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Abstract: Watercore is an internal physiological disorder affecting the quality and price of apples.
Rapid and non-destructive detection of watercore is of great significance to improve the commercial
value of apples. In this study, the visible and near infrared (Vis/NIR) full-transmittance spectroscopy
combined with analysis of variance (ANOVA) method was used for online detection of watercore
apples. At the speed of 0.5 m/s, the effects of three different orientations (O1, O2, and O3) on
the discrimination results of watercore apples were evaluated, respectively. It was found that O3
orientation was the most suitable for detecting watercore apples. One-way ANOVA was used to
select the characteristic wavelengths. The least squares-support vector machine (LS-SVM) model
with two characteristic wavelengths obtained good performance with the success rates of 96.87% and
100% for watercore and healthy apples, respectively. In addition, full-spectrum data was also utilized
to determine the optimal two-band ratio for the discrimination of watercore apples by ANOVA
method. Study showed that the threshold discrimination model established based on O3 orientation
had the same detection accuracy as the optimal LS-SVM model for samples in the prediction set.
Overall, full-transmittance spectroscopy combined with the ANOVA method was feasible to online
detect watercore apples, and the threshold discrimination model based on two-band ratio showed
great potential for detection of watercore apples.

Keywords: watercore apple; online detection; ANOVA analysis; band ratio; threshold discrimination

1. Introduction

Watercore is an internal tissue disorder of apples, in which the intercellular air spaces
throughout the fruit become filled with fluid, resulting in characteristic translucent tis-
sues [1]. Generally, watercore occurs around the vascular bundles [2] and appears as
a water-soaked area [3]. During storage, slight watercore may disappear, while apples
with severe watercore may cause browning and alcohol flavors [2,4–6], and lost economic
value. Some researchers found that the flesh tissues with watercore had higher sorbitol
and sucrose concentration and lower glucose concentration [7–9]. So, the sweetness and
soluble solids content (SSC) of watercore apples are higher. Watercore apples are prevalent
in some Asian countries such as China and Japan [5,10]. In Japan, watercore is considered
as an indicator of fully mature apples, and such apples are also called “honeyed” apples [2].
However, it is very difficult to identify apples with or without watercore by the naked
eyes because the watercore apples have no obvious external symptoms [11]. Therefore,
detection of apple watercore can provide not only storage advice to businesses, but also
high-quality fruit to consumers.

Watercore can be visually inspected according to the cross-section region after cut-
ting the apple along the equator, however, this way is destructive and costly. Over the
years, several non-destructive detection techniques for apple quality detection, such as
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thermal imaging technology [1], magnetic resonance imaging (MRI) [12], X-ray computed
tomography (X-ray CT) [5], and near-infrared hyperspectral imaging [13,14], have been
studied. The electrical properties of fruit have also been studied to detect the watercore [15].
Although the above methods can achieve non-destructive detection, these technologies can-
not meet the industrial detection demand for mass samples due to being time-consuming
and costly [16,17]. Relatively speaking, the visible and near-infrared (Vis/NIR) spec-
troscopy is a non-destructive, rapid, real-time, and low-cost technology [18,19] for internal
quality detection of agricultural products [20]. It has been used for evaluation of fruit
quality attributes such as bruise [21,22], defects [23,24], firmness [25,26], SSC [27–29],
brown [27,30], and moldy core [17,31]. The transmission and diffuse reflection modes
are two common ways to collect spectra of tested samples. Compared with the diffuse
reflection model, the transmission model has better performance for detecting the internal
quality of fruit [32,33]. In a new study, Guo et al. [11] built a detection platform based on
near infrared transmission spectroscopy to quantitatively evaluate the watercore degree of
apples. Partial least square (PLS) based on 37 effective variables selected by competitive
adaptive reweighted sampling (CARS) obtained the optimal performance with coefficient
correlation of 0.9562 and root mean square error of 1.34% for the prediction set. This
research illustrated that near infrared transmittance spectroscopy was able to distinguish
watercore apples. Chang et al. [16] used the online Vis/NIR spectroscopy system to detect
watercore apples with a success rate of over 95%. The above studies did not consider the
influence of detection orientation on the discrimination results of watercore apples, which
cannot meet the needs of industrial applications.

The selection of the characteristic wavelength can eliminate redundancy, noise, and
collinearity information that exists in raw spectral data, and improve the efficiency and
performance of the detection model. The common variable selection methods include
Monte Carlo-uninformative variable elimination (MC-UVE) [34], successive projection al-
gorithm (SPA) [35], competitive adaptive reweighted sampling [36], random frog (RF) [37],
and Genetic algorithm (GA) [38], and so on. In addition, some combination methods of
variable selection were also used to optimize models, such as MC-UVE-SPA [39], MC-UVE-
CARS [40], and CARS-SPA [41]. These methods can obtain good results, but the selected
variable number is usually too many, which is not suitable for the development of online
detection equipment. Analysis of variance (ANOVA) is one of the most frequently-used
and robust statistical methods for analyzing the differences between groups. Tian et al. [42]
used the effective wavelengths obtained by one-way ANOVA method to detect the early
decay of citrus with a success rate of over 98%. Band ratio calculation is not only a spectral
analysis method, but also an effective image processing method. It can reduce spectral
difference between samples of the same category and increase contrast between different
samples [43,44]. Band ratio method was widely applied for inspecting fruit quality [45–47].
Lee et al. [48] identified the watermelon seeds infected by bacteria Acidovoraxcitrulli based
on the optimal Raman hyperspectral band ratio determined by ANOVA. The success rates
of healthy seeds and infected seeds were 75% and 86%, respectively. These studies indi-
cated that one-way ANOVA and band ratio could be used to detect fruit quality with fewer
variables. However, in previous studies, these two methods were almost used in hyperspec-
tral imaging. In this study, the ANOVA method combined with Vis/NIR full-transmittance
spectrum was used to realize the online detection of watercore apples. On the one hand,
ANOVA was used to select the characteristic wavelengths to optimize the models; on the
other hand, a simple watercore apple detection model was established based on the optimal
two band ratio determined by ANOVA and the threshold discrimination method.

In general, the overall goal of this study was to observe the potential of using Vis/NIR
full-transmittance spectroscopy coupled with ANOVA method for online detection of
watercore apples. Specific objectives were: (1) to explore the influence of three different
detection orientations on the detection accuracy of watercore apple; (2) to identify the
significant Vis/NIR transmittance spectrum peaks based on F-values of an ANOVA; (3) to
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develop a threshold discrimination model based on the optimal two-band ratio; (4) to
compare the performance of different models.

2. Materials and Methods
2.1. Apples

Apple samples without any bruises and defects on the surface were purchased from
the local fruit and vegetable wholesale market in Beijing of China in March 2021. A total
of 265 “Fuji” samples with equatorial diameter of about 80–100 mm were used in this
study. All samples were wiped and labeled. To reduce the effect of temperature on the
detection accuracy, all samples were placed in a laboratory (20 ◦C and relative humidity
of 60%) for more than 24 h. After obtaining the spectral data of samples, each apple was
cut in half along the cross section to check whether the tested sample is a watercore apple.
For more information, please see “Inspection Instructions for Apple” of U.S. Department
of Agriculture (PDF file: http://www.ams.usda.gov/grades-standards/apple-grades-
standards, accessed on 3 November 2021). The cross-sectional images of the healthy and
watercore samples are shown in Figure 1A,B respectively.
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Figure 1. Cross-sectional images of samples: (A) healthy apple, (B) watercore apple.

2.2. Transmittance Spectrum Acquisition

The Vis/NIR full-transmittance measurement system shown in Figure 2 was devel-
oped in the intelligent detection laboratory of Intelligent Equipment Research Center,
Beijing Academy of Agriculture and Forestry Sciences (Beijing, China). This system was
used for obtaining spectral data of all samples. The system consists of the following several
units: one high sensitivity spectrograph covering the spectra range of 568–1112 nm with a
spectra interval of 0.5 nm, one transmission platform with adjustable speed, one position
sensor, the illumination unit including one reflector halogen lamp (FUJI, JCR, 150W, 15V,
Tokyo, Japan) and one condensing lens, one dark box for preventing external stray light,
and one computer for controlling the system. The illumination unit and the spectrograph
were installed on two sides of the conveyor belt, respectively. To study the influence of
spectral measurement orientation on the accuracy of online detection of watercore apples,
spectral information of all apple samples was collected in three differentiations (O1: Stem-
calyx axis is perpendicular to conveyor belt with stem upward; irradiated from equator
position by halogen lamp and detected from another side by the spectrometer. O2: Stem-
calyx axis horizontal with stem towards halogen lamp; irradiated from stem by halogen
lamp and detected from the calyx by the spectrometer. O3: Stem-calyx axis horizontal and
parallel to the moving direction of the conveyor belt; irradiated from equator position by
halogen lamp and detected from another side by the spectrometer). The three detection
directions were presented in Figure 3.

http://www.ams.usda.gov/grades-standards/apple-grades-standards
http://www.ams.usda.gov/grades-standards/apple-grades-standards
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Figure 3. Three different orientations (A) O1: Apple stem-calyx axis vertical, stem upward; (B) O2:
Apple stem-calyx axis horizontal, stem towards light source; (C) O3: Apple stem-calyx axis horizontal
and parallel to the moving direction of the conveyor belt, calyx in front.

In this study, the speed of the conveyor belt was set to 0.5 m/s (about 5 apples per
second). For data acquisition, the apples were placed on the tray with O1, O2, and O3
orientations. When the tested sample passes through the position sensor, the spectrometer
would receive a trigger signal from the computer, and then the spectrometer started to
obtain and record the multipoint transmittance spectra of sample continuously with a short
integration time of 0.005 s until the sample passes through the spectrometer. For each apple,
about 35 full-transmittance spectra could be collected.

2.3. Preprocessing of Spectral Data

About 30–45 spectral curves can be obtained for each sample due to different sample
sizes. The spectral information of the front and rear positions of each sample may be
saturated. Therefore, the first three spectra and the last three spectra for each sample are
eliminated, and then the average spectrum is obtained as the final spectral information of
each sample. In this study, the spectral range is set to 680–1000 nm (1185 bands) considering
the low signal-to-noise ratio at the beginning and end of spectra.

2.4. ANOVA of Spectral Data

An ANOVA is one of the most frequently and robust used statistical methods for
analyzing the differences between groups. The F-values of a one-way ANOVA (note that
ANOVA was performed by MATLAB 2018b (The Math Works, Natick, MA, USA) and the
average spectrum of each sample was used as the input for ANOVA analysis) were used
to find the wavelengths representing statistically significant differences for two groups.
The higher the F-value, the more statistically significant the mean separation between
groups [49]. This method was used to determine the optimal wavebands combination
for distinguishing between healthy and watercore apples. In this study, the wavelengths
corresponding to the local maximum of F-value were selected as the effective wavelengths
to optimize the detection models.
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2.5. Discrimination Algorithm of Watercore Apples

Least squares-support vector machine (LS-SVM) was employed to classify watercore
from healthy apples. LS-SVM is a reformulation of SVM, which can deal with linear
and nonlinear multivariable analysis [50]. Compared with SVM, LS-SVM could reduce
the complexity of calculation and shorten the data processing time, so as to improve the
analysis ability of high-dimensional data [47]. The radial basis function (RBF) was used
as the kernel function for the development of the LS-SVM model, because the RBF kernel
function has good performance in dealing with the nonlinear relationship between spectra
and target category [25,47]. All the calculations of LS-SVM were performed in MATLAB
2018b (The Math Works, Natick, MA, USA) with the free LS-SVM v1.8 toolbox (Suykens,
Leuven, Belgium). The starting points of regularization parameter γ and RBF kernel
parameter σ2 were determined by the coupled simulated annealing (CSA) method. The
optimal parameter combination of γ and σ2 was determined by grid research method
combined with 10-fold cross validation.

2.6. ANOVA of Spectral Band Ratio

Band ratio calculation is not only a spectral analysis method, but also an effective
image processing method. It can reduce the spectral difference between samples of the
same category and increase the contrast between different samples [43,44]. ANOVA of the
band ratio has been widely used to detect fruit quality using spectral image [45–47,51,52].
However, few studies have used this method to analyze spectral data. This study attempts
to use the transmission spectrum band ratio and threshold method to detect watercore
apples. The two-band ratio was performed as the following equation:

Ri/k =
Ti
Tk

, (1)

where Ri/k represents a quotient of transmittance spectra, Ti and Tk are the transmission
intensities at i nm and k nm band.

The spectrum of each sample includes 1185 wavelengths, so there are 1185 × 1185
possible two-band ratios. One-way ANOVA method was employed to select the two-
band combination for classifying the healthy and watercore apples by comparing the
F-values of all band ratios between watercore and healthy spectra in the calibration set.
According to the highest F-value of all two-band ratios, the optimal band ratio was selected
because a larger F-value indicated statistically greater discrimination between the watercore
and healthy samples. Following the two-band ratio selection, the optimal threshold was
determined at the point of the highest discrimination accuracies for the total samples in the
calibration set.

3. Results and Discussion
3.1. Statistics of Samples

In this study, all apples were divided into two classes including healthy and watercore.
Finally, 138 and 127 apples were identified as healthy and watercore samples, respectively.
For each class, all apples were divided into calibration and prediction sets based on the
SPXY algorithm [53] according to a proportion of 3:1. Table 1 shows class assignment
and partition of sample sets for the establishment of classification models. The calibration
set consists of 199 samples, including 105 healthy apples and 95 watercore apples. The
prediction set consists of 66 samples, including 34 healthy apples and 32 watercore apples.

Table 1. Class assignment and partition of sample sets.

Sample Class No. of Samples Calibration Set Prediction Set Assigned Class

Healthy samples 138 104 34 1
Samples with watercore 127 95 32 −1
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3.2. Raw Spectral Features

Near-infrared radiation has the absorption, reflection, and transmission interaction
with the tested sample, and the change of energy can reflect information of the detected
substance [54]. Figure 4A–C shows the original average spectra (solid line) and deviation
distribution (shadow region) of O1, O2, and O3 orientations, and the red part represents
the healthy samples and the blue part represents the watercore samples, respectively. It is
obvious that the spectral intensity and trend of healthy apples are almost the same in three
different orientations. The transmittance spectral intensity of healthy samples increased
from 680 nm to about 920 nm most likely because light in the near-infrared region has
better penetration. The spectral trends were similar with those spectra from studies of
Tian et al. [55] and Xia et al. [56]. The spectral intensity peak at about 920 nm might be
relative to the third overtone of C-H [56]. It should be noted that the spectral trend of
healthy samples has a slight peak at 720 nm in the O2 orientation, which is the same as that
of the watercore samples. It may be related with the tissue information of the stem and
calyx ends. It can be found from Figure 4A,C that the spectral trends of watercore apples
in the O1 and O3 orientations are similar, with peaks at 720 nm and 810 nm. Different from
O1 and O3 orientation, the spectral intensity of watercore samples was significantly higher
than that of healthy samples at 680–850 nm in the O2 orientation. This may be due to the
watercore tissue being distributed around the fruit core, which is conducive to the collection
of watercore information in the O2 orientation, and that the healthy tissue absorbed more
incident light than the watercore tissue. In terms of three different orientations, the spectral
intensity and trend of healthy samples and watercore samples show differences, which
provided the possibility for the detection of watercore apple by near-infrared transmission
spectroscopy. However, spectral overlap between the two kinds of apples has always
existed, thus, the latent spectra information should be further analyzed for identification of
watercore apples.

Foods 2021, 10, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 4. Mean full-transmittance spectra (solid line) and standard deviation (shadow region) of healthy apples and wa-
tercore apples. (A–C) Stand for the original spectra in the O1, O2, and O3 orientations, respectively. 

3.3. Comparison of Full-Spectrum Models Established Based on Different Orientations 
Table 2 summarized the classification results of LS-SVM models established based 

on the spectral data of different acquisition orientations (O1, O2, and O3). It can be clearly 
seen that the LS-SVM model could effectively distinguish watercore apples from healthy 
apples. However, it should be noted that the detection accuracy has an obvious difference 
in terms of different detection orientations. Comparing three orientations, it can be found 
that O3 direction was most suitable for online detection of watercore apples. In the O3 
orientation, the detection accuracy of LS-SVM model for the calibration and prediction 
sets was 100% and 98.48%, respectively. The results showed that healthy apples and wa-
tercore apples can be almost accurately distinguished in the O3 orientation. The discrim-
ination performance of the model based on the spectral data of O1 orientation was slightly 
inferior to the O3 orientation. The detection success rate of watercore samples was 90.62%. 
Compared with O1 and O3 orientations, the detection model based on O2 orientation ob-
tained the worst discrimination results, and the recognition success rate of the prediction 
set was only 90.91%. 

Table 2. The classification results of LS-SVM model established based on full wavelengths. 

Detection 
Orientation 

Parameter 
(γ, σ2) 

Classification Accuracy of 
Calibration Set (%) 

Classification Accuracy of 
Prediction Set (%) 

Total Healthy Watercore Total Healthy Watercore 
O1 10.8; 4221.8 96.98 96.12 97.89 95.45 100 90.62 
O2 4756.5; 6913.9 96.98 97.12 96.84 90.91 100 81.25 
O3 75,000.4; 31,321.5 100 100 100 98.48 100 96.87 

  

Figure 4. Mean full-transmittance spectra (solid line) and standard deviation (shadow region) of
healthy apples and watercore apples. (A–C) Stand for the original spectra in the O1, O2, and O3
orientations, respectively.

3.3. Comparison of Full-Spectrum Models Established Based on Different Orientations

Table 2 summarized the classification results of LS-SVM models established based on
the spectral data of different acquisition orientations (O1, O2, and O3). It can be clearly seen
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that the LS-SVM model could effectively distinguish watercore apples from healthy apples.
However, it should be noted that the detection accuracy has an obvious difference in terms
of different detection orientations. Comparing three orientations, it can be found that O3
direction was most suitable for online detection of watercore apples. In the O3 orientation,
the detection accuracy of LS-SVM model for the calibration and prediction sets was 100%
and 98.48%, respectively. The results showed that healthy apples and watercore apples can
be almost accurately distinguished in the O3 orientation. The discrimination performance
of the model based on the spectral data of O1 orientation was slightly inferior to the O3
orientation. The detection success rate of watercore samples was 90.62%. Compared
with O1 and O3 orientations, the detection model based on O2 orientation obtained the
worst discrimination results, and the recognition success rate of the prediction set was
only 90.91%.

Table 2. The classification results of LS-SVM model established based on full wavelengths.

Detection
Orientation

Parameter
(γ, σ2)

Classification Accuracy of
Calibration Set (%)

Classification Accuracy of
Prediction Set (%)

Total Healthy Watercore Total Healthy Watercore

O1 10.8; 4221.8 96.98 96.12 97.89 95.45 100 90.62
O2 4756.5; 6913.9 96.98 97.12 96.84 90.91 100 81.25
O3 75,000.4; 31,321.5 100 100 100 98.48 100 96.87

3.4. Characteristic Wavelength Selection

In order to minimize the number of spectral bands and improve the detection effi-
ciency, the ANOVA method was used to determine the characteristic wavelengths. ANOVA
is a collection of statistical models used to analyze the difference between group means
such as the variation among and between the different two groups [57]. To find char-
acteristic wavelengths for differentiating between watercore apples and healthy apples,
F-values of one-way ANOVA were calculated for spectra collected from the two types
of samples. A larger F-value indicates that the statistical mean separation between two
groups is more significant. Referring to the research results of Lee [48], this study selects
the local maximum F-value to determine the characteristic wavelength for detecting water
core apple. Figure 5A–C shows the F-values of all single wavebands for O1, O2, and O3
detection orientations, respectively. Based on the local maximum F-values, as marked in
Figure 5, the characteristic wavelengths were selected for each detection orientation as
follows: 705.66 nm and 929.76 nm wavebands for O1 orientation, 712.37 nm and 806.23 nm
wavebands for O2 orientation, and 704.59 nm and 924.62 nm wavebands for O3 orien-
tation. The bands selection for O1 and O3 orientations was similar, while that for O2
orientation was quite different from those of O1 and O3 orientations. This is related to
the intensity distribution of the original spectral data. These selected bands were statisti-
cally significant [44,51]. In general, only two characteristic wavelengths were selected for
each orientation by the ANOVA method, which greatly reduces the number of variables
compared with full spectral data (1185 bands).

3.5. Classification Results Based on Characteristic Wavelengths

The characteristic wavelengths selected by ANOVA method were used as the input to
establish LS-SVM discrimination model. The discrimination results of watercore apples
for each orientation were shown in Table 3. For O1 orientation, the recognition success
rates of healthy apples and watercore apples in the prediction set were 94.12% and 93.75%,
respectively. The detection results of watercore apples were better than the full-spectrum
LS-SVM model, but the discrimination performance of the total samples was inferior to
the full-spectrum LS-SVM model. The LS-SVM model built based on the characteristic
wavelength selected from the spectral data of O3 orientation has the optimal performance
with a detection accuracy of 98.48%, which was the same as the detection result of the
full spectrum LS-SVM model. In other words, the O3 direction was the most suitable for
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detecting watercore apples. In terms of O2 orientation, the prediction accuracy of the total
samples in the prediction set was the worst, with an accuracy of only 89.39%. However,
the detection performance of healthy apples was superior to O1 orientation. It is worth to
note that the O2 orientation obtained the worst recognition result for watercore apple, and
the detection success rate was only 81.25%.
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Table 3. The classification results of LS-SVM model established based on characteristic wavelengths.

Detection
Orientation

Characteristic
Wavelength

(nm)

Parameter
(γ, σ2)

Classification Accuracy
of Calibration Set (%)

Classification Accuracy
of Prediction Set (%)

Total Healthy Watercore Total Healthy Watercore

O1 705.66; 929.76 3.9; 0.2 97.99 99.04 96.84 93.94 94.12 93.75
O2 712.37; 806.23 268.3; 0.3 92.96 94.23 91.58 89.39 97.06 81.25
O3 704.59; 924.62 8.2; 0.5 97.99 100 95.79 98.48 100 96.87

For three different detection orientations, the performance of the LS-SVM model
based on the characteristic wavelength was slightly inferior to that of the full-spectrum
LS-SVM model. In particular, for O3 orientation, the characteristic bands LS-SVM and the
full-spectrum LS-SVM models have the same performance to distinguish watercore apples.
However, the used variable number in the model was reduced from 1185 bands to 2 bands,
which greatly reduces the model complexity. The result shows that the one-way ANOVA
method was an effective wavelength selection tool. The watercore apples discrimination
results obtained from full-spectrum LS-SVM model and characteristic wavelength LS-SVM
model indicated that O3 orientation was the optimal direction.
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3.6. Classification Results of Spectral Band Ratio

For the healthy and watercore apples in the calibration set, F-values of ANOVA of
all two-band ratios were calculated in the range 680–1000 nm and plotted in the contour
figure. The largest F-value was selected, and the corresponding two-band ratio was taken
as the optimal two-band ratio for discriminating between healthy and watercore samples.
Figure 6A–C shows the resultant contour plot of F-values corresponding to O1, O2, and
O3 orientations, respectively. The plots show multiple clusters of two-band ratio regions
with relatively high F-values (red color). For O1 orientation, the ratios for the wavelengths
at 763.90 nm and 718.28 nm produced the largest F-value, indicating that the ratio values
of the two groups of samples at these two wavelengths demonstrated the most visible
differences. Compared with the peaks in Figure 4A, the 718.28 nm wavelength was near
the slight peak of the watercore samples, but the 763.90 nm wavelength did not show
any remarkable features. In the O2 orientation, the ratio of the two bands at 756.32 nm
and 733.63 nm provided the best result for separating healthy and watercore samples.
However, the wavelengths at 756.32 nm and 733.63 nm did not show any remarkable
features compared with the main peaks in Figure 4B. The wavelengths corresponding to
the optimal two-band ratio in O3 and O1 orientations were very near.

The optimal threshold selection method based on two-band ratio was the same
for three different orientations. Therefore, taking the optimal threshold selection of O1
orientation as an example, it is described in detail. According to the distribution of
763.90 nm/718.28 nm two-band ratio for healthy and watercore samples of calibration
set (Figure 7A), the distribution of the two groups overlapped with each other when the
763.90 nm/718.28 nm values were between 1.3256 and 1.3743, which resulted in false
identification between watercore and healthy apples. Therefore, a proper threshold value
was required for discrimination. A two-band ratio below the threshold value indicated
that the apples were obtained from watercore samples, whereas a two-band ratio above
the threshold value indicated that the apples were obtained from healthy samples. The
two-band ratio of watercore and healthy samples were distributed between 0.9124 and
1.3743 and 1.3256 and 1.7007, respectively. In order to clearly explain the influence of
threshold value on the detection accuracy for total samples, the two-band ratio values
increasing from 0.9124 to 1.7007 with a step of 0.0001 were shown in Figure 7B. The highest
point of accuracy lines (1.3743) was determined to be the optimal threshold value. Finally,
the classification success rate for the prediction set was obtained by using the selected
two-band ratios and threshold. The two-band ratio distribution and classification accuracy
curves of watercore samples and healthy samples of the calibration set in the O2 and O3
orientations were shown in Figure 8A,B and Figure 9A,B, respectively.

Table 4 summarized the classification performance of the threshold discrimination
model based on the optimal two-band ratio. The threshold discrimination model based
on the two-band ratio of O1 orientation obtained a detection success rate of 95.45% for
the total samples in the prediction set. The highest overall accuracy of 98.48% for the
prediction set was achieved by a threshold discrimination model based on the two-band
ratio in the O3 orientation. Comparing different detection orientations, it can be found
that O3 orientation is the most suitable for online detection of watercore apples, and
O2 orientation obtained the worst detection results. In three different orientations, the
threshold discrimination model and LS-SVM model showed almost the same performance.
However, the threshold discrimination model only needs two bands, which is of great
significance for the development of online detection equipment of watercore apples.

Table 4. Classification results based on the threshold value of the optimal band ratio.

Detection
Orientation

Threshold
Value

Classification Accuracy of Calibration Set (%) Classification Accuracy of Prediction Set (%)

Total Healthy Watercore Total Healthy Watercore

O1 1.37637 97.49 95.19 100 95.45 94.12 96.87
O2 1.15155 95.98 97.12 94.74 89.39 100 78.12
O3 1.33929 95.48 97.12 93.68 98.48 100 96.87
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As a comparison, previous studies did not consider the influence of orientation on
detection accuracy [16]. In this study, the detection orientation was considered and obtained
the higher classification accuracy (98.48%) between healthy and watercore apples. The
detection speed (about five apples per second) used in this study was higher than that of
Chang’s study (three apples per second). In particular, the internal quality detection of fruit
based on the method of ANOVA and two-band ratio combined with Vis/NIR spectroscopy
has not been reported. Moreover, the classification accuracy was better than Herremans’s
study [5], which used X-ray CT and MRI techniques. Hyperspectral transmittance imaging
systems [46,58] were also used to detect the internal defect of fruit. However, the higher
implementation costs and lower detection efficiency limited the practical application of
hyperspectral technology.

4. Conclusions

The Vis/NIR full-transmittance spectroscopy was successfully utilized for online
classification of watercore apples. Two characteristic wavelengths were selected by one-
way ANOVA and the two-wavelength LS-SVM model was established for classification.
Compared with the full-spectrum LS-SVM model, the two-wavelength LS-SVM model
reduces the modeling variables and improves the detection efficiency. Results show that the
one-way ANOVA method was a powerful tool for selection of characteristic wavelengths.
In addition, the two-band ratios of full-spectrum data were also calculated by the ANOVA
method to determine the optimal two-band ratio. The threshold discrimination model was
built and the accuracy of online detection of watercore apples was higher than 89.89%. It
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indicated that the proposed two-band ratio threshold discrimination model can obtain good
performance for online detection of watercore apples, which provides a new method for the
internal quality detection of apples. Comparing the three different detection orientations, it
was found that the sample orientation had a significant impact on the classification accuracy
of watercore apples. The distribution of watercore tissue may lead to spectral difference
in different orientations, which affects the detection results. The O3 orientation was the
most suitable for watercore apples detection and the classification accuracy of both LS-
SVM model and threshold discrimination model was 98.48%. Vis/NIR full-transmittance
spectroscopy combined with ANOVA was a non-destructive and effective method for
watercore apples detection. Two characteristic wavelengths determined by the ANOVA
method can realize the discrimination of watercore apples, which is significant for designing
an effective detection system for practical production in the industry.
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