

Figure S1. Geographical distribution of Korean and Chinese soybean samples. Map of Korea with 8 provinces of soybean samples (A): (1): Gyeonggi-do, (2): Gangwon-do, (3): Chungcheongbuk-do, (4): Chungcheongnam-do, (5): Jeollabuk-do, (6): Jeollanam-do, (7): Gyeongsangbuk-do, (8) Gyeongsangnam-do; Map of China with 3 divided regions of soybean samples consisting 9 provinces (B): Northeastern region represented with blue color consists of ①: Heilongjiang Province, ②: Jilin Province, ③: Liaoning Province, middle region (Huang-Huai-Hai region and Yangtze River basin region) represented with green color consists of ④: Hebei Province, ⑤: Shandong Province, ⑥: Hubei Province, and southern region represented with orange color consists of ⑦: Zhejiang Province, ⑧: Guangdong Province, ⑨: Guangxi Autonomous Region.

Figure S2. Representative pictures of soybean samples from Korea (left) and China (right).

Figure S3. Average size of soybean samples from Korea and China. Comparison of average soybean size in Korea and China (A) determined by independent t-test (p<0.05). Comparison of individual soybean size of each region and province in Korea and China (B). Comparison of regional soybean size in each Korea and China were tested by one-way ANOVA test (p<0.05) and Kruskal-Wallis test (p<0.05) with Bonferroni correction (p<0.017), respectively. Comparison of soybean size from provinces in each Korea and China were tested by Kruskal-

Wallis test (p<0.05) or Mann-Whitney test (p<0.05). The asterisk mark indicates significant differences between samples. NS means not significant. Eight Korean soybean samples of Gyeonggi-do, Gangwon-do, Chungcheongbuk-do, Chungcheongnam-do, Jeollabuk-do, Jeollanam-do, Gyeongsangbuk-do, and Gyeongsangnam-do were abbreviated as Gyeonggi, Gangwon, Chungbuk, Chungnam, Jeonbuk, Jeonnam, Gyeongbuk, and Gyeongnam respectively; nine Chinese soybean samples of Heilongjiang province, Jilin province, Liaoning province, Hebei province, Shandong province, Hubei province, Zhejiang province, Guangdong province, and Guangxi autonomous region were abbreviated as Heilongjiang, Jilin, Liaoning, Hebei, Shandong, Hubei, Zhejiang, Guangdong, and Guangxi respectively.

Figure S4. Climate data for soybean cultivation regions in Korea and China in 2016. The average value of monthly mean temperature (A) and total precipitation (B) from January to December. Comparisons of Korea and China was tested by student's t-test (p<0.05).

Comparison of regional climate data in each Korea and China were tested by Kruskal-Wallis test (p<0.05) and one-way ANOVA test (p<0.05), respectively. Comparisons of climate data from provinces in each Korea and China were tested by Kruskal-Wallis test (p<0.05) or Mann-Whitney test (p<0.05). The asterisk mark indicates significant differences between samples. NS means not significant. Eight Korean soybean samples of Gyeonggi-do, Gangwon-do, Chungcheongbuk-do, Chungcheongnam-do, Jeollabuk-do, Jeollanam-do, Gyeongsangbuk-do, and Gyeongsangnam-do were abbreviated as Gyeonggi, Gangwon, Chungbuk, Chungnam, Jeonbuk, Jeonnam, Gyeongbuk, and Gyeongnam respectively; nine Chinese soybean samples of Heilongjiang province, Jilin province, Liaoning province, Hebei province, Shandong province, Hubei province, Zhejiang province, Guangdong province, and Guangxi autonomous region were abbreviated as Heilongjiang, Jilin, Liaoning, Hebei, Shandong, Hubei, Zhejiang, Guangdong, and Guangxi respectively.

Figure S5. Representative 600 MHz ¹H-NMR spectra of Korean (A), and Chinese (B) soybean samples.

Figure S6. ¹H-¹H correlation spectroscopy (COSY, (A)), and ¹H-¹³C heteronuclear single quantum correlation (HSQC, (B)) spectra of soybean sample.

Figure S7. Receiver operating characteristics (ROC) curves and area under the curve (AUC) values for distinguishing geographical origin of soybeans. AUC value of 25 metabolites discriminating soybean samples from Korea and China (A). AUC value 11 metabolites discriminating Chinses soybean samples from NR and MR/SR (B), MR and NR/SR (C), and SR and NR/MR (D). NR: northeastern region, MR: middle region (Huang-Huai-Hai and Yangtze River region), SR: southern region.

Figure S8. Discrimination model for soybean samples from Korea and northeastern

China. OPLS-DA score plots (A) derived from the ¹H-NMR spectra of soybean samples for discriminating the geographical origin of Korea and northeastern China. Permutation test plots (B) with 100 permutations of OPLS-DA model. Leave-one-out cross-validated score plots (C) showing Korean soybeans (above dashed line) and northeastern Chinese soybeans (below dashed line) with threshold value of 0.5 (dashed line) for all samples.

			Product information			
N0.	Province	City	Suppliers	Product number	Homepage address	
1	Heilongjiang	Harbin	Dongbeilaocuinongjiazaliang	None	https://shop118 787577.taobao. com/?spm=a1z 10.1-c- s.0.0.45aee1ee4 CpsWV	
2	Jilin	Meihekou	Xiaoyaliangpindongbeinongjia	None	https://shop108 710895.m.taoba o.com/?spm=a1 z10.1-c.w4069- 7416007653.1. 5e6ac960w7GI 9y	
3	Liaoning	Dandong	Shide	QS2106-0102- 2907	None	
4	Hebei	Shijiazhuang	Laoweinongjia	None	https://njlw.tao bao.com	
5	Shandong	Jining	Helaixiangqijiandian	Q / HLX 0002S	http://www.hela ixiang.com/	
	Hubei	Huangshi	Xiangersaonongjiadian	None	None	
7	Zhejiang	Pinghu	yanyuqijiapangnongjiadian	None	https://world.ta obao.com/dianp u/101949532.ht m?spm=a211ha .10565794.0.0. 422972d3Q7bB 05	
8	Guangdong	Shaoguan	Wenyueliang	None	None	
9	Guangxi Zhuang Autonomous Region	Bama Yao Autonomous	Bamayuanwei	None	https://world.ta obao.com/item/ 531284827070. htm?spm=a21w u.11804641- cat- tw.0.0.5f047a6 7sRYzeA	

Table S1. Products and suppliers' information of Chinese soybean samples

Table S2. Variable importance projection (VIP) values of metabolites for discriminating	,
Korean and Chinese soybean samples	

No.	Compounds	VIP value	
1	Tartarate	2.052	
2	Galactarate	1.926	
3	Valine	1.786	
4	Tryptophan	1.754	
5	Isoleucine	1.716	
6	Citrate	1.375	
7	Alanine	1.088	
8	Asparagine	0.933	
9	Choline	0.877	
10	2-Hydroxyisobutyrate	0.875	
11	Oxypurinol	0.694	
12	Raffinose/Stachyose	0.610	
13	Glutamate	0.559	
14	Hypoxanthine	0.517	
15	Succinate	0.513	
16	2-Oxoglutarate	0.404	
17	Sucrose	0.391	
18	Formate	0.387	
19	Aspartate	0.323	
20	Malonate	0.220	
21	Acetoacetate	0.161	
22	Fumarate	0.159	
23	Acetate	0.137	
24	Leucine	0.073	
25	Glucose	0.003	

Table S3. Parameters of OPLS-DA models based on various VIP cut-off values for discriminating Korean and Chinese soybean samples based on total area normalization and UV scaling methods

VIP cut-off	Number of variable	Number of component	R ² Y	Q ² Y	R ² Y intercept	Q ² Y intercept
Total area normalization, UV scaling						
0	25	5	0.882	0.783	0.254	-0.487
>0.8	10	2	0.690	0.620	0.062	-0.198
>0.9	8	3	0.695	0.627	0.055	-0.191
>1.0	7	3	0.688	0.621	0.036	-0.181
>1.5	5	2	0.659	0.606	0.003	-0.139

Number of components obtained from autofit function in SIMCA software; VIP, variable importance projection; UV, unit variance; The bold characters indicate the selected optimal model parameters.

No.	Compounds	Korea	China
1	Acetate	$2.55{\pm}0.83^{NS}$	2.40±2.41
2	Acetoacetate	$0.35{\pm}0.10^{\rm NS}$	$0.34{\pm}0.18$
3	Alanine	0.75±0.32*	0.51 ± 0.40
4	Asparagine	1.09±0.62*	1.75 ± 1.61
5	Aspartate	$2.57{\pm}0.94^{\rm NS}$	2.85±1.57
6	Choline	85.91±5.60*	89.00 ± 5.66
7	Citrate	58.09±9.24*	50.09±10.33
8	Formate	$0.09{\pm}0.02^{\rm NS}$	$0.10{\pm}0.02$
9	Fumarate	$0.14{\pm}0.02^{\rm NS}$	$0.14{\pm}0.03$
10	Galactarate	1.05±0.36*	1.41 ± 0.22
11	Glucose	$0.58{\pm}0.15^{\rm NS}$	$0.58{\pm}0.22$
12	Glutamate	$7.28{\pm}0.80^{ m NS}$	$7.09{\pm}0.80$
13	2-Hydroxyisobutyrate	$0.87{\pm}0.31^{NS}$	$0.99{\pm}0.22$
14	Hypoxanthine	$0.47{\pm}0.11^{NS}$	0.51±0.19
15	Isoleucine	0.65±0.14*	$0.50{\pm}0.17$
16	Leucine	$4.20{\pm}0.93^{NS}$	4.29±0.75
17	Malonate	$0.55{\pm}0.19^{NS}$	$0.58{\pm}0.31$
18	2-Oxoglutarate	$0.87{\pm}0.31^{NS}$	0.99 ± 0.22
19	Oxypurinol	$0.17{\pm}0.04^{\rm NS}$	$0.19{\pm}0.06$
20	Raffinose/Stachyose	23.80 ± 6.80^{NS}	25.63±6.44
21	Succinate	$0.52{\pm}0.16^{NS}$	$0.57{\pm}0.21$
22	Sucrose	36.17 ± 3.35^{NS}	36.83±4.74
23	Tartarate	0.79±0.19*	0.53±0.18
24	Tryptophan	1.97±0.28*	$2.26{\pm}0.28$
25	Valine	1.94±0.32*	$1.54{\pm}0.44$

Table S4. Relative levels of metabolites in Korean and Chinese soybean samples (*, *p* < 0.05)

Values in the table represent the total area normalization binning values, which means relative bin signal intensities of each compound were normalized by sum of the bin signal intensities and multiplying it by 1,000. Superscript characters (*) indicate significant differences between samples of the two groups, determined by Independent t-test; NS, not significant.

Table S5. Variable importance projection (VIP) values of metabolites for discriminatingdifferent origins of the Chinese soybean samples

No.	Compounds	VIP value
1	Sucrose	1.422
2	2-Hydroxyisobutyrate	1.237
3	Leucine	1.236
4	Malonate	1.214
5	Tartarate	1.194
6	Glucose	1.184
7	Succinate	1.156
8	Hypoxanthine	1.068
9	Acetate	1.049
10	Citrate	1.034
11	Choline	1.032
12	Isoleucine	0.998
13	Alanine	0.988
14	2-Oxoglutarate	0.969
15	Galactarate	0.960
16	Valine	0.913
17	Acetoacetate	0.905
18	Oxypurinol	0.848
19	Formate	0.812
20	Tryptophan	0.788
21	Asparagine	0.785
22	Aspartate	0.780
23	Fumarate	0.705
24	Glutamate	0.696
25	Raffinose/Stachyose	0.463

Table S6. Parameters of PLS-DA models based on various VIP cut-off values for discriminating different origins of the Chinese soybean samples based on standardized area normalization and UV scaling methods

VIP cut-off	Number of variables	Number of component	R ² Y	Q ² Y	R ² Y intercept	Q ² Y intercept	
Standardized area normalization, UV scaling							
0	25	6	0.898	0.651	0.348	-0.821	
>0.7	23	5	0.888	0.690	0.273	-0.661	
>0.8	19	5	0.898	0.745	0.249	-0.658	
>0.9	17	3	0.767	0.654	0.157	-0.351	
>1.0	11	4	0.887	0.789	0.151	-0.480	
>1.1	7	3	0.784	0.716	0.082	-0.344	

Number of components obtained from autofit function in SIMCA software; VIP, variable importance projection; UV, unit variance; The bold characters indicate the selected optimal model parameters.

No.	Compounds	Northeastern region	Middle region	Southern region
1	Acetate ²	4.67±0.43*	7.39±1.54 [#]	$15.46{\pm}10.18^{\#}$
2	Acetoacetate ²	$1.20{\pm}0.45^{\rm NS}$	1.11±0.27*	$1.81{\pm}0.63^{\#}$
3	Alanine ²	1.22±0.45*	1.89 ± 1.16^{NS}	$2.89{\pm}1.50^{\#}$
4	Asparagine ²	2.85±0.93*	7.92 ± 8.78 ^{NS}	$10.31 \pm 5.19^{\#}$
5	Aspartate ²	6.59±2.33*	12.79 ± 10.82^{NS}	$15.06 \pm 5.64^{\#}$
6	Choline ¹	378.20±35.88*	392.04±18.52*	$340.67{\pm}40.91^{\#}$
7	Citrate ²	205.16 ± 25.90^{NS}	199.17±15.61 ^{NS}	213.89 ± 49.52^{NS}
8	Formate ¹	$0.40{\pm}0.05^{\rm NS}$	$0.41{\pm}0.08^{\rm NS}$	$0.39{\pm}0.07^{\rm NS}$
9	Fumarate ¹	0.65±0.18*	$0.59{\pm}0.07^{\rm NS}$	$0.51{\pm}0.06^{\#}$
10	Galactarate ¹	6.29±1.14*	6.66±1.02*	$4.81{\pm}1.12^{\#}$
11	Glucose ¹	3.18±0.82*	$2.00{\pm}0.29^{\#}$	$2.03{\pm}0.64^{\#}$
12	Glutamate ¹	30.66 ± 5.56^{NS}	30.71 ± 4.39^{NS}	27.29 ± 2.57^{NS}
13	2-Hydroxyisobutyrate ¹	3.56±0.37*	4.07 ± 0.72^{NS}	$4.53{\pm}0.43^{\#}$
14	Hypoxanthine ¹	$2.86 \pm 0.66*$	$1.95{\pm}0.48^{\#}$	$1.52{\pm}0.51^{\#}$
15	Isoleucine ²	$2.11{\pm}0.56^{NS}$	$1.70{\pm}0.30^{\rm NS}$	$2.22{\pm}0.55^{\rm NS}$
16	Leucine ¹	21.86±1.89*	$16.58 \pm 3.15^{\#}$	$15.29 \pm 2.57^{\#}$
17	Malonate ²	$1.56 \pm 0.47*$	2.01±0.81*	$3.38{\pm}1.08^{\#}$
18	2-Oxoglutarate ¹	$5.96{\pm}0.50^{\rm NS}$	5.57 ± 0.65 NS	6.87 ± 2.12^{NS}
19	Oxypurinol ²	$0.90{\pm}0.25^{\rm NS}$	$0.73{\pm}0.17^{\rm NS}$	$0.69{\pm}0.21^{\rm NS}$
20	Raffinose/Stachyose ¹	115.28 ± 25.38 ^{NS}	104.10 ± 27.56^{NS}	100.04 ± 29.88 ^{NS}
21	Succinate ²	$2.17{\pm}0.49^{\rm NS}$	1.99±0.34*	$2.72{\pm}0.64^{\#}$
22	Sucrose ²	172.70±15.60*	178.39±8.68*	$114.30{\pm}16.63^{\#}$
23	Tartarate ¹	3.12±0.34*	$2.18{\pm}0.60^{\#}$	$1.45{\pm}0.45^+$
24	Tryptophan ¹	10.23±1.04*	9.37 ± 1.42^{NS}	$8.71 \pm 1.69^{\#}$
25	Valine ¹	6.57 ± 1.51^{NS}	$5.57{\pm}1.08^{\rm NS}$	6.81 ± 1.44^{NS}

Table S7. Relative levels of metabolites in Chinese soybean samples.

Values in the table represent the standard area normalization binning values, which means relative bin signal intensities of each compound were normalized by dividing the bin signal intensities of internal standard (IS) and multiplying it by 100. Superscript characters (*, #, and +) indicate significant differences among three group samples, determined by the one way-ANOVA (p < 0.05, One way analysis of variance, marked by "1") and Kruskal-Wallis test (p < 0.017, marked by "2"). NS; not significant.