. Many significant
interactions among factors were found, but the effects of pressure and marination were so high that
the effect of packaging was almost undetectable. Independent of storage type, pressurized treatments
presented higher values for both L* and hab than unpressurized treatments, and independent of
pressure application, the increase in L* and hab with storage time was higher for marinated treatments
than for unmarinated treatments. In unpressurized samples, marination provoked an increase in
L*, a* and hab and a decrease in C∗ab, whereas in pressurized samples, marination had no effect on
color. Pressurized samples always showed higher values for shear stress (on average 71% higher)
than unpressurized samples.
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1. Introduction

The high-pressure technique is applied in the food industry mainly to inactivate microbial growth,
resulting in safety and extending the shelf life of products [1,2], but it can also be used to improve meat
tenderness. Nevertheless, although the use of high pressure in meat tenderization is well known [2–4],
its implementation in industry has been limited because the effect of high pressure on meat texture
depends on several factors, such as the pressure applied, temperature, time, muscle and aging period.
In addition, the application of high pressure promotes intense decoloration [1], which can cause
consumer rejection since color is one of the most important factors in buying decisions [5]. In addition,
high-pressure is an expensive technique since the machine costs about 500.000 euros and, in addition,
0.10–0.15 euros per sample (provider data).

These changes in color are mainly due to two processes: adiabatic heating of the meat [6]
and changes in the oxygen consumption rate [7]. Lower oxygen consumption rates allow greater
penetration of oxygen into the muscle, resulting in more stable color [7]. Thus, the use of high-oxygen
packaging could aid in preserving underpressurized meat color. Nevertheless, when meat is packed in
high-oxygen packaging, it is more susceptible to lipid and protein oxidation, which in turn also causes
changes in color and sensory meat quality. The use of active packaging could be a solution, and, in this
sense, nanotechnology has broken into the packaging industry in recent years [8]. Metals and their
oxides, such as ZnO, TiO2, MgO and CaO, are particularly interesting because they are safe for animals
and humans [9], and they are allowed in the U.S. Food and Drug Administration list [10] as well as in
European Regulation R.450/2009 [11]. Among metal cations, silver ions are known to have the highest
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antimicrobial capacity against a wide spectrum of Gram+ and Gram– microorganisms, but ZnO has
gained interest due to its low cost [12].

Another increasingly applied technique to counter the effect of high pressure is the use of
marinades. Marinating enhances meat flavor, juiciness and tenderness and is; therefore, especially
interesting for use in low-quality muscles, such as semitendinosus [13]. Unfortunately, depending on
the marinade liquid, it can also lead to color and texture modifications [14]. Thus, the sole use of
marinades may not be enough to counter pressure effects.

The aim of the present paper was to investigate how the use of a combination of high-pressure
treatment, steak marination and active packaging influences beef color and shear stress. In the literature,
studies combining high pressure and marination [15] or packaging and marination [16] can be found,
but to the best of our knowledge, this triple combination of pressure, marination and packaging has
not been previously investigated.

2. Materials and Methods

2.1. Packaging: Production Method, Chemical Composition and Migration Assays

Packaging composed of LDPE (low-density polyethylene, LD 654, ExxonMobil, Chemical,
Baytown, TX, USA) blended with a nano-antimicrobial master batch containing Ag and ZnO
nanoparticles (Avanzare, Navarrete, Spain) at 0% and 5% w/w was produced. Details of the
packaging production, composition and characteristics, as well as the migration assays, can be
found in Panea et al. [17].

2.2. Meat Sampling and pH Measurement

Eight commercial carcasses from young bulls were used. The animals were slaughtered in a
commercial abattoir at 13 months of age, had a cold carcass weight of 361 ± 37.0 kg, and were classified
as U2 following the European Classification System [18]. Carcasses were kept at 4 ◦C until the 5th
day post-mortem. Then, the semitendinosus muscle of the left half of the carcasses was excised and
transported to the laboratory, and the pH was measured with a pH meter equipped with a Crison 507
penetrating electrode (Crison Instruments S.A., Barcelona, Spain).

A 2 × 2 × 2 × 3 factorial design was applied, including pressure, marination, packaging and
storage time.

From each muscle, eight steaks (3 cm-thick) were chopped perpendicularly to the fiber direction,
vacuum packed (MCOEX material bags, Coimbra Pack, S.L., Zaragoza, Spain) and kept at 4 ◦C for
24 h. Then, half of the steaks (named P) were treated with a high pressure of 600 MPa for 6 min, with
water at 12 ◦C as the transmission fluid, using a Hyperbaric 6000 machine (Hiperbaric, S.A., Burgos,
Spain), whereas the other half were not pressurized. Afterwards, all of the samples were removed
from the bags and the color was measured (experimental day 0). Subsequently, both pressurized (P)
and non-pressurized samples were split again, half placed into an LDPE-5%-nanoparticle tray (named
N), half into LDPE-0%-nanoparticle trays. Next, half of both the LDPE-5% or LDPE-0%-nanoparticle
trays were supplemented with calcium chloride solution to marinate the steaks (named M), the other
half remained without marinade liquid. The m-calpain, responsible for the meat tenderization, needs a
concentration of Ca2+ for activation between 1 and 5 nM [19]. However, when concentration of calcium
chloride solutions increased from 0.1 to 0.3 M, meat became darker and more prone to oxidation [20].
Therefore, the concentration of the calcium chloride was set to 0.1 M. Then, all of the trays were
wrapped with a PE-LD oxygen-permeable film (Coimbra Pack, S.L., Zaragoza, Spain), without contact
with the meat surface, and kept at 4 ◦C for 6 or 13 days, which was considered time enough to see an
effect, if one exists.
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Resuming, eight experimental batches were prepared:

• C: Control (unpressurized-LPDE 0%-unmarinated)
• N: unpressurized-LPDE 5%-unmarinated
• M: unpressurized-LPDE 0%-marinated
• NM: unpressurized-LPDE 5%-marinated
• P: pressurized-LPDE 0%-unmarinated
• PN: pressurized-LPDE 5%-unmarinated
• PM: pressurized-LPDE 0%-marinated
• PNM: pressurized-LPDE 5%-marinated.

The experimental design is shown in Figure 1.

Foods 2019, 8, x FOR PEER REVIEW 3 of 13 

 

 NM: unpressurized-LPDE 5%-marinated 

 P: pressurized-LPDE 0%-unmarinated 

 PN: pressurized-LPDE 5%-unmarinated 

 PM: pressurized-LPDE 0%-marinated 

 PNM: pressurized-LPDE 5%-marinated.  

The experimental design is shown in Figure 1. 

 

Figure 1. Experimental design. 

2.3. Instrumental Procedures 

2.3.1. Color 

Color was measured on the days 0 and 6 of treatment. Color changes were so evident at day 6 

that to measure it at day 13 was considered unnecessary. All the samples used for color analysis were 

allowed to bloom for 90 min. The color was measured with a Minolta CM-2006d spectrophotometer 

(Konica Minolta Holdings, Inc, Osaka, Japan) in CIELAB space (CIE, 1986) with a measured area 

diameter of 8 mm. The specular component included 0% UV; the standard illuminant was D65, which 

simulates daylight (color temperature 6504 K); a 10° observer angle was used; and zero and white 

calibrations were applied. 

The lightness (L*), redness (a*) and yellowness (b*) were recorded, and the hue angle (H°) and 

chroma (C*) indexes were calculated as ℎ𝑎𝑏 = tan−1 (
𝑏∗

𝑎∗
) ∙

180°

𝜋
, expressed in degrees, and 𝐶𝑎𝑏

∗ =

√(𝑎 ∗)2 + (𝑏 ∗)2 . The relative contents of metmyoglobin (MMb) and oxymyoglobin (MbO2) were 

estimated by the ratios K/S572/525 [21,22] and K/S610/525, respectively [21,23]. These ratios decrease when 

the pigment content increases. The Kubelka-Munk K/S values were calculated using SpectraMagic 

NX (Minolta Co., Ltd., Osaka, Japan), and K/S at 572 and 525 nm were calculated by linear 

interpolation. Additionally, the ratio of light reflectance at 630 and 580 nm (R630/R580) [24,25] was 

calculated. Finally, the color difference between two stimuli (ΔE) was calculated as 

∆E*=√(∆L*)2+(∆a*)2+(∆b*)2 , only in the cases in which it was necessary to explain human eye-

detectible differences [25]. 

2.3.2. Texture 

Figure 1. Experimental design.

2.3. Instrumental Procedures

2.3.1. Color

Color was measured on the days 0 and 6 of treatment. Color changes were so evident at day 6
that to measure it at day 13 was considered unnecessary. All the samples used for color analysis were
allowed to bloom for 90 min. The color was measured with a Minolta CM-2006d spectrophotometer
(Konica Minolta Holdings, Inc, Osaka, Japan) in CIELAB space (CIE, 1986) with a measured area
diameter of 8 mm. The specular component included 0% UV; the standard illuminant was D65, which
simulates daylight (color temperature 6504 K); a 10◦ observer angle was used; and zero and white
calibrations were applied.

The lightness (L*), redness (a*) and yellowness (b*) were recorded, and the hue angle (H◦)
and chroma (C*) indexes were calculated as hab = tan−1

(
b∗
a∗

)
·
180◦
π , expressed in degrees, and C∗ab =√

(a∗)2 + (b∗)2. The relative contents of metmyoglobin (MMb) and oxymyoglobin (MbO2) were
estimated by the ratios K/S572/525 [21,22] and K/S610/525, respectively [21,23]. These ratios decrease when
the pigment content increases. The Kubelka-Munk K/S values were calculated using SpectraMagic NX
(Minolta Co., Ltd., Osaka, Japan), and K/S at 572 and 525 nm were calculated by linear interpolation.
Additionally, the ratio of light reflectance at 630 and 580 nm (R630/R580) [24,25] was calculated. Finally,
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the color difference between two stimuli (∆E) was calculated as ∆E∗ =
√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2,

only in the cases in which it was necessary to explain human eye-detectible differences [25].

2.3.2. Texture

Samples of the eight muscles were evenly distributed according to experimental treatments and
times. Because the size of the semitendinosus muscle was not enough to measure texture at three storage
points (0, 6, and 13 days), it was decided to avoid the initial point. Therefore, it was assumed that
differences in texture between treatments at day 0 would be unnoticeable and, consequently, texture
was measured only on days 6 and 13 of treatment. Samples were vacuum packed and heated in a 75
◦C water bath to an internal temperature of 70 ◦C, which was monitored with a Testo thermocouple
equipped with a probe (Testo SE & Co. KGaA, Lenzkirch, Germany). A minimum of 10 subsamples
with a 10 × 10 mm2 cross-section were obtained following a longitudinal configuration [26]. Samples
were sheared using an Instron 5543 (ITW Test and Measurements, Essligen, Germany) fitted with a
Warner–Bratzler device. The shear maximum stress (load at maximum peak shear force per unit of
cross-section, in N/cm2) and toughness (amount of energy necessary to break the sample, in N/cm2)
were recorded.

2.3.3. Statistics

Statistical analyses were performed with the XLSTAT statistical package v.3.05 (Addinsoft, USA).
Student’s t-test was performed to study the differences in pH between batches. Two independent
general linear model procedures were carried out for color and texture analysis, with pressure
application (yes/no), packaging type (with/without nanoparticles), marinade immersion (yes/no), and
storage time (0 or 6 days for color; 6 or 13 days for texture) as fixed effects. The means and standard
errors of all the considered variables were calculated. The Duncan test was used to compare means,
and the level of significance was p < 0.05.

3. Results

3.1. pH and Color

The global mean pH was 5.66 (standard error = 0.015, results not shown), and no differences were
observed between samples (p > 0.05).

Table 1 shows the p-values for the effects of studied factors on color variables. All studied factors
except packaging type (LPDE-0% or LPDE-5%) affected almost all the studied variables. In addition,
many significant interactions among effects were found, including the interaction between pressure
application and packaging type (P×N) on L*, a* and b*.

Table 1. The p-values of the effects of the studied factors (pressure application, packaging type,
marination and storage time) on beef color variables.

L* a* b* C∗ab hab MMb

Pressure (P) <0.001 <0.001 <0.001 0.011 <0.001 <0.001
Nano-packaging (N) 0.630 0.503 0.259 0.814 0.107 0.470

Marination (M) <0.001 <0.001 0.140 <0.001 <0.001 <0.001
Storage time (T) <0.001 <0.001 0.910 <0.001 <0.001 <0.001

P × N <0.001 0.035 0.179 0.014 0.511 0.531
P ×M <0.001 <0.001 0.123 <0.001 <0.001 <0.001
P × T <0.001 0.084 0.489 0.048 <0.001 <0.001

N ×M 0.491 0.797 0.314 0.178 0.643 0.361
N × T 0.414 0.744 0.343 0.501 0.646 0.441
M × T <0.001 <0.001 0.167 <0.001 <0.001 <0.001

MMb—metmyoglobin.
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The means of color variables as a function of treatment are given in Table 2 and a picture of the
steaks are in Figure 2. The application of pressure resulted in an increase in L*, hab and b* and a decrease
in a* and metmyoglobin percentage. In unpressurized samples, marination provoked an increase in
L*, a* and hab and a decrease in C∗ab without an effect on b*. Nevertheless, in pressurized samples,
marination had no effect on color. Within a certain pressure–marinade combination, packaging type
did not affect any of the color variables. In the C and N treatments, storage time only affected the
metmyoglobin percentage, whereas in the rest of the treatments, all of the variables changed over time,
except b*.

Table 2. The means and standard errors for beef color variables as a function of the studied factors
(pressure application, packaging type, marinate immersion and storage time).

Treatment Time, d L* a* b* hab C* MMb %

C
0 40.3 cdx 15.4 ax 8.9 cx 30.2 cdx 17.8 abx 1.43 ax
6 41.9 Dx 15.2 Ax 9.7 Cx 32.4 Dx 18.1 Ax 1.33 Ay

N
0 40.0 cdx 16.2 ax 9.6 bcx 30.9 cdx 18.9 ax 1.41 ax
6 40.9 Dx 15.8 Ax 9.8 Cxx 32.0 Dx 18.6 Ax 1.29 Ay

M
0 41.5 cy 15.3 ax 10.3 bx 34.1 cy 18.5 ax 1.40 ax
6 62.4 Bx 1.1 Cy 9.2 Cx 83.2 ABx 9.3 Dy 0.91 Cy

NM
0 39.3 dy 16.8 ax 8.8 cx 27.7 dy 19.1 ax 1.42 ax
6 60.0 BCx 2.1 Cy 9.7 Cx 77.9 BCx 10.0 Dy 1.02 By

P
0 56.7 aby 8.5 bx 14.3 ax 59.6 aby 16.6 bx 0.96 bx
6 59.2 Cx 4.4 By 14.1 ABx 72.8 Cx 14.7 BCy 0.82 Dy

PN
0 58.3 ay 8.0 bx 14.5 ax 61.3 ay 16.6 bx 1.03 bx
6 60.8 BCx 4.0 By 15.2 Ax 75.4 Cx 15.7 Bx 0.83 Dy

PM
0 55.1 by 9.5 bx 13.6 ax 55.2 by 16.7 bx 1.07 bx
6 67.4 Ax 0.5 Cy 13.3 Bx 87.7 Ax 13.3 Cy 0.92 Cy

PNM
0 58.2 ay 8.0 bx 14.4 ax 61.0 ay 16.5 bx 1.02 bx
6 68.7 Ax 0.7 Cy 13.7 Bx 87.1 Ax 13.7 Cy 0.91 Cy

Standard error 1.03 0.594 0.267 2.145 0.295 0.023

a,b—different letters in a column imply significant differences between treatments at day zero of exposure time (p <
0.05); A,B—different letters in a column imply significant differences between treatments at six days of exposure
time (p < 0.05). x,y—different letters in a column imply significant differences between storage times for a certain
treatment (p < 0.05). C: Control (unpressurized-LPDE 0%-unmarinated); N: Unpressurized-LPDE 5%-unmarinated;
M: Unpressurized-LPDE 0%-marinated; NM: Unpressurized-LPDE 5%-marinated; P: Pressurized-LPDE
0%-unmarinated; PN: Pressurized-LPDE 5%-unmarinated; PM: Pressurized-LPDE 0%-marinated; PNM:
Pressurized-LPDE 5%-marinated.

In Figure 2 are shown the ∆E values with respect to the control on day six of exposure. All of
them, except the value of N batch, were higher than the 2.5–3 usually considered as a threshold for
human eye detection [27,28].

Figure 3 is a representation of L* versus hab. In all of the treatments except C and N, both L*
and hab increased with storage time. Independent of the packaging and storage type, the pressurized
treatments (P, PN, PM and PNM) presented higher values for both L* and hab than the unpressurized
treatments (C, M, N, and NM); and independent of the pressure application and packaging type, the
increase in L* and hab with storage time was higher for the marinated treatments (M, NM, PM, and
PNM) than for the unmarinated treatments (C, N, P, and PN).
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Figure 3. Beef color representation of L* and hab as a function of the studied factors (pressure
application, packaging type, marinate immersion and storage time). C: Control (unpressurized-LPDE
0%-unmarinated); N: Unpressurized-LPDE 5%-unmarinated; M: Unpressurized-LPDE 0%-marinated; NM:
Unpressurized-LPDE 5%-marinated; P: Pressurized-LPDE 0%-unmarinated; PN: Pressurized-LPDE
5%-unmarinated; PM: Pressurized-LPDE 0%-marinated; PNM: Pressurized-LPDE 5%-marinated.
Marinated treatments are in italics, and pressurized treatments are in bold.
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3.2. Texture

Table 3 shows the p-values for the effects of the studied factors on texture variables, and Table 4
shows the means and standard errors of the texture variables. Only pressure application affected the
texture variables, but a significant interaction was found between pressure and packaging type in
terms of shear stress (p = 0.027). Thus, when samples were pressurized, packaging type influenced
both the shear stress and toughness, whereas when samples were unpressurized, only shear stress
was affected by the packaging type. Independent of the packaging type, pressurized samples always
showed higher values for shear stress (on average, 71% higher) than unpressurized samples.

Table 3. The p-values for the effects of the studied factors (pressure application, packaging type,
marinade immersion and storage time) on beef shear stress and toughness.

Shear Stress (N/cm2) Toughness (N/cm2)

Pressure (P) <0.001 <0.001

Nano-packaging (N) 0.575 0.852

Marination (M) 0.090 0.318

Storage time (T) 0.935 0.437

P × N 0.027 0.185

P ×M 0.750 0.185

P × T 0.124 0.424

N ×M 0.635 0.995

N × T 0.986 0.850

M × T 0.455 0.423

Table 4. The means and standard errors of beef shear stress and toughness as a function of treatment.

Shear Stress (N/cm2) Toughness (N/cm2)

C 40.5 bc 13.0 c

N 48.0 b 16.1 bc

M 38.7 c 17.1 bc

NM 43.6 bc 17.8 abc

P 78.9 a 22.7 a

PN 71.9 a 20.1 ab

PM 71.1 a 21.1 ab

PNM 70.7 a 20.9 ab

s.e. 2.21 0.67

a,b—different letters in a column imply significant differences between treatments (p < 0.05). C: Control
(unpressurized-LPDE 0%-unmarinated); N: Unpressurized-LPDE 5%-unmarinated; M: Unpressurized-LPDE
0%-marinated; NM: Unpressurized-LPDE 5%-marinated; P: Pressurized-LPDE 0%-unmarinated; PN:
Pressurized-LPDE 5%-unmarinated; PM: Pressurized-LPDE 0%-marinated; PNM: Pressurized-LPDE 5%-marinated.

4. Discussion

4.1. Color

Values found for color variables were similar to those reported by other authors in semitendinosus
muscle [7,15,16].

The effect of high pressure on meat color has been broadly reported. It is generally accepted
that pressure treatment increases beef lightness, whereas redness decreases and yellowness remains
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more or less unchanged [1,3,15,29], in agreement with the current results. Because of these changes,
pressurized meat shows a pink color similar to that of cooked meat [30]. Pressure application occurs
via an adiabatic process that implies an increase in meat temperature [6] of approximately 3 ◦C per
100 MPa [31], which could explain why the general appearance of the meat resembled cooked meat
instead of fresh meat.

These changes in color are associated with modifications in myoglobin structure, haem
displacement, the formation of metmyoglobin, the denaturation of myofibrillar proteins and changes
in connective tissue [3].

Regarding myoglobin, Buckow et al. [32] reported that the primary and secondary structures
of globular proteins are rarely affected by high pressure because covalent bonds are minimally
compressible, whereas the tertiary and quaternary structures are damaged by high pressure. In
addition, pressure promotes the displacement of haem groups and iron ions, and, in the range of 250
to 500 MPa, the conversion of ferrous myoglobin to ferric metmyoglobin can be found, resulting in
a greener color [32]. On the other hand, a linear relationship was observed between the K/S572/525

ratio and the amount of metmyoglobin accumulated on the steak surface, and it has been stated that
consumers start to discriminate color changes when the percentage of metmyoglobin reaches 20% [7],
that is, when the ratio value is above 1.20 [33,34]. In the current results, the K/S572/525 ratio ranged
between 0.94 and 1.40; therefore, the percentage of metmyoglobin would range between 50% and 0%,
with lower values for pressurized samples. Under the current conditions, it seems that the adiabatic
increase in temperature and not the metmyoglobin content was responsible for the surface meat color.

In addition to these generally accepted overall color changes, it has been reported in literature that
the pressure effect depends largely on treatment conditions. Then, the L* value increases even at low
pressures (approximately 150 MPa), but no additional changes in L* value were observed for pressures
higher than 350 MPa [32]. Increases in L* values have been related to protein denaturation [35], which
affects light reflectance. On the other hand, the decrease in a* value is more evident above 400 MPa [32],
and pressures higher than 300 MPa cause oxymyoglobin to transform into metmyoglobin [36]. The
temperature at which the high pressure was applied also influenced the effect on meat discoloration. In
general, the higher the temperature is, the higher the pressure effect [1]. For example, Marcos et al. [37]
stated that the increase in L* value was higher when pressure was applied at 30 ◦C than when it was
applied at 20 or 10 ◦C.

Regarding the effect of storage time, contradictory results can be found in the literature. Cheah
and Ledward [38] reported that if pressure is applied in the first two days after slaughter, pressure
treatment increases color stability during subsequent inspection, whereas if pressure treatment is
applied several days after slaughter, it has no effect on color stability. In contrast, King et al. [39]
reported a decrease in L*, a*, b* and C∗ab* and an increase in hab from the 0th to 9th day of exposure
in semitendinosus muscle. The current results (Figure 2) show that color changes over time occurred
independently of the pressure, although they were more marked when samples were pressurized.

The effect of marinating on meat color has been described by several authors. Cruzen et al. [16]
reported that a calcium-salt marinade promotes an increase in L* values without affecting the a* values
of semitendinosus muscle. In addition, these authors indicated that when meat was unmarinated, the
L* values increased from the first day to the 9th day of storage, whereas in marinated samples, this
evolution did not happen. Similarly, Klinhom et al. [40] reported an increase in L* values and a decrease
in a* values when semimembranosus samples were marinated with a 0.2 M calcium chloride solution.

The lack of an effect of combined Ag-ZnO treatment on meat color was previously found in our
laboratory in poultry [17]. In the current experiment, the effects of pressure and marination were so
high that the effect of packaging was almost undetectable.

It can be seen in Figure 2 that differences between treatments are so evident that a consumer visual
test, which would be interesting if the effect were less noticeable, was considered unnecessary.



Foods 2020, 9, 179 9 of 12

4.2. Texture

Several mechanisms have been proposed to explain the effect of pressure on shear force. The
reported mechanisms include the destruction of the sarcomere structure at the I-line, M-line and Z-line
levels, the aggregation of fine and thick filaments [41], the unfolding of connective tissue, a decrease in
protein solubility [15], the activation of autolytic activity, the release of calcium into cytosol and the
denaturation of enzymes.

As occurs with color, the effect of pressure treatment on meat texture depends on the pressure,
meat rigor state and temperature [3].

It has been described that moderate pressures (<300 MPa) results in meat tenderization, whereas
medium or high pressures (>400 MPa) induces meat toughening, and increases in pressure to 800 MPa
leads to small changes [6]. In a meta-analysis studying the effect of pressure on pork [3], it was found
that pressures of 100–250 MPa resulted in a significant reduction in shear force of approximately 0.92
kg, whereas if the pressure was higher than 250 MPa, the reduction was only approximately 0.38 kg.
Morton et al. [4] described that upon applying 175 MPa, shear force decreased by approximately 60% in
longissimus thoracis muscle and approximately 43% in gluteus medius muscle. The shear force reduction
is higher when pressure is applied in a pre-rigor state than when it is applied in a post-rigor state [31].
Pressures of approximately 100–200 MPa cause the trickling of cathepsins and calcium into the cytosol
and a decrease in calpastatin. As a result, there is a disruption of the myofibrillar structure and an
improvement in tenderness [6,31,42]. Pressures above 300 MPa induce the contraction of sarcomeres
and the denaturation and fragmentation of proteins, but there is also an increase in the area of the
myofibrils, resulting in toughening of the meat, in agreement with the current results [41,43].

The sensitivity of proteins to pressure is temperature dependent, and it was much higher at
temperatures of approximately 60–70 ◦C than at 20 ◦C [6,42,44]. A combination of low pressure (less
than 200 MPa) and high temperature (approximately 60 ◦C) results in meat tenderization because
enzymes are active in these conditions, allowing proteolysis. In addition, at 60 ◦C, there was collagen
denaturation [31].

Ueno et al. [45] reported that treatment with 100–400 MPa at 4 ◦C for 5 min caused deformation of
the endomysium, whereas other authors reported a reduction of the thermal stability of collagen and a
separation of the perimysium when meat was pressurized above 200 MPa at room temperature [46,47].
Nevertheless, under our experimental conditions (12 ◦C, 600 MPa), neither enzyme activity nor collagen
denaturation was allowed, and pressurized samples were tougher than unpressurized samples.

Several authors [40,48,49] have reported that calcium–salt marinades promote an improvement
in meat tenderness because calcium salts lead to an increase in the water content of the samples and
increase calpain activation, with subsequent protein degradation and weakening of the myofibrillar
structure. In a microstructure study, Sharedeh et al. [14] found that when meat was marinated it had
swelling of the meat fibers and an increase in extracellular space, resulting in lower intercellular spaces
in samples marinated with 2% salt than samples marinated with 0.9% salt. Nevertheless, our results
showed no effect of marination on texture variables, which is in agreement with Kim, et al. [15], who
stated that pressures above 200 MPa caused a decrease in water-holding capacity, resulting in a more
compact structure that did not permit swelling.

5. Conclusions

Many significant interactions among factors were found in the present study.
Under the applied conditions, it seems that the adiabatic increase in temperature and not the

metmyoglobin content was responsible for the surface meat color, and in addition, the effects of
pressure and marinade were so high that the effect of packaging was almost undetectable.

Independent of the storage type, pressurized treatments presented higher values for both L* and
hab than unpressurized treatments.

Independent of pressure application, the increase in L* and hab with storage time was higher for
marinated treatments than for unmarinated treatments.
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In unpressurized samples, marination provoked an increase in L*, a* and hab and a decrease in
C∗ab, whereas in pressurized samples, marination had no effect on color.

Pressurized samples always showed higher values for shear stress (on average, 71% higher) than
unpressurized samples.

Further studies comparing different marinade ingredients or concentrations as well as different
pressures are necessary in order to find an optimal combination which allows the meat conservation
and tenderization without compromising the color.

Author Contributions: Conceptualization, B.P. and G.R.; methodology, B.P. and G.R.; formal analysis, B.P. and
G.R.; investigation, B.P., P.A. and G.R.; resources, B.P. and G.R.; data curation, B.P. and G.R.; writing—original
draft preparation, B.P.; writing—review and editing, B.P. and G.R.; funding acquisition, G.R. and P.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministerio de Economía, Industria y Competitividad
(IPT-060000-2010-019), Gobierno de Aragón-Fondos FEDER (DRU-2014-02-50-541-IFO-00740020008 and
DRU-2014-02-50-541-00-IFO-00740020009) and Research Group Funds of the Aragón Government (A14-17R
SAGAS).

Acknowledgments: The authors are grateful to the AITIIP Foundation Technology Center, Jaime González and
Ángel Fernández-Cuello for their invaluable contribution to packaging design and development.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Bak, K.H.; Bolumar, T.; Karlsson, A.H.; Lindahl, G.; Orlien, V. Effect of high pressure treatment on the color
of fresh and processed meats: A review. Crit Rev. Food Sci. Nutr. 2019, 59, 228–252. [CrossRef] [PubMed]

2. Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.-D.A. Applied and Emerging Methods for Meat Tenderization:
A Comparative Perspective. Compr. Rev. Food Sci. Food Saf. 2018, 17, 841–859. [CrossRef]
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