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Abstract: This review summarises miniaturised technologies, commercially available devices, and
device applications for food authentication or measurement of features that could potentially be
used for authentication. We first focus on the handheld technologies and their generic characteristics:
(1) technology types available, (2) their design and mode of operation, and (3) data handling and
output systems. Subsequently, applications are reviewed according to commodity type for products
of animal and plant origin. The 150 applications of commercial, handheld devices involve a large
variety of technologies, such as various types of spectroscopy, imaging, and sensor arrays. The
majority of applications, ~60%, aim at food products of plant origin. The technologies are not
specifically aimed at certain commodities or product features, and no single technology can be
applied for authentication of all commodities. Nevertheless, many useful applications have been
developed for many food commodities. However, the use of these applications in practice is still in
its infancy. This is largely because for each single application, new spectral databases need to be built
and maintained. Therefore, apart from developing applications, a focus on sharing and re-use of data
and calibration transfers is pivotal to remove this bottleneck and to increase the implementation of
these technologies in practice.

Keywords: food fraud; food integrity; on-site detection; portable devices

1. Introduction

Over the years, technologies have advanced rapidly and enabled more precise, more
efficient, and faster checks of foods for integrity issues to ensure the quality, safety, and au-
thenticity of foods in supply chains. Food authenticity “is about ensuring that food offered
for sale or sold is of the nature, substance, and quality expected by the purchaser” [1,2].
Some food fraud cases have impacted on human health, like the addition of melamine to
milk powders [3] or the counterfeiting of alcoholic beverages with technical alcohol [4].
Other frauds simply economically disadvantaged consumers, e.g., the passing on of refined
olive oil as extra virgin olive oil [5]. When developing new means for food authentication,
research has focused mostly on single food commodities, single fraud issues, and/or single
technologies. Food authentication methods have traditionally concerned measurement of
single markers or a small set of markers with comparison to set thresholds. Over the last
two decades, more and more food authentication methods have focussed on analytical sig-
natures, which are based on either known compounds (targeted—profiling) or unidentified
features (untargeted—fingerprints) [6,7]. Most of these methods are based on spectrometric
or spectroscopic analyses in combination with advanced statistical methods. At the same
time, miniaturisation of technologies has allowed more and more use of analytical de-
vices outside laboratory environments [8,9]. This includes noninvasive [10] and handheld,
portable devices, some of which are coupled to or even integrated into smartphones [11].
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Overviews of these technologies are useful for those that wish to select promising
applications or to build further on them. Some studies have reviewed miniaturised ap-
plications in this area for particular products. For instance, methodologies/applications
focusing on meat [12,13], dairy products [14], and honey [15] as well as plant foodstuffs [16]
have been reviewed. These reviews include primarily evaluations of prototypes with a
proof-of-concept approach, which are not (yet) operable on a large scale in practice. Despite
the reviews mentioned above, technologies for food authentication on the intersection of
handheld commercially available technologies and several food commodities have not
been reviewed comprehensively till date.

Therefore, this review aims towards an overview of miniaturised technologies, com-
mercially available devices, and applications for food authentication, or those that at least
consider features that are relevant for food authenticity or the identity of foods. Firstly, the
available handheld technologies are appraised by their generic characteristics: (1) the type
of technologies available, (2) their design and mode of operation, and (3) data handling
and output systems. Subsequently, applications of the various technologies are reviewed
for food products of animal origin and for those of plant origin.

2. Generic Characteristics of Handheld Devices
2.1. Technologies Available in Miniaturised Form

While several technologies that have been used in the past as bench-top instruments
to assess food authenticity are being tested in miniaturised form in prototypes, only some
have passed the proof-of-concept stage and are available in handheld and lightweight,
portable forms. Promising miniaturised technologies include optical sensors, imaging
sensors, nuclear magnetic resonance spectroscopy (NMR), and sensor arrays (Table 1).

Table 1. Technologies for food authentication available in miniaturised form: variants of optical sensors, imaging sensors,
sensor arrays, and NMR devices.

Technology Details Feature Measured Availability Stage
(Prototype/Commercial)

Literature (Original
Articles and

Reviews)

Optical sensors

Reflectance Colour (CIE lab) Handheld C [17]
Reflectance,
absorption,

fluorescence
VIS spectrum Handheld P/C [18]

Reflectance,
absorption FLUO spectrum Handheld P/C [18,19]

Reflectance,
absorption NIR/SWIR spectrum Handheld P/C [12,20]

Reflectance FTIR spectrum Portable P/C [21,22]
Reflectance MIR spectrum Portable P [21,23]

Raman scattering Scattered light Portable/handheld C [13,20,24]

LIBS Emitting light from
plasma cooling Portable P/C [25]

Imaging

Reflectance,
fluorescence VIS spectrum Portable P/C [18,26,27]

Reflectance SWIR spectrum Portable P/C [26,27]
Scattering Raman spectrum Portable P [24]

NMR NMR NMR spectrum Portable P [28]

Sensor arrays Electronic Nose Volatile compounds Handheld P/C [10,29–33]
Electronic Tongue Solutes Portable P [30,34–36]

VIS = visible spectroscopy; FLUO = fluorescence spectroscopy; NIR = near-IR spectroscopy, SWIR = short-wave IR spectroscopy; FT-IR =
Fourier-transformed IR; MIR = mid-IR; NMR = nuclear magnetic resonance spectroscopy; LIBS = Laser-induced breakdown spectroscopy;
C = commercial; P = prototype.

2.1.1. Optical Sensors

Miniaturised optical sensors that have been applied may scan from ultraviolet (UV,
200 nm) to visible (VIS, 700 nm), and infrared (IR, 2400 nm) wavelengths. Most devices
collect the diffuse reflectance or fluorescence spectra arising from interaction of light with
solid, paste-like, and even liquid (food) samples. The latter is then called transflectance
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spectroscopy as the light travels through the liquid sample, reflects at a standardised
material, and travels back through the liquid sample to the detector [17,18,20,37]. Depend-
ing on this sample constitution and the set of wavelengths used, the penetration depth
varies [38]. In contrary to the aforementioned spectrometers, Raman devices collect the
spectrum of vibrations upon the interaction of a monochromatic laser light with the sample,
and laser-induced breakdown spectroscopy (LIBS) detects the light that emits during the
cooling process of plasma produced by the absorption of a laser pulse (Table 1).

2.1.2. Imaging Sensors

Further devices with miniaturised technologies for food screening carry imaging
technologies like cameras. For example, prototypes of cameras were used to successfully
discriminate horse meat from beef [39] and to assess fruit quality parameters [40–44],
fruit bruising [45], or vigor and vegetative expression of vines [46]. The combination
of an imaging tool (camera) with technologies like UV, VIS, near-infrared (NIR) as well
as Raman spectroscopy is called spectral imaging (Table 1). Thereby, multiple forms
are possible, such as hyperspectral imaging (HSI), linescan imaging, and multispectral
imaging. HSI collects a three-dimensional hyperspectral data cube that contains not only
spectral data but also spatial data. Several prototypes have been described in literature
for food fraud testing, e.g., Raman imaging for milk powder authentication [47] or apple
contamination [48], short-wave infrared HSI on nut quality [49], or hyperspectral imaging
for contamination detection [50–52]. Steps to valorise smartphone cameras have been
reviewed by Rateni et al., 2017 [11], and McGonigle et al., 2018 [53].

2.1.3. NMR

NMR has been miniaturised to portable and unilateral NMR devices with an open
geometry of the respective magnet. Multiple prototypes have been developed and tested
in accordance to their food analysis capabilities, ranging from meat and fish to dairy
and fruits [30]. Recently, the analysis of packaged foodstuffs [54] and thick samples was
researched [55,56]. Nevertheless, commercially available, handheld NMR devices are
currently not on the market [30,57], and assessments of food authenticity or food fraud
detection in a nontargeted manner are lacking.

2.1.4. Sensor Arrays (Electronic Nose and Tongue)

Whereas the previously mentioned sensors are able to measure a fingerprint of the
samples, electronic tongue and nose provide, in addition, selective information on the
samples’ ingredients. Both tools intend to mimic the human gustatory and olfactory recep-
tors. Although multiple sensors are available, only a few have been miniaturised. Specific
volatiles may be detected by portable electronic noses commonly using conductometric
sensors, piezoelectric sensors, or odour-imaging sensor arrays. In contrast, portable elec-
tronic tongues detecting solutes in liquids are usually based on amperometry, voltammetry,
potentiometry, impedimetry, conductometry, or on a combination thereof (Table 1). There
are only a few devices commercially available that may be applied as electronic nose.
Several others were tested at prototype stage to assess the authenticity of products of plant
origin [58,59].

In the following sections, only devices are included that are (1) available for purchase
and are ready-to-use and (2) have been reported in food authenticity assessments in the
scientific literature or are aimed at features that could be used for food authentication.

2.2. Design and Mode of Operation of Commercially Available Handheld Devices

Commercially available handheld devices come in various forms and shapes. Whereas
devices carrying optical sensors applying reflectance UV-VIS and IR spectroscopy are
available in smaller versions, such as the size of a match box, ones applying laser excitation
such as Raman spectroscopy and LIBS are heavier and bulkier. Similar to the latter, imaging
devices tend to be larger (Figure 1). Sensor arrays may be implemented in both small and
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large devices. Although weight and size depend to some extent on the type of technology,
some come in large, heavy versions as well as smaller, lighter varieties of devices. Thereby,
the size depends on the technology’s parameters used. For example, different IR detectors
can run either with or without extra cooling: in small-wavelength ranges, mostly no
cooling is required, but additional hardware for cooling is needed when operating at higher
wavelengths. Moreover, some instruments are equipped with additional features such as
displays or handles, which expand the size and weight of the instruments.
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For example, within optical NIR sensors, the lightest commercially available NIR
device is the Scio (Consumer Physics, Herzliya, Israel), weighing 0.035 kg and fitting
with 6.77 cm × 4.02 cm × 1.88 cm in a hand palm. It is operated via an application on a
mobile phone and scans a range from 740 to 1070 nm. In contrast, the LabSpec (Malvern
Panalytica, Almelo, the Netherlands (former ASD)) weighs 12 kg and is 12.7 cm × 36.8 cm
× 29.2 cm size. The latter NIR device is equipped with a detector for a larger scanning
range, 350–2500 nm, and does not need an external operator.

2.3. Data Handling and Output of the Handheld Devices

All handheld devices have in common that a database with reference values and/or
calibration curves is necessary to ensure the foods’ integrity [60]. While a database contain-
ing food fingerprints is usually custom-made, e.g., for geographical origin determinations
of ham or for the grade of olive oil, some databases contain spectra of common adulterants
or contaminants in various concentrations for spectral matching. The databases are tailor-
made for each device, and only lately approaches and algorithms have been developed
to make databases/reference values applicable for multiples devices [7]. Some compa-
nies have open-access databases that are populated by users, such as, for example, Scio
(Consumer Physics, Herzliya, Israel). Other companies offer the possibility to purchase
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tailormade databases or support creation of one by the applicant, such as all devices of
ThermoFisher Scientific (Waltham, MA, USA).

Often pretreatment needs to be applied to spectroscopic data to convert the spectra
from reflectance to absorbance values, reduce unwanted light-scattering effects, and to
eliminate baseline shifts and background information (noise) in the data. In case of spectral
imaging, the 3D data cube needs to be transferred into 2D and the spectral data treated
consecutively. Depending on the aim, three different kinds of approaches in modelling
may be applied: (1) classifying or discriminating normal from unusual, which is called
“broad anomaly testing”, (2) classifying or discriminating different (multiple) groups, e.g.,
species, varieties, and geographical origins, and (3) measuring the degree of adulteration
in case there is a limit of adulterant that is still legal. Commonly used chemometrics for the
pretreatment of spectroscopic data, the construction of models based on it, and their transfer
between instruments and food commodities have been addressed by Capitan-Vallvey and
Palma, 2011 [61], Oliveira et al., 2019 [6], and McGrath et al., 2018 [7]. Similar approaches
are used in the application of electronic noses and tongues as recently summarized and
reported by [31,33,37].

3. Current Applications of Handheld Devices for Food Authentication

The current applications in food authentication with commercial, handheld devices
target products of animal origin as well as plant origin. In the following sections, appli-
cations and their performance indicators (classification rates, accuracy, etc.) are reviewed
according to food commodity. For each commodity group, applications are presented in
order of applied technologies: VIS, fluorescence spectroscopy, NIR, Fourier-transformed IR
(FT-IR), mid-IR (MIR), Raman spectroscopy, LIBS, imaging, and sensor arrays.

3.1. Food Products of Animal Origin
3.1.1. Meat, Meat Products, and Offal

In the scientific literature on the authentication of meat, meat products, and offal,
only one handheld device using solely VIS wavelengths from 400 to 700 nm was reported.
Dian et al., 2008 [62], classified the feeding regime of, respectively, 91% and 99% of pasture-
fed and stall-fed lambs correctly. In spite of the former study, most applications included
multiple wavelength ranges or technologies, such as VIS-NIR, NIR, Raman, LIBS, and
sensor array technology (Supplementary Material—Table S2).

With VIS-NIR devices, indirect authentication of pig carcasses according to feed-
ing regime has been proven successful. Perez-Marin et al., 2009 [63], predicted fatty
acid concentrations in the transverse section of pig carcasses, in particular, linoleic acid
(R2

CAL 0.64), oleic acid (R2
CAL 0.90), stearic acid (R2

CAL 0.84), and palmitic acid (R2
CAL

0.93). These fatty acids were subsequently used to assess the feeding regimes. Simi-
larly, Prieto et al., 2018 [64], showed that the ratio between polyunsaturated and saturated
fatty acids (R2

P value of 0.93 and Root mean square error of cross-validation (RMSEP)
of 0.019%) and iodine value (R2

P 0.94 and RMSEP 1.03%) could be predicted reasonably
well. Prieto et al., 2015 [65], detected the unapproved postmortem moisture enhancement
of pork with salt and di-sodiumphosphate solution using a wavelength range of 350 to
2500 nm. Non-moisture-enhanced and moisture-enhanced samples, respectively, were
correctly identified after two days of aging with a success rate of 99% and 94%, respectively.
After 14 days of aging, 94% of the same non-moisture-enhanced samples and 92% of
the moisture-enhanced samples could still be correctly classified. Dixit et al., 2020 [66],
evaluated two sensors, a VIS-NIR (350–2500 nm) and a NIR device (900–1700 nm), to
determine the age of slaughtered lambs. The authors concluded that both sensors were able
to differentiate two age groups, i.e., the early (4 months) and late-season (12 months) lambs.

In addition, NIR devices using solely wavelengths above 700 nm (Supplementary
Material—Table S2) showed promising results when applied for the authentication of meat,
meat products, and edible offal. To authenticate the correct premium classifications based
on feeding regimes of pigs, different NIR devices were tested. Using a wavelength range
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from 900 to 1700 nm, 93% [67] to 99% [68] of all samples were identified correctly. In
contrast, Zamora-Rojas et al., 2012 [69], achieved a correct classification rate of 61–96% for
pork carcasses. Horcada et al., 2020 [70], reported a 76% correct classification rate when
distinguishing free-range pork carcasses, carcasses from animals fed on acorns and grass
with supplements, and ones from animals fed on compound feeds with the same instru-
ment. Moreover, a high correct classification rate was determined for chicken meat quality
classifications based on feeding regime. Over 95% were correctly identified according to
standard feeding, free-range, or corn-fed feeding as well as the feeding regimes according
to the Dutch animal welfare classification system ranging from conventional to organic [71].
Great classification predictions were reported when discriminating chicken parts (99% cor-
rect) when using a wavelength range of 900–1700 nm [72] or when discriminating different
species. Dumalisile et al., 2020 [73], applied a range between 908 and 1700 nm to classify
different game species and achieved 81%, 92%, and 97% correct classification for impala,
ostrich, and eland muscles, respectively. When mixing veal sausages with pork or pork fat,
a 100% correct discrimination rate above a 10% (w/w) adulteration level was established by
Schmutzler et al., 2015 [74]. Similar discrimination results were obtained in ground meat
blends, e.g., in binary blends of chicken/beef (R2

p 0.99, RMSEP 3.5% (w/w)) and ternary
blends of beef/chicken/pork (R2

p 0.93, RMSEP 4.7% (w/w)) by Silva et al., 2020 [75].
To identify substitution of meat products with meat from other species or offal,

portable LIBS sensors have been evaluated as well. Bilge et al., 2016 [76], evaluated
minced beef blended with pork or chicken in a ratio of 10–50% (w/w). Using the five-
channel Aurora LIBS spectrometer, determination coefficients (R2) and limits of detection
(LOD) of 0.994 and 4.4% for pork adulteration and 0.999 and 2.0% for chicken adulteration,
respectively, were reported. Less successful but still worth mentioning was the detection of
minced beef substituted with offal (liver) indirectly via copper concentrations with a R2

p
of 0.85 and an RMSEP of 37 ppm by Casado-Gavalda et al., 2017 [77].

In brief, the macro composition of meat products may be detected sufficiently using
NIR technology, which allows the detection of fraudulently added moisture to meat
products. By adding the VIS wavelength results, greater precise is achieved and maybe also
detailing of minor components, such as fatty acid concentrations, allowing further details
of authenticity traits such as species detection or production system. Hence, classifications
on organic or nonorganic, feeding style, as well as breed might be conducted successfully
using NIR devices or VIS-NIR devices. The detection of meat substitution by meat from
other species or offal may be detected using both NIR and LIBS devices. Despite the above,
there is still limited information about the abilities of VIS, LIBS, Raman spectroscopy, and
fluorescence spectroscopy, as well as spectral imaging and sensor array applications for
meat authentication.

3.1.2. Milk and Milk Products

Applications for the authentication of milk and milk products are listed in Supplemen-
tary Material—Table S3. The application of VIS devices and ones applying fluorescence
spectroscopy for the authentication of milk and milk products is limited. One device was
applied to assess the feeding regime of cows in cheeses derived from the cows’ milks using
a wavelength range between 400 and 700 nm. In this case, 79% to 91% of the cheeses were
classified correctly, which is considerably lower than the 96% correct classification achieved
using a benchtop NIR device in the same study [78].

Several scientific reports evaluated the ability to assess authenticity according to fat,
protein, and carbohydrate content (especially lactose) of milk and milk products with
NIR. Uusitalo et al., 2019 [79], compared three portable NIR sensors, covering wavelength
ranges of 1100–1400 nm, 1700–2000 nm, and 2200–2500 nm in regard to their ability to
assess fat, protein, and lactose contents of raw milk, drawing subsequent conclusions on
the feeding regime of the cows. The authors concluded that the prediction was successful,
however not sufficient for the application by legal entities. Using the VIS wavelength range
and parts of the shortwave NIR range (400–995 nm), Bogomolov et al., 2017 [80], were
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able to sufficiently predict fat content (R2
CV 0.975 RMSECV 0.090%) and protein content

(R2
CV 0.84 RMSECV 0.079%) in retail milk, which was used to authenticate genuine milk.

Despite the low success rates for quantification of the carbohydrate content in previous
studies, de Lima et al., 2018 [81], reported that application of a wavelength range from
908 to 1676 nm was sufficient to conduct a 100% successful two-group classification, i.e.,
between lactose-free milks and regular milks.

In cheeses, the prediction of macro-component concentrations was similar to those in
milk, with the fat and moisture contents being sufficiently predicted but the protein content
remaining challenging. For instance, Ma et al., 2019 [82], applied a wavelength range of
740 to 1070 nm for cheese protein assessments, but intact casein (R2

P 0.61–0.70, RMSEP
0.91–1.58 g/100 g) and total protein content (R2

P 0.54–0.62, RMSEP 0.62–0.88 g/100 g) were
only approximately predicted.

The discrimination of farming regimes, particularly dairy products from organic and
nonorganic production systems, was reported to be classified correctly with a 73–89%
accuracy in retail milk samples [83]. Furthermore, Behkami et al., 2019 [84], reported a
100% correct classification rate in regard to the geographical origin of freeze-dried milk
applying a range from 200–2600 nm.

Substitution of milk products to boost the protein content measured by wet-chemical
methods or the addition of cheap ingredients to increase volume and weight has oc-
curred mainly in milk powders and infant foods in the past. Milk powder substituted
with melamine, dicyandiamide, aminotriazole, biuret, cyanuric acid as low-molecular-
weight, nitrogen-rich compounds, inorganic salts (ammonium sulfate and calcium carbon-
ate), soy protein isolate, pea protein isolate, maltodextrin, and sucrose was analysed by
Karunathilaka et al., 2018 [85]. In line with the low prediction rates of protein contents in
the aforementioned studies, specificity was low, and only biuret-spiked samples were suffi-
ciently identified above 0.4% (w/w) biuret in blends. Another unapproved enhancement
of milk powders is reported to be the treatment with gamma-irradiation to improve the
microbial quality illicitly. Kong et al., 2013 [86], studied milk powder samples with doses
of 0, 1.5, 3.0, 4.5, and 6.0 kGy irradiated with 60Co γ-rays using a dose rate of 2 kGy/h that
were subjected to NIR measurements in the range of 325–1075 nm. Best prediction results
were achieved by application of selecting an effective wavelength and extreme learning
machine models (R2

P 0.97 and RMSEP of 0.844).
Overcoming the limitations of NIR devices on compositional prediction of dairy

products, a portable device that scans the MIR region between 4000 and 650 cm−1 was
successfully applied to predict protein, fat, and carbohydrate contents with values for R2

P
of 0.96, 0.69, and 0.92, respectively, and for RMSECV of 0.22, 0.63, and 0.40 g macronu-
trients/100 mL, respectively [25]. In the same range, Limm et al., 2018 [23], reported
a successful classification of melamine-adulterated milk powders with a 100% correct
classification rate for wet-blended and dry-blended mixtures above 0.3% (w/w) and 1.0%
(w/w), respectively. Milk powders were spiked with melamine from 3% to 10% (w/w) and
analysed with Raman technology recording 200 to 2000 cm−1. Results showed a good
prediction with an R2 of 0.995 and an RMSECV of 33.60 [87].

One disadvantage of LIBS is the challenging measurement of liquid samples. Ac-
cording to Sezer et al., 2018 [88], the interaction of the laser beam and the liquids leads
to splashing on the detector node as well as aerosol and ripple formation of the sample.
Overcoming these issues, Moncayo et al., 2017 [89], used freeze-dried and pelleted milk.
With LIBS technology, different origins of milk, i.e., cow, goat, and sheep as well as mixtures
thereof, were classified 100% correctly. Furthermore, the addition of melamine to milk was
quantified at a high accuracy (R2 0.999). Another option for preprocessing was reported by
Sezer et al., 2018 [88], using the Applied Spectra five-channel Aurora LIBS spectrometer.
The authors prepared gel samples using gelatin and successfully identified adulterations
of caprine and ovine milk blended in bovine milk (caprine R2

v 0.993, RMSEP 3.56; ovine
R2

v 0.995, RMSEP 4.53). The same device was also used to detect butter adulterated with
margarine from 5% to 50% (w/w), leading to R2

v of 0.984 and RMSEP of 3.37. Bilge et al.,
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2016 [90], analysed whey adulteration of milk powder from 1% to 40% (w/w) by LIBS.
The authors reported high R2

v values of 0.981 for sweet whey and 0.985 for acid whey,
indicating a successful detection of whey adulteration in milk powder.

In brief, the prediction of milk and milk products’ components as well as the sub-
stitution or dilution with fraudulent substances is challenging for VIS and NIR devices.
In contrast, devices applying MIR, Raman spectroscopy, or LIBS technology are more
competent to predict the macro composition and classify correctly. The latter, however,
needs for liquid dairy samples an additional pretreatment because liquids are not suitable
for this type of measurement.

3.1.3. Fish and Seafood

Two different NIR devices have been used for the authentication of fish (Supplemen-
tary Material—Table S4). Grassi et al., 2018 [91], found a 100% correct classification rate for
both fillets and patties using a handheld NIR (950–1650 nm) to discriminate Atlantic cod
and haddock. Accordingly, O’Brien et al., 2013 [92], reported a successful classification of
fish species (cod/winter cod, mullet/red mullet, and samlet/salmon trout) on whole fish
and fillets using a similar instrument. Imaging was used to evaluate fish authenticity via
the key factor moisture content. He et al., 2013 [93], reported a successful determination of
the moisture content of salmon using two HSI systems with spectral ranges of 400–1000 nm
and 897 to 1753 nm, respectively. Both devices delivered information that was valuable for
the classification, resulting in R2

P 0.893, RMSEP 1.513% for the 400–1000 nm range and R2
P

0.902, RMSEP 1.450% for the 897–1753 range.
Concerning fish and seafood authenticity assessments, wavelength ranges in the NIR

range have been mostly applied, both for single point measurements and for imaging. In
addition, sensor arrays, such as electronic noses, might be useful to detect authenticity
traits, particularly those related to freshness, in samples that are thick or covered with skin.

3.1.4. Other Food Products of Animal Origin

Other food products of animal origin received little attention (Supplementary Material—
Table S5). One study on the freshness of eggs (storage time) was reported using NIR [94].
Honey is the other product of animal origin that received some attention. Using a range be-
tween 950 and 1630 nm, Kaszab et al., 2017 [95], were able to predict 100% of the floral origin
of honeys, i.e., linden, acacia, polyfloral, and chestnut honey. Similarly, the geographical ori-
gin could be predicted with a success rate of 96%. Moreover, Lastra-Mejías et al., 2020 [96],
and Stefas et al., 2020 [97], discriminated the nectar and geographical origin of honey. The
authors reported accuracies between 96% and 100% using LIBS technology. In addition,
Lastra-Mejías et al., 2020 [96], were able to correctly detect adulteration of honey with rice
syrup with a success rate of up to 96%.

3.2. Food Products of Plant Origin
3.2.1. Fresh and Dried Food Products of Plant Origin

Depending on the fresh fruit appearance, i.e., peel thickness, transparency of the
edible parts, and fruit volume, or the homogeneity of the plant-based product, the abilities
of portable devices to assess their authenticity (listed in Supplementary Material—Table S6)
were more or less successful. Whereas VIS and fluorescence technology devices are known
to not penetrate the skin of fruits, NIR wavelength ranges allow measurements of parts
of the tissue below the fruit or vegetable skin. Hence, only limited reports on the appli-
cation of a handheld device in the VIS range (380–700 nm) and fluorescence were found.
Vincent et al., 2018 [98], reported a 93% accuracy in discriminating different varieties of
apples. Despite this successful application, the follow-up approach with the same samples
and device differentiating organic and nonorganic apples was not successful. Recording a
similar wavelength range but with monochromatic light inducing fluorescence, Dong et al.,
2014 [99], were able to classify teas according to the type of cultivar and type of processing
(green or black tea).
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Applications of VIS-NIR and NIR devices have been more frequently used for authen-
ticity assessments than has only VIS based technology since they are able to determine
the macro composition, i.e., water, protein, and fat contents, in addition to secondary
metabolites. In the wavelength range 450–1000 nm, You et al., 2017 [100], were able to
discriminate 100% of powders from various plant sources with differing macro composi-
tion, such as wheat, bean, corn, rice, and potato in addition to salt and sugar. Similarly,
Toivonen et al., 2017 [101], authenticated cherry breeds with differing dry matter content
with a device using 285 to 1200 nm (R2

P > 0.9, RMSEP < 0.74%). Fruits with a similar macro
composition but with differing secondary metabolite composition, such as bananas, were
also authenticated using a VIS-NIR device in the 367–2388 nm range (carotenoid concen-
tration in pulp: R2

P 0.96; RMSEP 28.70 nmol/g dry weight). Thereby, β-carotene content
was best predicted and—in descending order of accuracy—also α-carotene, c-carotene,
and lutein contents [102]. Moreover, with VIS-NIR devices, Ikeogu et al., 2017 [103], suc-
cessfully authenticated cassava roots according to their total carotenoids (R2

P 0.88) and
dry matter (R2

P 0.80) content, and Szuvandzsiev et al., 2014 [104], discriminated tomato
breeds with differing lycopene contents (R2

CV 0.75, RMSECV 7.63 mg/100 g), soluble solids
content (R2

CV 0.77, RMSECV 0.51 ◦Brix), and polyphenol contents (R2
CV 0.72, RMSECV

1.99 mg/100 g). Further applications of VIS-NIR devices in the authenticity assessment of
fresh and dried plant-based products include the detection of wheat flour added to unripe
banana flour (0–800 g kg−1). For instance, Ndlovu et al., 2019 [105], detected this type of
adulteration in high precision (R2

P 0.99, RMSEP 1.99 g kg−1) with a VIS-NIR device mea-
suring from 447 to 1005 nm. Similarly, Rukundo and Danao, 2020 [106], used a handheld
VIS-NIR device (780–2500 nm) to successfully detect turmeric powder adulterated with
the same product from 0 to 30%. Sugarcane was analysed in the range between 300 and
1100 nm to distinguish grades [107]. The authors reported an 83% correct classification
rate of premium grades (Brix-oriented). A good correlation with the mineral content (R2

P
0.78–0.93, RMSEP 0.57–27.30 mg 100 mL−1) was also reported by [108]. This content was
used to identify growing regimes. Similarly, Jamshidi et al., 2016 [109], classified fresh
products according to their farming regime. In a range between 450 and 1000 nm, the
authors reported a 92% correct prediction rate of all samples, while 100% of the unsafe
samples were correctly identified. Guidetti et al., 2010 [110], determined differences in the
VIS-NIR spectra of grapes from different origin.

Food authentication applications have also been described for NIR devices applying
wavelength ranges above 700 nm. Tea varieties were successfully discriminated according
to their catechin and caffeine content (R2

P > 0.91, RMSEP < 10.64 mg/g, [111]), bean breeds
according to their protein, starch, and amylose content (R2

CV > 0.91, [112]), plum varieties
in relation to soluble solids content (R2

CV 0.57, [113]), and sugar beets in regard to their
sucrose contents (R2

P > 0.75, [114]). Furthermore, peanuts were discriminated in valuable
high-oleic-acid peanuts and regular peanuts with an up to 100% correct classification
rate using a portable NIR [115]. When discriminating different varieties, 84% of fengdou
from Dendrobium officinale Kimura et Migo (DOK) was correctly predicted in comparison to
fengdou from another variety by applying a wavelength range from 908 to 1676 nm [116].
Assessing the feasibility of adulteration detection with handheld NIRs, blended Arabica
coffee with peels/sticks or corn, in the concentration range from 1 to 100% (w/w), was
analysed by Correia et al., 2018 [117], using a microNIR device in the wavelength range
908–1676 nm. While a good prediction was registered for the detection of corn adulteration
(R2

P 0.98, RMSEP 4.0%), the detection of peels/sticks was less successful (R2
P 0.86, RMSEP

11.4%), possibly due to the greater similarity of the adulterant and the authentic sample.
The authors further studied the detection of roasting levels in mixtures of Arabica and
Robusta coffee, and found good prediction results (R2

P > 0.96, RMSEP < 6.6%, [117]).
Oliveira et al., 2020 [118], mixed three types of paprika powder with potato starch and
acacia gum to boost volume and annatto to intensify the colour. Using a DLPR NIRscanTM
Nano device (wavelength range 900–1700 nm), they were able to classify over 90% of the
samples correctly (R2

P 0.87–0.97, RMSEP 1.68–2.12%). In the same wavelength range but
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with another NIR device, turmeric adulteration with metanil yellow (1–25%) (w/w) was
detected with high accuracy (R2

P > 0.96, RMSEP < 0.89%, [119]). Adulterated oregano with
cistus, myrtle, olive leaf, and sumac was correctly classified by up to 98%, in addition to
93% of the authentic oregano classifications, using a miniaturised NIR device [120]. In the
wavelength range from 1600 to 2400 nm, spiked soy bean samples with melamine (0.25–2%
(w/w)) could be predicted in a high precision with R2 values from 0.94 to 0.99 and RMSEP
values around 0.08–0.22% [121]. Of bell pepper samples from different growing regimes,
such as those grown outdoors or in greenhouses, 88–91% were correctly classified using
another NIR device (1600–2400 nm, [122]). For detecting organic and nonorganic growing
regimes, NIR devices were applied successfully on tomatoes [123] and apples (accuracy
96–98%, [124]). To identify growing regimes with fraudulent fertilizer use, the nitrogen
content in olive leaves (accuracy 83%, [125]) and spinach leaves (correct classification rate
75–80%), [126] NIR devices were successfully applied. Some fresh and dried plant-based
products were also classified according to their geographical origin using NIR devices.
Teye et al., 2019 [127], reported an over 90% correct classification rate of rice of different
quality grades, countries of origin, and imported versus local production by applying a
portable device in the wavelength range of 740–950 nm. Similarly, Zhu and Tian, 2018 [128],
identified the geographical origin of apples with an NIR device (900–1700 nm).

By applying MIR wavelength ranges, Manfredi et al., 2018 [129], reported an accuracy
of 98% in the classification of different hazelnut cultivars.

Using a handheld Raman device, Guzman et al., 2012 [130], correctly classified 97–
100% of olive fruits by their harvesting manner, e.g., picked from trees and collected from
the ground. Krimmer et al., 2019 [131], showed that a handheld Raman device could be
used to correctly classify 89–98% of maize kernel according to variety and estimation of
nutrient content, i.e., carbohydrates, carotenoids, fibres (lignin), and protein. In a study
with limited samples, Vargas Jentzsch et al., 2016 [132], showed that Raman devices may
be used to detect counterfeit stevia products.

Perez-Rodriguez et al., 2019 [133], and Yang et al., 2018 [134], used portable LIBS
devices to classify rice according to its geographical origin with a 84% and 99% accuracy,
respectively, for the two instruments. Moreover, coffee adulterated with wheat, corn, and
chickpeas was successfully discriminated from authentic coffee using LIBS technology (R2

P
0.99, RMSEP 6.68–7.85%, [135])

Nutmeg adulterated with 5–60% low-quality plant parts was subjected to HSI, and
adulteration was predicted with high accuracy (R2

P > 0.91). Similarly, Su and Sun,
2017 [136], classified adulterated organic wheat flour with nonorganic ones as well as
adulteration with flours from other plants fairly correctly (R2

P value > 0.97, RMSEP < 0.038)
using HSI in a higher wavelength range.

In brief, the application of optical handheld devices is highly dependent on the plant
products’ physical appearance. While dried and ground products may be assessed by
multiple devices, fresh products are challenging. A thick skin, e.g., as occurring with avo-
cados or oranges, as well as inhomogeneities in the products’ themselves hinder successful
authentication. However, these inhomogeneities enable the discrimination of parts of
plant-based products, as shown for sugar cane. To overcome homogeneity issues, a wider
range has to be tested, either combining multiple single spot measurements or using HSI.
Use of LIBS technology is limited since it can only be applied to dried products.

3.2.2. Processed Food Products of Plant Origin

Various applications aiming at processed foods are listed in Supplementary Material—
Table S7. Determination of the constitution of syrups and juices is important to the juice
industry to avoid food fraud. Henn et al., 2016 [137], showed that a handheld NIR
was able to sufficiently quantitate glucose, fructose, and sucrose in syrups (R2 > 0.96,
RMSECV < 1.84 g/100 g). Adulteration of lime juice leading to unbalanced citric acid-to-
iso-citric acid ratios could be detected with 100% accuracy using a portable NIR device [138].
Moreover, adulterations of tabletop sweeteners (saccharin and cyclamate) with sodium



Foods 2021, 10, 2901 11 of 22

saccharin, dextrose, cream of tartar, and calcium silicate (R2
P 0.97, RMSEP 0.51%), and with

sodium cyclamate, dextrose and silicon dioxide (R2
P 0.96, RMSEP 2.8%), respectively, were

sufficiently detected using a NIR device [139].
The adulteration of edible oils is a common food fraud issue too, which may be tackled

with portable devices. For example, palm oil adulterated with lard from 0.5% to 50% (w/w)
was detected with an accuracy in the range of 0.93% to 0.95% [140] and the adulteration
with Sudan dyes (0.5–0.0009%) with a 91% to 95% correct identification rate [141] using a
wavelength range from 900 to 1700 nm. Applying the same wavelength range, Yan et al.,
2019 [142], were able to successfully discriminate extra virgin olive oil from olive oils of
lower quality (94–100% accuracy) and align most components with respective spectral
bands. Moreover, the classification in quality grades according to acid value was successful
for peanut oil (R2

P 0.94, RMSEP 0.30, [143]), and palm oil (R2
P 0.97, RMSEP 4.6, [144]).

In addition, the dilution with lower-quality oils and the dilution with toxic, nonedible
mineral oils in concentration ranges of 0.5–10% were sufficiently determined (R2

CV 0.99,
RMSEP 0.23–0.32%) according to the studies of Picouet et al., 2018 [145]. Giovenzana et al.,
2014 [146], showed that portable NIR devices were able to evaluate beer quality (soluble
solid content and acidity) and also allowed discrimination between filtered and unfiltered
beer types.

Using portable MIR technology, 100% of edible oils from various sources were dis-
criminated from each other [24,147,148]. In addition, the detection of adulteration above
10% edible oil in olive oil (w/w) [24] and the evaluation of oil according to its oxidative
status and fatty acid composition were successful (R2

V > 0.96, [147,148]).
Bellou et al., 2020 [149], evaluated portable LIBS device settings according to their pos-

sibilities to discriminate olive oil from different origins and adulterated samples. Thereby,
the classification of olive oil being sprayed delivered a 100% correct classification rate,
whereas laminar flow and free surface configurations provided less accurate results. To
avoid splattering using LIBS, Moncayo et al., 2016 [150], prepared gel samples from wines
and Tian et al., 2017 [151], dried wine drops before classifying up to 100% of the samples
according to their geographical origins correctly.

Vargas Jentzsch and Ciobotă, 2014 [152], used a handheld Raman device to discrim-
inate up to 100% of samples correctly according to their variety. Using another Raman
handheld device, Zou et al., 2009 [153], reported a distinguishing ability between pure and
adulterated olive oils samples above 5% (v/v).

4. Handheld Applications: Type of Commodity versus Technology

Various technologies have been implemented in very small and handy devices that
are attractive to users. The applied type of technology and wavelength range vary across
applications. An overview of the number of handheld applications according to type of
technology and food commodity reviewed in this paper is provided in Table 2.

More applications focus on products of plant origin (92 out of 150) than on products
of animal origin (58 out of 150). This is somewhat surprising considering that when
food fraud databases are examined, animal products show higher incidence rates than
plant-based products do. Furthermore, animal-based product supply chains are in general
considerably more vulnerable to fraud than their plant-based counterparts are [154] and
would, therefore, require more mitigation measures. Over three quarters of the applications
for products of plant origin focus on fresh/dried products. Even those aiming at “processed
products” consider relatively simple processed foods, such as juices and oils. Although the
number of applications has grown in the past years, it is often already quite complex to
authenticate a single component product (e.g., ground beef or a fish fillet) or a food product
after limited processing (e.g., a vegetable oil). Even with laboratory-based technology,
authentication of composite and/or highly processed food products is still in its infancy.
Among the products of animal origin, meat (products) received most attention, followed
by milk and milk products. The technology of choice for handheld applications marginally
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differs across product groups. NIR devices appear the most popular technology across
the board.

Table 2. Number of studies on handheld applications for food authentication from Supplementary Material—Tables S2–S7
categorised by food product and technology group.

Technology Products of Animal Origin Products of Plant Origin Total

Meat, Meat
Products,
and Offal

Milk and
Milk

Products

Fish and
Seafood Others Fresh/Dried Processed

VIS 2 1 - - 2 - 5

FLUO 1 1 - - 2 - 4

VIS-NIR 4 2 - - 17 - 23

NIR 17 8 3 2 40 10 80

MIR - 2 - - 1 3 6

Raman 1 1 - - 4 2 8

LIBS 2 4 - 2 3 3 14

Imaging 1 - 3 - 4 - 8

Sensor array - - 1 - 1 - 2

Total-1 28 19 7 4 74 18

Total-2 58 92 150

VIS = visible spectroscopy; FLUO = fluorescence spectroscopy; NIR = near-IR spectroscopy, MIR = mid-IR (MIR), Raman = Raman
spectroscopy; LIBS = laser-induced breakdown spectroscopy.

Most applications used NIR (80 out of 150), followed by VIS-NIR (23 out of 150) and
LIBS (14 out of 150). For the other types of technology, such as fluorescence spectroscopy,
MIR, Raman spectroscopy, LIBS, imaging, and sensory arrays, a few applications (2–8) have
been reported. Spectra generated by the technologies are in some cases indirectly used for
authentication purposes. In this approach, spectral data are calibrated against reference
methods in order to estimate concentrations of specific compounds or the extent of other
types of features (e.g., colour). The compounds/features’ numbers are subsequently used
for authentication purposes. This approach mimics the procedures for, e.g., protein content
measurements using NIR bench top devices, which is very commonly used across the
globe. Spectra are also frequently used for fingerprint methods. In this mode, the spectra
are directly used to set spectral specifications for product groups, allowing them to be
distinguished using multivariate statistics. NIR applications use both types of approaches.
The VIS wavelength range is in most cases not useful on its own to authenticate foods.
However, the inclusion of the VIS range in addition to a wide NIR (and/or MIR) wavelength
range often increases performance. That is one of the reasons why VIS-NIR applications
are also relatively popular. In the VIS-NIR applications group, we also find the two types
of approaches mentioned above. The benefit of reflectance spectroscopy is its noninvasive
nature, and devices are relatively light and compact. Good performance, if products differ
clearly in composition, in combination with the practical handling and reasonable costs, has
resulted in a large share in the portable authentication applications. However, sometimes a
greater depth of excitation wavelength or penetration through package material or thick
peels is necessary. For this kind of application, Raman instruments as well as LIBS are
favoured. However, the downside of these technologies is that they are found in more
bulky and heavier variants than the ones based on reflectance spectroscopy, and liquids are
challenging. Another technology that is not used frequently at the moment is fluorescence
spectroscopy. This is because of its limited application: only when fluorescent compounds
are at stake, e.g., chlorophyll or coumarin, the technology is useful. Similarly, sensor arrays
can be useful, but only for unpacked foods that release volatiles or are soluble. This limits
broader use of this kind of technology. Imaging and spatially resolved spectroscopy has
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seen also only a few handheld applications so far, but would be in particular useful for
authentication issues that can be picked up through inhomogeneity. This may be the case
with small-particle-sized products, such as ground spices or other powdered products,
which may be extended with other powdered materials.

5. Outlook
5.1. Issues Inhibiting Progress

As outlined in detail in Sections 3 and 4, there is no single universally applicable
technology to assess food authenticity for every food commodity. Adding up to this
problem is that for each product and handheld device, a separate (spectral) database needs
to be established, making broad implementation of handhelds challenging and potentially
expensive. Furthermore, general performance criteria for fingerprint methods are not
readily available, they are still under development and discussed in various standardisation
groups. Even after the development of a single handheld method for a single product
following a defined set of performance criteria, challenges remain for the widespread
implementation of the method. The main reason for this is that the handheld methods
described in this work rely on predefined databases populated with data from authentic
samples. The specific sensor type, brand, or principle and its machine learning statistical
procedure to relate unknown sample data to the reference database are not flexible and
often not transferrable to other devices or slightly different products.

The rigidity of the specific handheld type, the spectral reference database, and its
machine learning protocol is especially applicable to vibrational spectroscopy handhelds
or imaging sensors, spanning the wavelength range from VIS to NIR (400–2500 nm). These
handhelds deliver spectra with a relatively low information load, compared to their more
technically advanced spectroscopy counterparts, MIR, FTIR, and Raman spectroscopy. This
means that spectral databases are not directly transferrable to other VIS-NIR hardware
types. Specifications in regard to direct comparison of spectra recorded by different
devices are lacking as well as for the demonstration of statistical equivalence of the spectra.
Consequently, large resources are required for building and maintaining spectral databases.
Unlike direct methods, such as mass spectrometry, for every single product and sensor
application, this exercise needs to be repeated.

5.2. Potential Solutions

An important potential mitigation measure to the above- mentioned issue is innovative
data solutions, which could use spectral data published in open-access databases and use
data acquired by different types of vibrational spectroscopic devices. Large volumes of
spectral data in regard to food authentication have been generated and could be made
available and re-used. Such data would need to be available according to the FAIR principle:
Findable, Accessible, Interoperable, and Re-usable. Furthermore, the availability of sensor
data resulting from measurements on certified (authentic) materials can facilitate the
training and validation of handheld methods according to set performance criteria. To
enlarge the impact of the available FAIR data, new data solutions are being developed
and tested for adequate calibration transfer of this data, next to the currently established
procedures. So-called “federated” learning procedures such as dynamic feature selection
are being developed to handle the intrinsic heterogeneity of the (authentic) food materials
and machine errors presented in the FAIR-data-containing learning networks. Furthermore,
the application and development of deep learning tools will facilitate calibration transfer
between spectral sensors with a larger difference in hardware configuration, as an elaborate
perspective showed by Müller-Maatsch et al., 2021 [60].

Another part of the solution may be the development of more “universal” devices,
i.e., the hyphenation or fusion of several spectral technologies into a single device. Hence,
the whole spectral region of interest is recorded at once, preferably including imaging and
other orthogonal detection techniques. One example that has been recently reported is the
hyphenation of fluorescence, VIS, NIR, and imaging technology into a single sensor for
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food authentication. While the NIR sensor provided most of the relevant information to
authenticate milk powders [155], the fluorescence sensor was most important in olive oil
authentication [156].

An additional trend is to expand the number of spectral sensor operators to cope
with the complexity of the food authenticity problem. Implementation of sensing solu-
tions in entire chains is therefore to be expected from farm-to-fork, dealing with several
intermediate products and sensor operators. The information gathered from the spectral
data can be added to other types of information from the chain, such as mass balance data,
and used for assurance of the integrity throughout the chain as well as for detection of
anomalies. The information may also be used for decision support systems, allowing actors
to put mitigation measures efficiently and effectively in place. In the end, the collated and
analysed (spectral) data and outcomes will lead to increased transparency of food supply
chain networks.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/foods10122901/s1, Table S1: Overview of commercially available, portable devices that may
be applied for food authentication, their weights and volumes as presented in Figure 1. Table S2:
Applications of commercially available devices that may be applied for authentication of meat, meat
products, and offal, Table S3: Applications of commercially available devices that may be applied for
authentication of milk and milk products, Table S4: Applications of commercially available devices
that may be applied for authentication of fish and seafood, Table S5: Applications of commercially
available devices that may be applied for authentication of products of animal origin other than
those presented in Tables S2–S4, Table S6: Applications of commercially available devices that may
be applied for authentication of fresh and dried food products of plant origin, Table S7: Applications
of commercially available devices that may be applied for authentication of processed food products
of plant origin. References [157–205] are cited in the supplementary materials.
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