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Abstract: An analytical method was developed to simultaneously determine pyridate, quizalofop-
ethyl, and cyhalofop-butyl in brown rice, soybean, potato, pepper, and mandarin using LC-MS/MS.
Purification was optimized using various sorbents: primary–secondary amine, octadecyl (C18)
silica gel, graphitized carbon black, zirconium dioxide-modified silica particles, zirconium dioxide-
modified silica particles (Z-SEP), and multi-walled carbon nanotubes (MWCNTs). Three versions
of QuECHERS methods were then tested using the optimal purification agent. Finally, samples
were extracted using acetonitrile and QuEChERS EN salts and purified using the Z-SEP sorbent. A
six-point matrix-matched external calibration curve was constructed for the analytes. Good linearity
was achieved with a determination coefficient ≥0.999. The limits of detection and quantification were
0.0075 mg/kg and 0.01 mg/kg, respectively. The method was validated after fortifying the target
standards to the blank matrices at three concentration levels with five replicates for each concentration.
The average recovery was within an acceptable range (70–120%), with a relative standard deviation
<20%. The applicability of the developed method was evaluated with real-world market samples, all
of which tested negative for these three herbicide residues. Therefore, this method can be used for
the routine analysis of pyridate, quizalofop-ethyl, and cyhalofop-butyl in agricultural products.

Keywords: pyridate; quizalofop-ethyl; cyhalofop-butyl; Z-SEP; agricultural products; tandem mass
spectrometry analysis

1. Introduction

Various types of pesticides are being increasingly used worldwide to enhance the
production and quality of agricultural commodities and to protect them from pests, diseases,
and weeds [1]. Herbicides, in particular, have been an essential tool for practical farming
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for many years, as they can stop unwanted plant growth while leaving the desired crop
unharmed [2]. Hence, herbicides have been widely used in row-crop farming and applied
before or during planting [3]. They also may be applied to crops in the fall to improve
harvesting [4]. Despite these benefits, herbicides inevitably cause serious environmental
and health concerns [5]. This is because many agricultural products are left with residues
of various herbicides, which naturally poses a potentially hazardous risk to consumers and
various ecosystems [6]. Thus, herbicide residues in agricultural commodities should be
analyzed to improve public health and food safety [7].

The Positive List System (PLS) was recently implemented to strengthen pesticide
acceptance standards for safe agricultural products in the Republic of Korea; as a re-
sult, quantitative analysis methods should have detection levels as low as 0.01 mg/kg.
Thus, more practical strategies are urgently required to monitor various xenobiotics in
different foods (e.g., cereals, root and tuber crops, legumes, fruits, and vegetables). The
Ministry of Food and Drug Safety (MFDS) has been developing simultaneous methods
to meet the requirement for the residue analysis of pesticides in agricultural foods using
liquid chromatography-tandem mass spectrometry (LC-MS/MS) [8]. Notably, pyridate,
quizalofop-ethyl, and cyhalofop-butyl residues could not be determined, which necessi-
tated the development of a method that could detect these compounds.

Cyhalofop-butyl and quizalofop-ethyl, which belong to a group of phenoxy com-
pounds, have remarkable crop selectivity, are highly effective in controlling weeds, and
demonstrate good systemic abilities [9]. The mechanism of action of these compounds
is based on the inhibition of acetyl CoA carboxylase (ACCase); this excludes pyridate,
which functions as a photosynthetic electron transport inhibitor [10]. Pyridate controls an-
nual broad-leaved weeds, especially triazine-resistant biotypes and some grass weeds [11].
Quizalofop-ethyl, introduced by Nissan Chemical Industries Ltd. in 1984, was used for
the selective post-emergence control of annual and perennial grass weeds in potatoes,
soybeans, peanuts, and cotton [12]. Cyhalofop-butyl was manufactured in the mid-1980s
by The Dow Chemical Company (now Dow AgroSciences). It is used to control barnyard
grass in rice paddies [13]. At present, pyridate is not used domestically. However, the
analysis of cyhalofop-butyl residues in agricultural products needs to be further developed
because several countries that export agricultural products to Korea use this herbicide.

Currently, there are a few literature methods on the analyses of these herbicides (pyri-
date, quizalofop-ethyl, and cyhalofop-butyl) residues. For example, a study by Wu et al. [13]
identified cyhalofop-butyl and its metabolite in a rice ecosystem using high-performance
LC liquid chromatography (HPLC)-MS/MS. This technique was also employed by Lindner
et al. [11] to detect pyridate in cereals. Furthermore, quizalofop-ethyl has been detected in
soils and plants by gas-liquid chromatography (GLC) and enzyme-linked immunosorbent
assays (ELISAs) [14]. However, no existing technology can analyze these herbicide residues
simultaneously. Additionally, the methods mentioned above are time-consuming and
environmentally harmful. The simultaneous determination of pesticides is a desirable
and practical approach because it would provide increased efficiency, lower costs, and
reduced labor relative to conventional methods [15,16]. Moreover, it would reduce the
amount of materials required for experiments, thus protecting the environment. However,
simultaneous analysis requires the removal of interferences (e.g., matrix components) and
the consideration of analyte characteristics [17].

Presently, the quick, easy, cheap, rugged, effective, and safe (“QuEChERS”) sample
preparation method is earning popularity in the area of green chemistry because it enables
multi-residue pesticide analysis for complex matrices and minimizes sample size and the
quantity of required materials [18–20]. It can be applied to pesticides with diverse polarity
ranges and volatility [21]. LC-MS/MS is another powerful tool for analyzing pesticide
residues in complex matrices [22]. It is characterized by high precision and sensitivity with
fewer extraction procedures than other methodologies, such as gas chromatography-mass
spectrometry (GC-MS) [23]. Unlike GC analysis, sample volatilization is not required
for LC, which avoids problems associated with chemical degradation and the formation
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of new products common under high heat conditions. Further, LC–MS/MS specimens
typically require no derivatization and minimal sample preparation. In some cases, the
specimens can be diluted and directly injected into the LC-MS/MS, significantly increasing
throughput. Consequently, the present study aimed to establish an accurate, cost-effective,
and environmentally friendly simultaneous detection method for detecting herbicides
(pyridate, cyhalofop-butyl, and quizalofop-ethyl) in different agricultural products (brown
rice, soybean, potato, pepper, and mandarin.) Because the complex matrices of farming
products affect analysis precision, this study employs sample extraction and clean-up
(pre-treatment) steps [24]. Specifically, samples were extracted by QuEChERS methods
(Original, AOAC, and EN), followed by clean-up and analysis using LC-M/MS.

2. Materials and Methods
2.1. Chemicals and Reagents

Cyhalofop-butyl (99.7%), quizalofop-ethyl (96.4%), and pyridate (96%) were procured
from Wako (Richmond, VA, USA), Sigma–Aldrich (Buchs, Switzerland), and Dr. Ehrenstor-
fer (Augsburg, Germany), respectively. The physicochemical characteristics are shown in
Table 1. Acetonitrile and methanol (HPLC grade) were obtained from J.T. Baker (Avantor,
Radnor, PA, USA). Formic acid was acquired from Daejung (Siheung-si, Korea), ammonium
formate was secured from Sigma–Aldrich and QuEChERS kits (Original, EN, AOAC) were
supplied by KRIAT (Daejeon, Korea). Zirconium dioxide-modified silica particles (Z-SEP)
and zirconium dioxide-modified silica particles + (Z-SEP+) were obtained from Supelco
(Bellefonte, PA, USA). Primary–secondary amine (PSA), octadecyl (C18) silica gel, and
graphitized carbon black (GCB) sorbents were acquired from Agilent (Santa Clara, CA,
USA). Multi-walled carbon nanotubes (MWCNTs) were supplied by Cheap Tubes (Grafton
Vermont, VT, USA). Matrices used for establishing the residual-detection method include
cereal (brown rice), legume (soybean), root and tuber crops (potato), vegetables (pepper),
and fruits (mandarin); they were homogenized and stored in a sealed container at −70 ◦C.

Table 1. Physicochemical characteristics of pyridate, cyhalofop-butyl, and quizalofop-ethyl.

Analyte CAS No. Molecular
Formula Chemical Structure Log Pow

Cyhalofop-butyl 122008-85-9 C20H20FNO4
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Solutions of pyridate, quizalofop-ethyl, and cyhalofop-butyl in methanol (1000 ppm)
were separately prepared. The stock solution was diluted with the same solvent to 100 ppm
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and used as a mixed standard solution. To prepare a calibration curve, the intermediate
standards solutions of the three pesticides were diluted to 2.5, 5, 7.5, 10, 25, and 50 ng/mL.
The standard stock, intermediate, and working solutions were stored at 4 ◦C until analysis.
Brown vials were used throughout the experiment.

2.3. Sample Preparation

A homogenized sample (10 g, 5 g of both cereal and legume) was placed in a 50-mL
Teflon centrifuge tube. A 20 mL acetonitrile (for grain and legume, 5 mL of water was
added, wet for 30 min, and 10 mL of acetonitrile was added) was then added to the sample
in the centrifuge tube, and the mixture was homogenized with a tissue homogenizer for
1 min. A QuEChERS EN extraction kit containing 4 g of MgSO4, 1 g of NaCl, 1 g of
trisodium citrate dihydrate, and 0.5 g of disodium hydrogencitrate sesquihydrate was
shaken manually for 1 min. The sample tube was centrifuged at 4000 rpm for 5 min, and
a 1.5-mL portion of the supernatant was transferred to a microtube that contained 75 mg
of Z-SEP. The microtube was then vortexed for 1 min and centrifuged at 4000 rpm for
5 min. The supernatant was diluted with methanol (1:1) and then transferred to a vial for
LC-MS/MS analysis.

2.4. Instrumental Conditions

An Alliance 2695 LC separation module (Waters, Milford, MA, USA) coupled with a
Micromass Quattro Micro triple quadrupole tandem mass spectrometer (Waters) was used
to detect and analyze pyridate, quizalofop-butyl, and cyhalofop-ethyl in five food products
(brown rice, soybean, pepper, potato, and mandarin). An Agilent ZORBAX Eclipse Plus
C18 column (3.0 mm I.D × 150 mm, 3.5 µm) was used for separation (Table 2).

Table 2. Analytical conditions for the determination of the tested analytes in various matrices.

Condition Content

Instrument
LC: Alience 2695 LC separation module, Waters
MS/MS: Micromass Quattro Micro triple quadrupole tandem
mass, Waters

Chromatographic separation
Column Agilent ZORBAX Eclipse Plus C18 (3.0 mm I.D. × 150 mm L, 3.5 µm)
Flow rate 0.3 mL/min
Injection volume 5 µL
Oven temp. 40 ◦C

Mobile phase A: 5 mM ammonium formate, 0.1% formic acid in methanol
B: 5 mM ammonium formate, 0.1% formic acid in water

Gradient

Time A (%) B (%)
0.0 5 95
2.0 5 95
4.0 95 5
10.0 95 5
12.0 5 95
15.0 5 95

MS/MS condition
Capillary voltage 3.9 kV
Source temp. 150 ◦C
Desolvation gas temp. 250 ◦C
Desolvation gas flow 500 L/h

The MS/MS was operated in multiple reaction monitoring (MRM) mode with positive
electrospray ionization. MassLynx (version 4.1) software was used for data acquisition.

2.5. Statistical Analyses

The statistics required for interpreting analytical method validation results are the
calculation of the mean, standard deviation, relative standard deviation, and regression
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analysis (IBM SPSS Statistics, v25, Armonk, NY, USA). The acceptance criteria for each
validation characteristic are typically around the individual values as well as the mean and
relative standard deviation.

3. Results and Discussion
3.1. Optimization of the Extraction Procedure

The extraction conditions were first considered by referring to the physicochemical
properties of the three analytes (pyridate, cyhalofop-butyl, and quizalofop-ethyl). When a
sample contains moisture, its surface is hydrated with water; this provides better extraction
efficiency when using water-soluble organic solvents than non-polar organic solvents with
low permeability. Typical water-soluble organic solvents include acetonitrile and acetone,
although acetonitrile is preferentially considered because acetone had the disadvantage
of extracting large amounts of non-polar or polar interference materials. To simplify the
pre-processing of the samples, we employed the QuEChERS method, which has advantages
of relatively low solvent usage and rapid analysis time [25]. According to the reagents
used, the QuEChERS method is divided into three categories: original, EN, and AOAC. A
comparison of these extraction methods showed differences in their average recovery rates.
Among the grain, root and tuber crop, legume, fruit, and vegetable matrices, the original
method could not recover the three analytes in an average of 70% to 120% from three
matrices. In contrast, the AOAC method could not recover 70% to 120% of the analytes
from all six matrices. Therefore, with the best average recovery rate for all samples, the EN
method was selected and used for the experiments (Table 3).

Table 3. Comparison of QuEChERS extractions for the determination of three residual herbicides in
(A) brown rice, (B) soybean, (C) potato, (D) pepper, and (E) mandarin matrices.

Analyte Spiking
Level

Recovery ± RSD a (%)

Original AOAC EN

(A)

Cyhalofop-butyl LOQ 110.6 ± 8.4 71.2 ± 22.5 98.3 ± 4.2
10 × LOQ 86.3 ± 7.7 127.3 ± 12.7 101.5 ± 1.5

Quizalofop-ethyl LOQ 76.8 ± 0.6 111.0 ± 7.6 96.5 ± 7.2
10 × LOQ 99.0 ± 6.2 104.2 ± 0.6 94.4 ± 3.6

Pyridate LOQ 92.2 ± 7.9 121.9 ± 8.5 82.0 ± 8.7
10 × LOQ 91.0 ± 4.3 86.8 ± 9.2 81.3 ± 1.1

(B)

Cyhalofop-butyl LOQ 51.3 ± 19.9 72.3 ± 22.0 80.0 ± 12.2
10 × LOQ 78.6 ± 2.2 101.5 ± 17.6 95.4 ± 12.5

Quizalofop-ethyl LOQ 85.5 ± 3.3 99.3 ± 2.7 86.3 ± 1.7
10 × LOQ 85.2 ± 1.3 108.5 ± 7.9 102.4 ± 1.9

Pyridate LOQ 87.9 ± 0.4 85.5 ± 3.5 78.0 ± 4.5
10 × LOQ 77.0 ± 3.5 86.8 ± 11.0 83.6 ± 0.7

(C)

Cyhalofop-butyl LOQ 93.9 ± 1.7 115.3 ± 0.3 76.5 ± 9.2
10 × LOQ 113.5 ± 6.9 124.6 ± 9.4 102.4 ± 13.2

Quizalofop-ethyl LOQ 90.5 ± 4.6 129.3 ± 1.0 104.2 ± 1.7
10 × LOQ 92.4 ± 7.5 126.3 ± 8.5 106.9 ± 5.5

Pyridate LOQ 76.9 ± 2.0 128.1 ± 3.3 86.7 ± 10.4
10 × LOQ 92.8 ± 6.5 110.5 ± 0.6 99.9 ± 1.7

(D)

Cyhalofop-butyl LOQ 81.5 ± 37.7 27.8 ± 11.4 86.5 ± 2.6
10 × LOQ 62.7 ± 14.1 100.9 ± 7.7 85.1 ± 4.9

Quizalofop-ethyl LOQ 68.4 ± 7.2 90.0 ± 6.9 93.3 ± 5.0
10 × LOQ 75.9 ± 1.1 92.4 ± 3.3 91.7 ± 0.7

Pyridate LOQ 80.2 ± 11.2 87.3 ± 11.2 100.5 ± 1.9
10 × LOQ 76.9 ± 3.4 97.0 ± 2.8 90.3 ± 4.8

(E)

Cyhalofop-butyl LOQ 117.5 ± 14.0 95.8 ± 35.0 80.4 ± 17.3
10 × LOQ 75.4 ± 0.8 91.0 ± 6.9 88.7 ± 9.0

Quizalofop-ethyl LOQ 81.1 ± 5.0 99.0 ± 4.6 82.2 ± 5.7
10 × LOQ 94.0 ± 1.2 101.7 ± 7.0 94.0 ± 0.4

Pyridate LOQ 70.1 ± 7.1 78.4 ± 7.8 79.8 ± 5.2
10 × LOQ 84.1 ± 1.2 81.2 ± 1.9 73.2 ± 2.1

a Mean value of three measurements with relative standard deviation.
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3.2. Optimization of Clean-Up Procedure

Typical clean-up procedures are not always satisfactory for analysis, especially for
pigments, sugars, and organic acids [26]. Thus, we considered various purification agents
to develop a new clean-up method for analyzing our target herbicide residues. The optimal
sorbent was selected by comparing the recovery rates of the analytes obtained using
different quantities of sorbent. First, C18 and PSA, which effectively remove organic acids,
sugars, oil, and fat components, were considered. GCB and MWCNTs, which can effectively
remove pigments, such as sterol, chlorophyll, and carotenoid, were also tested [27]. When
50, 75, or 100 mg of C18 was used in the clean-up step, there was a decline in the recovery
value of pyridate (14.3%, 10.0%, and 1.8%, respectively). Similarly, with 50, 75, or 100 mg
of PSA, the recovery value of the three tested analytes was remarkably low (0%). Notably,
50, 75, and 100 mg of GCB were adequate for recovering cyhalofop-butyl (88–108%),
but there were slight decreases in the recovery value of quizalofop-ethyl (7–50%) and
pyridate (10–32%). Furthermore, the efficiency of the MWCNTs sorbent was excellent for
cyhalofop-butyl recovery (58–107%) but not for those of quizalofop-ethyl (0–1.6%) and
pyridate (0–5.8%). Based on these results, we employed Z-SEP and Z-SEP+ as alternative
absorbents for removing pigments. These are relatively new, commercially available
dispersive phases that can effectively remove larger amounts of fat and coloring from
samples than conventional sorbents like C18 and PSA [27]. With Z-SEP and Z-SEP+, the
recovery value of quizalofop-ethyl and pyridate was 77–220%. However, Z-SEP provided
a better recovery value for cyhalofop-butyl (71–99%) than Z-SEP+ (105–139%). Finally,
Z-SEP (75 mg) was chosen as the optimal sorbent due to its reasonable recovery rates; this
excluded recovery rates of less than 70% and more than 120% (Table 4).

Table 4. Optimization of sorbent type and amounts in terms of analyte recovery.

Purification Material
Recovery (%)

Cyhalofop-butyl Quizalofop-ethyl Pyridate

PSA
50 mg 121.4 89.8 0.0
75 mg 70.0 96.4 0.0
100 mg 104.6 82.2 0.0

C18

50 mg 107.4 90.2 14.3
75 mg 98.3 87.4 10.0
100 mg 94.6 74.0 1.8

GCB
5 mg 108.0 50.2 32.6

10 mg 95.9 20.7 14.4
15 mg 88.4 6.9 10.0

MWCNTs
5 mg 107.2 1.6 5.8

10 mg 58.4 0.0 2.1
15 mg 57.9 0.0 0.0

Z-SEP
50 mg 92.2 88.3 110.3
75 mg 99.5 101.4 93.2
100 mg 71.3 91.3 +95.9

Z-SEP+
50 mg 105.1 86.2 77.2
75 mg 139.7 101.1 98.3
100 mg 124.0 90.1 81.9

Mean value of four measurements.

3.3. Analytical Procedure

The positive electrospray ionization (ESI) mode was used to detect pyridate, cyhalofop-
butyl, and quizalofop-butyl in agricultural products. One ppm of each standard solution
was injected into the mass detector, the production ion was selected through the production
scan mode, and collision energy with high detection intensity was selected. The product
ions detected with the best sensitivity were considered quantitative ions, while those
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detected with poorer sensitivity were considered qualitative ions. The characteristic ions
chosen for analysis and optimal collision energy are shown in Table 5. It is worth noting
that because LC-MS/MS analysis can suppress ionization or augment target components
due to non-target components extracted from the sample, we quantified the analytes based
on matrix-matched calibration (MMC).

Table 5. Characteristic ions observed via LC-MS/MS for three residual herbicides.

Analyte
Molecular

Weight
(g/mol)

Exact
Mass

(g/mol)

Precursor
Ion

(m/z)

Product
Ion

(m/z)

CE a

(V)

1 Cyhalofop-butyl 357.4 357.14 358.1319
120.0795 26

256.1212 b 10

2 Quizalofop-ethyl 372.8 372.09 373.0561
91.062 32

299.1621 b 20

3 Pyridate 378.9 378.12 379.1319
207.0993 b 28
351.1753 10

a Collision energy; b quantitative ion.

3.4. Method Validation
3.4.1. Specificity

The selectivities of pyridate, cyhalofop-butyl, and quizalofop-ethyl were evaluated
by comparing the blank and spiked samples’ chromatograms to those of the standard
solutions. An analysis of the amounts of herbicides recovered from the spiked samples
compared to the blank samples showed that this method has high separation and selectivity
for analyzing pyridate, cyhalofop-butyl, and quizalofop-ethyl in agricultural products. No
interference was detected with the same retention time mass-to-charge ratio (m/z).

3.4.2. Matrix Effects and Linearity

To evaluate and minimize matrix effects on the analyte responses and performances,
the comparative data between solvent calibration curves were used following the Kanrar
equation [28].

Matrix effect (%) =
Standard in matrix peak area − standard in solvent peak area

Standard in solvent peak area

To check the linearity of the matrix-matched standard solution, a mixed stock solution
comprising all three analytes was diluted with the blank sample of each extract (brown rice,
soybean, green pepper, potato, and mandarin). Then 5 µL of various concentrations of these
samples (0.0025, 0.005, 0.0075, 0.01, 0.025, or 0.05 µg/mL) were injected into the LC-MS/MS
system and analyzed. The linearity was satisfactory with a coefficient of determination (R2)
of ≥0.99.

The ME was tested at a concentration rate of 0.05 ppm, and the value was ranged
from +21–+43, −33–+42, and −10–+17 for cyhalofop-butyl, quizalofop-ethyl, and pyridate,
respectively. On the other hand, the values were in between −33–+21, +17–+40, +10–+44,
+7–+41, and +7–43, in brown rice, soybean, mandarin, pepper, and potato, respectively. As
MEs cannot be ruled out, matrix-matched calibration was used throughout the experimental
work and quantification.

3.4.3. Limits of Detection and Quantitation

The LODs and LOQs of pyridate, quizalofop-ethyl, and cyhalofop-butyl were calcu-
lated using the test solution preparation and device analysis methods. The calculated LOD
and LOQ were obtained as signal-to-noise ratios of (S/N) ≥3 and S/N ≥10. The LOD and
LOQ were 0.0075 mg/kg and 0.01 mg/kg, respectively, for all matrices. For comparison,
a previous work detecting cyhalofop-butyl in a rice paddy field achieved a LOQ of 0.001
mg/kg and a LOD of 0.003 mg/kg [13].
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3.4.4. Recovery

To evaluate the accuracy, reproducibility, and efficiency of our method, experiments
for recovery of pyridate, quizalofop-ethyl, and cyhalofop-butyl were conducted five times
with fortification levels of 0.01, 0.02, and 0.1 mg/kg, corresponding to the following levels:
LOQ, 2 × LOQ, and 10 × LOQ. The average recovery of pyridate, quizalofop-ethyl, and
cyhalofop-butyl are as follows: pyridate 85.7–109.6%; quizalofop-ethyl 89.1–112.4%; and
cyhalofop-butyl 84.5–106.5%. The respective RSD values were 9.2%, 8.9%, and 15.0%. It
was confirmed that these values meet the standards of the codex guidelines (recovery
rate = 70–120%) [29] and the Korea Food and Drug Safety Assessment Institute’s “Guide-
lines on Standard Procedures for Preparation of Test Methods (RSDs < 22%) [30]” regarding
the analysis of pesticide residues (Table 6). Cross-validation was carried out for this es-
tablished test method at two verification institutions, which determined a recovery value
of 74.3–117.6% for each concentration of all samples; the standard deviation was within
15% (Table 7). Consequently, compliance with the test method verification criteria was
confirmed. Recovery chromatograms of pyridate, cyhalofop-butyl, and quizalofop-ethyl
are shown in Figure 1. Moreover, of note is the recovery value (78.9–107.5%, standard
deviation = 2.0–6.9%) of cyhalofop-butyl obtained when using HPLC-MS/MS with C18
as an adsorbent [13], which were lower than those achieved by our LC-MS/MS methods
using Z-SEP as the adsorbent.

Table 6. Validation results of the proposed analytical method for the determination of three residual
herbicides in food samples.

Analyte
Spiking

Level
(mg/kg)

Recovery ± RSD a (%)
LOQ

(mg/kg)Brown Rice Soybean Potato Green
Pepper Mandarin

Cyhalofop-butyl
0.01 87.0 ± 15.0 85.9 ± 14.8 102.9 ± 6.8 84.5 ± 4.5 92.0 ± 12.7

0.010.02 91.1 ± 9.8 95.6 ± 8.2 92.8 ± 10.0 93.4 ± 7.0 105.8 ± 9.3
0.1 96.9 ± 8.2 106.5 ± 6.0 89.8 ± 4.5 90.3 ± 7.1 94.4 ± 7.9

Quizalofop-ethyl
0.01 94.4 ± 7.8 101.3 ± 7.4 97.5 ± 3.8 89.1 ± 8.5 98.5 ± 6.9

0.010.02 97.8 ± 6.6 104.4 ± 3.1 91.2 ± 5.5 99.4 ± 6.7 104.7 ± 8.9
0.1 91.2 ± 5.2 106.0 ± 1.5 92.0 ± 1.8 103.8 ± 1.8 112.4 ± 4.0

Pyridate
0.01 106.8 ± 2.9 94.6 ± 5.6 91.0 ± 3.0 89.9 ± 5.4 93.6 ± 3.4

0.010.02 99.6 ± 2.0 90.6 ± 4.2 94.2 ± 5.5 86.8 ± 2.8 91.8 ± 9.2
0.1 109.6 ± 3.7 88.4 ± 3.1 94.3 ± 2.6 106.4 ± 0.5 85.7 ± 3.7

a Mean value of five measurements with relative standard deviation.

Table 7. Inter-lab A and B validation results of the proposed analytical method for the determination
of three residual herbicides in food samples.

Analyte Spiking Level
(mg/kg)

Recovery ± RSD a (%)

Brown Rice Soybean Potato Green
Pepper Mandarin

Cyhalofop-butyl

0.01 A 105.6 ± 8.3 117.6 ± 4.6 84.9 ± 3.5 99.6 ± 4.1 75.8 ± 9.9
B 87.0 ± 2.8 95.0 ± 1.8 95.3 ± 2.2 94.0 ± 4.1 95.3 ± 4.7

0.02 A 103.4 ± 6.9 104.3 ± 4.9 91.3 ± 6.2 82.0 ± 8.7 79.4 ± 8.0
B 88.2 ± 3.0 93.2 ± 5.1 86.2 ± 3.4 92.4 ± 1.6 98.3 ± 3.7

0.1 A 102.5 ± 5.5 90.5 ± 6.0 90.9 ± 4.5 79.8 ± 3.5 96.8 ± 7.8
B 86.9 ± 3.6 103.0 ± 2.3 83.7 ± 2.5 93.0 ± 3.1 99.2 ± 1.7

Quizalofop-ethyl

0.01 A 71.8 ± 2.7 88.9 ± 2.0 72.2 ± 7.5 76.7 ± 9.9 76.6 ± 4.4
B 81.3 ± 3.2 83.7 ± 5.5 89.5 ± 3.2 101.0 ± 2.9 112.9 ± 6.5

0.02 A 81.3 ± 4.6 81.6 ± 2.0 80.2 ± 3.3 89.6 ± 2.4 83.7 ± 2.1
B 86.9 ± 1.5 85.4 ± 1.9 91.9 ± 3.4 96.5 ± 1.0 111.1 ± 4.2

0.1 A 78.2 ± 5.4 74.9 ± 1.4 82.4 ± 1.7 97.3 ± 2.2 98.8 ± 3.5
B 85.6 ± 4.6 94.0 ± 8.3 99.8 ± 4.1 88.7 ± 4.1 105.9 ± 1.8

Pyridate

0.01 A 89.6 ± 3.2 107.1 ± 2.9 86.3 ± 6.2 74.3 ± 3.3 74.5 ± 4.8
B 85.5 ± 2.2 92.7 ± 3.4 89.1 ± 3.1 103.4 ± 2.9 98.3 ± 1.5

0.02 A 86.9 ± 5.1 105.6 ± 2.9 82.2 ± 1.9 86.9 ± 5.1 105.6 ± 2.9
B 86.1 ± 1.8 91.4 ± 0.8 93.7 ± 5.4 99.5 ± 1.5 99.0 ± 1.0

0.1 A 80.2 ± 3.9 97.8 ± 1.6 97.5 ± 3.4 80.2 ± 3.9 97.8 ± 1.6
B 87.5 ± 2.2 95.0 ± 1.7 97.2 ± 3.1 93.8 ± 1.5 98.9 ± 1.0

a Mean value of five measurements with relative standard deviation.
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Figure 1. Representative MRM (quantification ion) chromatograms of (I) cyhalofop-butyl, (II) quizalofop-
ethyl, and (III) pyridate in five different matrices (brown rice, soybean, potato, pepper, and mandarin:
(A) blank sample, (B) sample spiked at 0.005 mg/kg, (C) sample spiked at 0.01 mg/kg, (D) sample spiked
at 0.2 mg/kg, and (E) market sample.

3.5. Method Application

The developed method was applied to detect pyridate, cyhalofop-butyl, and quizalofop-
ethyl in soybean, mandarin, pepper, potato, and brown rice (10 per each matrix) procured
from different local markets in Gwangju, Republic of Korea. The samples were extracted
and analyzed according to the above-established procedure. None of the samples showed
any residues of pyridate, cyhalofop-butyl, or quizalofop-ethyl (Figure 1). In line with our
finding, Wu et al. [13] found that the ultimate residues of cyhalofop-butyl and its metabolite
in the rice samples were not detectable or below 0.01 mg/kg at harvest.
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4. Conclusions

A simple LC-MS/MS method was developed and optimized for the simultaneous
analysis of pyridate, quizalofop-butyl, and cyhalofop-ethyl in five agricultural products
(soybean, mandarin, pepper, potato, and brown rice). Among the three types of QuEChERS
methods, the EN version most effectively extracted the target analytes. Furthermore, Z-SEP
demonstrated a superior analyte recovery rate to those of the other evaluated sorbents
(C18, GCB, PSA, MWCNTs, and Z-SEP+). These components provided a system capable
of multi-residue detection within complex matrices, with sample sizes and quantities of
required materials lower than those of conventional detection methods. The recovery and
repeatability of the developed method are within the acceptable range as determined by
CODEX guidelines, thus making our LC-MS/MS system suitable for monitoring pyridate,
quizalofop-ethyl, and cyhalofop-butyl residues in agricultural products. Shandong.
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