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Abstract: The supervision of security risk level of carbofuran pesticide residues can guarantee the
food quality and security of residents effectively. In order to predict the potential key risk vegetables
and regions, this paper constructs a security risk assessment model, combined with the k-means++
algorithm, to establish the risk security level. Then the evaluation index value of the security risk
model is predicted to determine the security risk level based on the deep learning model. The model
consists of a convolutional neural network (CNN) and a long short-term memory network (LSTM)
optimized by an arithmetic optimization algorithm (AOA), namely, CNN-AOA-LSTM. In this paper,
a comparative experiment is conducted on a small sample data set of independently constructed
security risk assessment indicators. Experimental results show that the accuracy of the CNN-AOA-
LSTM prediction model based on attention mechanism is 6.12% to 18.99% higher than several
commonly used deep neural network models (gated recurrent unit, LSTM, and recurrent neural
networks). The prediction model proposed in this paper provides scientific reference to establish the
priority order of supervision, and provides forward-looking supervision for the government.

Keywords: security risk assessment; carbofuran; vegetables; security risk level prediction; deep learning

1. Introduction

With the improvement of people’s living standards, consumers pay more and more
attention to the quality and security of food. As an indispensable food in people’s diet,
the quality and security of vegetables is directly related to human health, and the security
risk level of dietary intake of pesticide residues is an important performance to measure
the quality and security of vegetables. As a common pesticide, carbofuran is a broad-
spectrum, efficient, low residue, high toxicity insecticide, acaricide, and nematocide. It is
easy to use, labor-saving, cheap, and can be applied to cotton, rice, sugar cane, peanut,
corn, sugar beet and another 80 crops for pest control. However, its toxicity is high,
and acute exposure can inhibit the cholinesterase activity in the body, leading to tears,
vomiting, salivation, pupil narrowing, spasm, and serious cases of blood pressure drop or
unconsciousness, but also has reproductive toxicity, developmental toxicity, gene toxicity,
neurotoxicity and so on [1]. In addition, studies have shown that carbofuran has the
effect of environmental hormones [2], which can act on the nucleus and cause genetic
variation [3]. In April 2002, the Ministry of Agriculture of China proposed to stop accepting
new registration of carbofuran, stop approving sub-packaging registration of highly toxic
pesticides, and cancel the registration of carbofuran on citrus trees. In June 2002, the
Ministry of Agriculture also announced that carbofuran should not be used or only have
restricted use in vegetables, fruit trees, tea leaves and Chinese herbal medicines. However,
due to its high efficiency and low cost, there are still reports of excessive levels of carbofuran
in vegetables and fruits in many provinces [4–6].
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Frequent food security incidents and increasingly stringent food security regulations
in international trade have put forward higher requirements for food quality and security
supervision [7]. Through food security risk assessment and early warning analysis, on the
one hand, it can provide data support and supervision basis for market regulation, and on
the other hand, it can provide reference for consumers to buy vegetables.

He et al. [8] measured the residues of 37 pesticides in Xinjiang jujube, assessed the
risk of chronic dietary intake and acute dietary intake, and used the risk matrix to rank the
risk of pesticide residue. Zhao et al. [9] studied the influence of cooking styles in southern
China on the actual intake and long-term exposure risk of pesticide residues in vegetables,
and analyzed the harm level of pesticide residues in four cooking styles to the human
body. Fang et al. [10] evaluated the ingestion risk of pesticide residue in celery diet in
China, and ranked the ingestion risk of each tested pesticide according to a pre-defined
ranking matrix. D. et al. [11] evaluated the health risks of pesticide residues in fruits and
vegetables in farms and markets in the West Indian Himalayas. Based on the prediction of
chronic health hazards from estimated daily intake, organophosphorus were found to pose
a health threat to children in the study area. Most of the existing literature has evaluated
and graded individual vegetables or fruits, and most of the studies were conducted in
different regions. There is little research about comprehensive security risk assessment and
grading of pesticide residues in various vegetables in many provinces in China.

In risk prediction, deep learning methods such as long short-term memory network
(LSTM), gated recurrent unit (GRU) and recurrent neural networks (RNN) can capture
high-dimensional features and show temporal dynamic behavior appropriately [12]. These
methods have been used in weather forecast or travel time prediction, achieving higher
accuracy prediction [13,14]. Time series analysis can analyze the historical data of dynamic
systems and predict the future operation mode [15]; therefore, this feature also meets
the requirements of food security risk prediction. Yu et al. [16] used the autoregressive
integrated moving average model (ARIMA) to predict pesticide residues in two vegetables
in different seasons in Sichuan, China. Xin et al. [17] predicted the heavy metal content in
lettuce leaves by deep learning combined with hyperspectral imaging technology.

This paper establishes a deep learning-based prediction model of security risk level of
carbofuran pesticide residue in Chinese vegetables by analyzing 200,000 measurements
of national monitoring sampling data of carbofuran pesticide residue contamination in
vegetables in 2019. Firstly, the food security risk evaluation model is constructed. Based on
the national sampling data of carbofuran in vegetables in 2019 and the weekly consumption
data of vegetables in each province, the weekly index value of the evaluation model
of each vegetable in each province is calculated. Then, the national sampling data are
clustered by the k-means++ algorithm [18] to classify the security risk level based on the
indexes calculated. Finally, based on the deep learning model, the historical data are used
to predict the security risk evaluation indexes of vegetables in each province, and the
distance between the predicted security risk evaluation indexes and the security risk level
clustering center is measured to determine the security risk level. The model proposed in
this paper quantifies the sampling data into security risk levels and predicts the evaluation
indexes, which provides a scientific reference for establishing the priority of supervision
and provides a forward-looking basis for government supervision.

2. Materials and Methods
2.1. Materials
2.1.1. Data Sources

The data in this study comes from the national food security sampling data in 2019,
covering 20 provinces. The vegetables are divided into eight categories, including legumes
vegetables, leafy vegetables, solanaceous vegetables, bulb vegetables, melon vegetables,
roots and potato vegetables (except potatoes), brassica vegetables and potatoes, with a total
of 13,222 samples. According to the maximum residue limit for pesticide from the Food of
National Food Security Standard, the content of carbofuran is determined. China’s national
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food security standards set the limit of carbofuran in legumes vegetables, leafy vegetables,
solanaceous vegetables, bulb vegetables, melon vegetables, roots and potato vegetables
(except potatoes), brassica vegetables and other vegetables as 0.02 mg/kg, and the limit of
carbofuran for potatoes is 0.1 mg/kg, higher than the limit of other vegetables.

The vegetable data of residents’ consumption comes from the fifth Total Diet Study [19].
This survey adopts stratified and multi-stage cluster random sampling method proportional
to the population to carry out a dietary questionnaire survey on the main food consumption
of residents in 20 provinces of China.

2.1.2. Data Preprocessing

According to the principle of Credible Assessment of Low-level Contaminants in Food,
proposed at the second meeting of WHO Global Environmental Monitoring System/Food
Contamination Monitoring and Assessment Programme (GEMS/FOOD), when the pro-
portion of undetected data is less than 60%, all undetected data are replaced by 1/2 of the
detection limit (LOD), and when the proportion of undetected data is higher than 60%, all
undetected data are replaced by LOD [20]. As the undetected data of carbofuran in this
study is far less than 60%, 1/2 LOD value is assigned to all undetected data in this study
for statistical calculation.

2.2. Security Risk Assessment Model

According to the security risk assessment method and the purpose of setting the
model, based on the main influencing factors of health risks caused by food contaminants,
the Nemerow integrated pollution index (NIPI), the acute exposure assessment (AEA),
and the chronic dietary exposure assessment (CDEA) are used as the three indexes of the
security risk assessment model. The median (P50) and 97.5 quantile (P97.5) of carbofuran
in vegetables are used to calculate the exposure of carbofuran at different pollution levels.

2.2.1. Nemerow Integrated Pollution Index

The Nemerow integrated pollution index can reflect the characteristics of food pollu-
tion, and it is used to evaluate the pollution of air [21], heavy metals in soil [22,23], rice [24]
and vegetables [25–27] by researchers. In this paper, the Nemerow integrated pollution
index is used to calculate the pollution degree of carbofuran from sampling samples based
on sampling data of each province, and the expression is as follows:

Pi,j =
Xi,j

Sj
(1)

where, Pi,j is the pollution index of vegetable j in province i; Xi,j is the detected value
(mg/kg) of carbofuranin vegetable j in province i; and Sj is the national limit standard of
carbofuran in vegetable j (mg/kg).

Pc(i.j) =

√
P2

max(i,j) + P2
ave(i,j)

2
(2)

where, Pc(i,j) is the Nemerow integrated pollution index of vegetable j in province i; Pmax(i,j)
is the maximum pollution index of vegetable j in province i; and Pave(i,j) is the mean value
of pollution index of vegetable j in province i.

2.2.2. Acute Exposure Assessment

Acute exposure assessment of food is widely used as an index of the acute impact of
agricultural and veterinary drug residues [28–30] and microorganisms on human health.
This index is to evaluate the exposure amount of a certain substance consumed by diet
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within 24 h. In this paper, the point assessment method is used to calculate acute exposure
assessment. The expression is as follows:

EDI97.5(i,j) =
F97.5(i,j) × Cmax(i,j)

W
(3)

where EDI97.5(i,j) is the 97.5 percentile of daily intake of carbofuran from vegetable j per
kilogram of body weight in province i (mg/kg bw), F97.5(i,j) is the 97.5 percentile (P97.5) of
consumption of vegetable j in province i (kg/d), Cmax(i,j) is the maximum detected value
of carbofuran of vegetable j in province i (mg/kg), and W is the average body weight of
residents (60 kg).

2.2.3. Chronic Dietary Exposure Assessment

The chronic dietary exposure assessment represents the risk of chronic dietary intake
of carbofuran based on the average daily intake of carbofuran per kilogram of body weight
in the population. The expression is as follows:

EDI50(i,j) =
j

∑
j′

Fi,j′ × Ci,j′

W
(4)

where EDI50(i,j) is the average daily intake of carbofuran from vegetable j per kg of body
weight in province i (mg/kg bw), Fi,j′ is the average consumption of fine vegetable j′ in
province i (kg/d), Ci,j′ is the average content of carbofuran in fine vegetable j′ in province i
(mg/kg), and W is the average body mass of residents (60 kg).

2.3. Security Risk Classification Based on K-Means++

The security risk assessment model of carbofuran in vegetables is established by
integrating the Nemerow integrated pollution index, the acute exposure assessment, and
the chronic dietary exposure assessment. Based on the security risk assessment model,
food security risks are classified. In this paper, clustering algorithm is used to select the
optimal security risk level division to reduce the influence of subjective factors. Cluster
algorithm is a process of dividing a given sample into multiple clusters to mine the deep
information of data. Its goal is to make the samples in the same cluster have high similarity,
and the samples in different clusters have low similarity. The k-means++ algorithm has
good selection of initial sample points, good support for high-dimensional data, and can
achieve good clustering performance in the arbitrary shape of sample space, which is
suitable for analyzing model data of this study.

The advantage of k-means++ is that there is no need to artificially determine the initial
clustering centers. The basic idea of selecting initial seeds in this algorithm is that the
distance between the initial clustering centers should be as far as possible, and the specific
process is as follows:

(1) Select a point randomly from the set of input data points as the first clustering center.
(2) For each point x in the data set, calculate the distance D(x) between it and the nearest

cluster center (referring to the existing cluster center).
(3) A new data point is selected as the new clustering center, and the selection principle

is as follows: the point with larger D(x) has a higher probability of being selected as
the clustering center.

(4) Repeat (2) and (3) until k cluster centers are selected.
(5) The k initial clustering centers are used to run the standard k-means algorithm.

2.4. CNN-AOA-LSTM Security Risk Level Prediction Model Based on Attention Mechanism
2.4.1. Framework of CNN-AOA-LSTM Model

This paper proposes a CNN-AOA-LSTM security risk level prediction model based
on attention mechanism [31], as shown in Figure 1. Security risk assessment indexes for
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each vegetable in each province are predicted, which are used to calculate the security risk
level. The model is divided into five layers: data layer, CNN layer, attention mechanism
layer, AOA-LSTM layer, and prediction security risk level layer. The structure of the neural
network model is shown in Figure 2.
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Figure 2. The structure of the neural network model.

Firstly, CNN is used to extract the features of historical food security risk assessment
index data. The convolutional layer expands the depth, the pooling layer reduces the num-
ber of parameters by dimensionality reduction, and the fully connected layer transforms
the features into one-dimensional vectors to complete feature extraction.

Secondly, this paper introduces the attention mechanism to allocate the probability
weight to enhance the proportion of useful information. Due to the drug properties of
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carbofuran, the PH of soil has a certain influence on its absorption and decomposition.
On the other hand, Deutsch et al. [32] has shown that higher temperatures produce more
crop-eating pests. Hence, vegetable farmers often spray more pesticides, especially in the
summer. Moreover, the interval between spraying time and harvest time is not fixed. If
the degradation of pesticides is not enough, the levels of pesticide residues will be higher.
Therefore, this paper introduces Chinese soil PH value and the air temperature as input of
attention layer.

Thirdly, since this paper is a small sample data set, the selection of hyperparameters
is particularly important. The feature matrix introducing attention is input into the AOA-
LSTM neural network to learn the change rule of security risk assessment index data to
predict future security risk assessment indexes, and the LSTM hyperparameter selection is
optimized through AOA [33], so as to improve the prediction accuracy.

L. et al. [33] proposed that model optimization was carried out by using the definition
of the four operators of addition, subtraction, multiplication and division in mathematics.
The error of LSTM network is a fitness function, and the role of AOA is to find a group of
optimal hyperparameters to minimize the network error. In the algorithmic exploration
phase, multiplication strategy and division strategy are used for global search, which can
improve the dispersion of solutions, enhance the global search and overcome premature
convergence, and realize global search. In the algorithm development phase, the addition
and subtraction strategies are used to reduce the dispersion of the solutions, which is
conducive to the full development of the population in the local range and strengthen the
local optimization ability of the algorithm.

Finally, the predicted security risk assessment indexes are output by the output layer,
which are used to measure the nearest distance between the comprehensive assessment
indexes and the cluster centers, and to classify security risk levels.

2.4.2. Attention Mechanism Based on PH of Soil and Temperature

China has a large amount of land, and the PH value of land in different regions varies
greatly [34]. Moreover, the PH of the same mineral soil also changes slightly over time [35],
and the reason is that the PH decreases during growing season of the crop as a result of acid
production by microorganisms and higher plant roots. In addition, it has slight influence
on soil PH by some conditions, such as rising and falling soil moisture, which causes salt to
move in and out of the soil layer, affecting soil PH; therefore, rainfall can affect the PH of
soil. Xie et al. [35] has concluded that the disappearance rate of Carbofuran is positively
correlated with the PH of soil.

In addition, Deutsch et al. [32] has found that as temperatures rise, almost all insects
speed up their reproduction and metabolism, with disastrous consequences for the world’s
food supply.

The national meteorological data of each province in 2019 can be obtained from
the China Meteorological Science Data Sharing Service network, including temperature
and rainfall.

According to Chinese soil PH distribution, rainfall and expert consultation, soil PH
pi,j

m on day j of the week i for each province is added into the matrix Pm, where m is one of
the 20 provinces mentioned above, i is week i, and j is day j of week i (j = 0, 1, . . . , 6). The
annual soil PH distribution matrix is obtained in Formula (5). Each value in the matrix is
set to reciprocal and normalization, and we get P̃m.

Pm =



p0,0
m , . . . , p0,j

m , . . . , p0,6
m

...
pi,0

m , . . . , pi,j
m , . . . , pi,6

m
...

p53,0
m , . . . , p53,j

m , . . . , p53,6
m


(5)
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P̃m =



p̃0,0
m , . . . , p̃0,j

m , . . . , p̃0,6
m

...

p̃i,0
m , . . . , p̃i,j

m , . . . , p̃i,6
m

...
...p̃53,0

m , . . . , p̃53,j
m , . . . , p̃53,6

m


(6)

In terms of the national meteorological data in 2019, the temperature ti,j
m on day j of the

week i for each province is added into the matrix Tm, and the letters have the same meaning
as above. Finally, we get the national temperature distribution matrix as in Formula (7).
Then each value in the matrix is set to normalization, and we get T̃m.

Tm =



t0,0
m , . . . , t0,j

m , . . . , t0,6
m

...
ti,0
m , . . . , ti,j

m , . . . , ti,6
m

...
t53,0
m , . . . , t53,j

m , . . . , t53,6
m


(7)

T̃m =



t̃0,0
m , . . . , t̃0,j

m , . . . , t̃0,6
m

...

t̃i,0
m , . . . , t̃i,j

m , . . . , t̃i,6
m

...

t̃53,0
m , . . . , t̃53,j

m , . . . , t̃53,6
m


(8)

The input NIPI, AEA and CDEA indicators for seven weeks are extracted by CNN
and the hidden layer vector In is obtained, as shown in Formula (9), where nt, at, ct are the
feature vector of NIPI, AEA, CDEA in seven weeks, respectively.

In = [n1, . . . , nt , a1, . . . , at, c1, . . . , ct] (9)

According to expert consultation, set the thresholds of P̃m and T̃m are set, which are δp
and δt, respectively. C represents the importance sequence. Then we get the attention score
in Formula (11), where W is the learnable parameter matrix, and ki is the sequence of In.

C =
i+7

∑
i

6

∑
j=0

[
1 or 0 if p̃i,j

m > δp

]
or
[

1 or 0 if t̃i,j
m > δt

]
(10)

e = In
Ttan h(W[C; ki]) (11)

Softmax function is used to normalize the attention score and get the weight of each
feature vector in Formula (12).

a = so f tmax(e) =
exp(e)

∑ exp(e)
(12)

Finally, the model combines the calculated attention influence vector with the CNN
hidden layer vector to optimize the model extraction result, as shown in Formula (13).

Attention(NIPI, AEA, CDEA) = ∑ a·In (13)
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3. Results
3.1. Data Set and Experimental Parameters
3.1.1. Data Set

In this paper, security risk assessment indexes for each vegetable in each province are
predicted, and the total length of time series for each vegetable in each province is 53 weeks
in the experiment. The pre-processed data set is divided into a training set, validation set
and test set, and the ratio is 6:3:1 according to the number of the sample data set.

3.1.2. Experimental Environment

For the experimental environment, the operating system was a 64-bit Windows 10
operating system, the processor was Intel CORE i7-9700F@3.00GHz eight-core, the memory
was 16 GB, and the graphics card was Nvidia GeForce RTX3060.

An open-source deep learning framework based on PyTorch (https://pytorch.org/
(accessed on 26 February 2022)) is used to construct a deep learning model for experimental
platform development.

3.1.3. Experimental Parameters

The attention mechanism-based CNN-AOA-LSTM model is composed of two con-
volutional layers, two pooling layers and the full connection layer, and Relu, as shown in
Formula (14), is the activation function.

f (x) = max
(

0, WTx + b
)

(14)

where W represents the weight vector, b represents the bias vector, and x represents the
input vector, which comes from the output vector of the neural network at the upper layer.
W and b are network parameters that can be learned.

The first convolutional layer has 64 convolutional kernels, and the size is set to 1 × 4.
The second convolutional layer has 32 convolutional kernels with a size of 1 × 3 and a step
size of 2. The pooling layer selects the maximum pooling mode, and then connects to the
full connection layer for transformation and output. The AOA-LSTM network contains
two hidden layers with 30 and 20 cells, respectively.

3.2. Model Evaluation Indexes

The prediction of the security risk level is affected by the combination of the above
three evaluation indexes; therefore, it is necessary to evaluate the performance of the single
evaluation index of the three indexes and the accuracy of the security risk level determined
by the indexes.

3.2.1. Prediction Performance Evaluation Indexes

This paper adopts root mean square error (RMSE) and mean absolute error (MAE) to
evaluate the predictive effectiveness of the NIDI, AEA and CDEA evaluation indexes in
the proposed food security risk level prediction model. The calculation method of these
two indexes is as follows:

RMSE =

√
1
n

n

∑
i=1

(̃xi − xi)2 (15)

MAE =
1
n

n

∑
i=1
|x̃i − xi| (16)

where xi is the actual value of the evaluation index of the week, and x̃i is the predicted
value of the risk evaluation index of the week.

https://pytorch.org/
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3.2.2. Prediction Accuracy Evaluation Index

In this paper, three evaluation indexes are adopted: precision, recall rate and F1.
Specific calculation methods of various indexes are as follows:

Pi =
TPi

TPi + FPi
(17)

Ri =
TPi

TPi + FNi
(18)

F1 =
2 ∗ P ∗ R

P + R
(19)

In the precision calculation Formula (17) (precision hereinafter referred to as P), TPi
represents that the model predicts the number of the positive class as positive classes, and
FPi. represents the model predicts the number of the negative class as positive classes.

In the Formula (18) for recall (recall hereinafter referred to as R), TPi represents the
that the model predicts the number of the positive class as positive classes, and FNi that
the model predicts the number of the positive class as negative classes.

The data set used in this paper is a balanced data set. Because precision and recall
are a pair of contradictory quantities when P is high, R tends to be relatively low, and
when R is high, P tends to be relatively low, so to better evaluate the performance of the
classifier, generally use F1 score as an evaluation criterion to measure the comprehensive
performance of the classifier

3.3. Security Risk Assessment and Classification
3.3.1. Security Risk Assessment Indexes

In order to comprehensively evaluate the hazard of carbofuran in vegetables, first we
calculated the weekly NIPI, AEA and CDEA values of each vegetable in each province
from January to December 2019 by the analytic hierarchy process (AHP). Taking Beijing as
an example, the data set of security risk assessment indexes for eight vegetables is shown
in Figure 3.

Foods 2022, 11, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 3. Food security risk assessment indexes of eight kinds of vegetables per week in Beijing from 
January to December. 

3.3.2. Security Risk Classification 
After obtaining the food security risk assessment indexes, it can be seen that different 

indexes differ greatly in order of magnitude. In order to avoid the impact of the assess-
ment effect caused by the neglect of indexes with a smaller order of magnitude, data nor-
malization is necessary [36]. In this study, NIPI, AEA and CDEA are selected as features 
based on the k-means++ clustering algorithm. 

Silhouette coefficient is a means of evaluating the clustering effect. It was first pro-
posed by J. [37] in 1986. It can be used to evaluate the influence of different algorithms or 
different operating modes of algorithms on clustering results on the basis of the same 
original data. In this paper, silhouette coefficients are used to measure how many cluster-
ing categories are best. Figure 4 shows the fractions of silhouette coefficients for the clus-
tering categories from 3 to 7. 

 
Figure 4. Silhouette coefficients for the clustering categories from 3 to 7. 

As shown in Figure 4, the silhouette coefficient of category 5 in the clustering result 
is the largest, indicating that the instances in the cluster are compact and the distance be-
tween clusters is large. Therefore, the normalized data set is divided into five categories 

0.58224

0.73506
0.81543

0.69067

0.55604

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

3 4 5 6 7

Si
lh

ou
et

te
 c

oe
ffi

ci
en

t

Categories

Figure 3. Food security risk assessment indexes of eight kinds of vegetables per week in Beijing from
January to December.



Foods 2022, 11, 1061 10 of 20

3.3.2. Security Risk Classification

After obtaining the food security risk assessment indexes, it can be seen that different
indexes differ greatly in order of magnitude. In order to avoid the impact of the assessment
effect caused by the neglect of indexes with a smaller order of magnitude, data normaliza-
tion is necessary [36]. In this study, NIPI, AEA and CDEA are selected as features based on
the k-means++ clustering algorithm.

Silhouette coefficient is a means of evaluating the clustering effect. It was first proposed
by J. [37] in 1986. It can be used to evaluate the influence of different algorithms or different
operating modes of algorithms on clustering results on the basis of the same original data.
In this paper, silhouette coefficients are used to measure how many clustering categories
are best. Figure 4 shows the fractions of silhouette coefficients for the clustering categories
from 3 to 7.
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As shown in Figure 4, the silhouette coefficient of category 5 in the clustering result is
the largest, indicating that the instances in the cluster are compact and the distance between
clusters is large. Therefore, the normalized data set is divided into five categories by the
k-means++ algorithm, and the indexes of each cluster center are shown in Table 1. The
distance between the cluster center and the origin is calculated according to the normalized
index, and the security risk levels of categories 1–5 are defined as low–high, respectively.

Table 1. Security risk assessment indexes of five cluster centers.

Category NIPI AEA CDEA Risk Level

1 0.52750 0.0000019 0.0000012 Low
2 5.83879 0.0000447 0.0000253 Medium-low
3 21.31902 0.0001640 0.0000419 Middle
4 27.97410 0.0004820 0.0002343 Medium-high
5 36.80964 0.0007220 0.0003487 High

The clustering results of security risk levels based on the k-means++ algorithm
are shown in Figure 5. Among them, NIPI, AEA and CDEA are represented by three-
dimensional system of coordinate, and security risk level is represented by color. In the
following, future security risk assessment indexes will be divided into specific security risk
levels based on clustering centers.
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3.3.3. Analysis of Security Risk Classification Results

The statistics of security risk assessment indexes of the five clustering centers are
shown in Figure 6. The three clustering indexes increase successively with the increase
of security risk level, and the indexes of categories 1 and 2 are much smaller than those
of categories 4 and 5. It can be seen that the security risk level of categories 1 and 2 is
relatively low, while that of categories 4 and 5 is relatively high. The distribution of security
risk levels is shown in Figure 7. Vegetables with low and medium-low security risk levels
account for 88.6% of the total risk, and vegetables with medium-high and high security risk
levels account for 6.0%.
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3.4. Security Risk Level Prediction Model of CNN-AOA-LSTM Based on Attention Mechanism

In order to prove the effectiveness of the CNN-AOA-LSTM model based on the
attention mechanism, a series of comparative experiments are carried out in this paper.
At present, LSTM, GRU and RNN are the best neural network models for time series
analysis; therefore, this paper adopts LSTM, GRU and RNN models as comparison models.
Food security risk assessment indexes of each vegetable in each province are predicted,
respectively, and then distinguish the security risk level. The experimental results of several
common models are given and compared with the prediction model proposed in this paper.

Similarly, taking Beijing as an example, Figures 8–15 shows food security risk assess-
ment indexes of eight kinds of vegetables predicted by four models, respectively. In this
paper, the prediction step is 7, so the first seven weeks are a window period, and the
prediction is not made in 0 to 6 weeks. The prediction starts at week 7. The 0~46 weeks
shown in the figure are the weeks that can be predicted, and the actual 7~53 weeks. In the
figure, 0~39 weeks are the training set, and 40–46 weeks are the test set. As it is necessary
to predict the evaluation indexes of 20 provinces, RMSE and MAE are used to conduct
statistical analysis on the three evaluation indexes of 20 provinces predicted by the four
models. As can be seen from the figure, most of the predicted curves are consistent with
the actual curves in the process of prediction. However, the predicted curve and the actual
curve of some vegetables deviate significantly. This paper conducts research and analysis
on such situations, and finds that the serious deviation is mainly due to the change of
supply chain caused by prominent events. For example, eight batches of unqualified food
were exposed in Shandong, involving vegetables and so on, which flowed into Beijing in
November 2019.

Figures 16 and 17, respectively, show RMSE and MAE of three indexes of eight
vegetables, predicted by four models. As can be seen from the experimental results, the
prediction model proposed in this paper has the minimum RMSE and MAE values for
eight kinds of vegetables, which is superior to other models. In terms of the NIPI index,
the predicted values of RNN model and LSTM model on four kinds of vegetables deviate
greatly from the correct values. In terms of AEA and CDEA indexes, the prediction effect
of the four models on solanaceous vegetables is slightly lower, but the index prediction of
other vegetables is very close to the actual value. In general, the RNN model has the worst
prediction effect on all indexes.
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After predicting NIPI, AEA and CDEA evaluation indexes, the distance between
risk evaluation indexes and security risk levels is calculated, and the security risk level is
determined. The average accuracy of the prediction results of the four models is statistically
analyzed, as shown in Table 2.
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Figure 11. Prediction results of indexes of bulb vegetables.

Experimental results show that the CNN-AOA-LSTM prediction model based on the
attention mechanism is significantly better than the other three models in terms of precision
and recall rate, and has the best overall performance in F1. Since the small sample data set
constructed independently is adopted in this paper, large-scale training cannot be carried
out in prediction. Therefore, attention mechanism is introduced when features are extracted
through the CNN network model. When the extracted features enter the LSTM network
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model, the AOA algorithm is introduced to optimize the LSTM model to optimize the
model’s hyperparameters and improve the prediction accuracy of evaluation indexes.
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Figure 13. Prediction results of indexes of root and yam vegetables (except potatoes).

In order to verify the reliability of deep learning in pesticide residue prediction, we
randomly select the high-risk vegetables in a province, such as leeks in the Zhengzhou
Economic Development Zone, Henan province, on 10 December 2019, in which carbofuran
was over the standard. Subsequently, we find that the indicators of carbofuran in bulb
vegetables in this province were also in the middle and high grades in 43rd week, as shown
in Figure 18. It shows that the prediction results of deep learning are reliable when there is
no emergency in the supply chain.
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Table 2. Accuracy evaluation index of security risk level prediction.

Model
Index-Data

P% R% F1%

RNN 74.38 73.69 74.03

LSTM 79.37 78.73 79.05

GRU 87.25 86.51 86.88

CNN-AOA-LSTM 93.37 93.12 93.24
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4. Discussion

In order to supervise the high-risk areas of dietary intake of carbofuran pesticide
residues and effectively guarantee the food quality and security of residents, this paper
establishes the prediction model of security risk level of carbofuran pesticide residues in
Chinese vegetables based on deep learning. The prediction is carried out based on a small
sample data set. The experimental results show that the prediction precision of CNN-AOA-
LSTM based on the attention mechanism proposed in this paper reaches 93.37%, which
meets the risk management requirements of weekly food sampling reports. At the same
time, security risk classification and prediction based on systematic assessment can make
the food supervision department objectively determine the key supervision of provinces
and vegetable types, so as to strengthen the early control of food security risks, reduce
the cost of risk management, provide safe and assured food for consumers, protect the
interests of consumers, and maintain public health and security. The proposed approaches
in the paper can combine other identification algorithms to study the computer vision
problems [38–41] and can be applied to other fields such as prediction processing and
engineering application systems [42–46].

Author Contributions: Conceptualization, T.J. and W.D.; Methodology, Q.Z. and W.D.; Software,
T.L.; Validation, W.D. and T.J.; Formal Analysis, T.L.; Investigation, T.J. and T.L.; Resources, Y.L.;
Writing—Original Draft Preparation, W.D.; Writing—Review and Editing, T.L. and T.J., Supervision,
Q.Z.; Project Administration, T.J. and Q.Z. All authors have read and agreed to the published version
of the manuscript.



Foods 2022, 11, 1061 19 of 20

Funding: This research was supported by the National Key Technology R&D Program of China,
grant number 2019YFC1606401; the Beijing Natural Science Foundation, grant number 4202014; the
Natural Science Foundation of China, grant number 61873027; the Humanity and Social Science
Youth Foundation of Ministry of Education of China, grant number 20YJCZH229; and the Social
Science Research Common Program of Beijing Municipal Commission of Education, grant number
SM202010011013.

Data Availability Statement: Restrictions apply to the availability of these data. Data was obtained
from the State Administration for Market Regulation Statistics and are available at http://spcj.gsxt.
gov.cn with the permission of the State Administration for Market Regulation Statistics.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. FAO. Pesticide residues in food. Pestic. Residues Food 1997, 17, 27–28.
2. Song, H.Y.; Wang, J. Environmental endocrine disruptors and pesticides. Pestic. Sci. Adm. 2001, 22, 23–25. [CrossRef]
3. Zhang, L.J.; Min, S.G.; Li, G.X.; Xiong, Y.M.; Sun, Y. Spectroscopic study on the interaction between carbofuran and DNA. Spectrosc.

Spectr. Anal. 2005, 25, 739–742. [CrossRef]
4. Xu, G.Z.; He, M. Investigation and risk assessment of pesticide residues in vegetables sold in Yancheng. Sci. Technol. Innov. Guide

2017, 14, 114–116. [CrossRef]
5. Xu, J.; Dai, F.F.; Nie, D.D. Situation of pesticide residues in vegetables and fruits of Weifang City in 2015. Trop. Med. China 2016,

16, 141–144, 148. [CrossRef]
6. Zheng, Q.W. Inner Mongolia: The over standard of carbofuran in jianjiao is caused by the fake pesticide. Pestic. Market. Inf. 2018,

612, 17.
7. Nie, W.J.; Li, T.P. Research review of food security risk assessment model. J. Food Secur. Qual. 2014, 5, 1551–1556. [CrossRef]
8. He, W.Z.; Tao, Y.X.; Yan, Q.L.; Liu, S.H.; An, R.; Wang, C. Risk Assessment and Hazard Rank of Pesticide Residues in Jujube from

Xinjiang. Sci. Technol. Food Ind. 2018, 39, 202–206. [CrossRef]
9. Zhao, F.; Liu, J. Effects of the cooking modes on commonly used pesticides residue in vegetables and their chronic dietary

exposure risk in South China. Food Addit. Contam. 2020, 37, 121–130. [CrossRef]
10. Fang, L.; Zhang, S.; Chen, Z.; Du, H.; Zhu, Q.; Dong, Z.; Li, H. Risk assessment of pesticide residues in dietary intake of celery in

China. Regul. Toxicol. Pharmacol. 2015, 73, 578–586. [CrossRef]
11. Kumari, D.; John, S. Health risk assessment of pesticide residues in fruits and vegetables from farms and markets of Western

Indian Himalayan region. Chemosphere 2019, 224, 162–167. [CrossRef] [PubMed]
12. Sun, Y.; Haghighat, F.; Fung, B. A review of the-state-of-the-art in data-driven approaches for building energy prediction. Energy

Build. 2020, 221, 110022. [CrossRef]
13. Sun, J.; Kim, J. Joint prediction of next location and travel time from urban vehicle trajectories using long short-term memory

neural networks. Transp. Res. Part C Emerg. Technol. 2021, 128, 103114. [CrossRef]
14. Wang, R.; Peng, C.; Gao, J.; Gao, Z.; Jiang, H. A dilated convolution network-based LSTM model for multi-step prediction of

chaotic time series. Comput. Appl. Math. 2020, 39, 30. [CrossRef]
15. Alexander, J.; Edwards, R.A.; Brodsky, M.; Manca, L.; Grugni, R.; Savoldelli, A.; Bonfanti, G.; Emir, B.; Whalen, E.; Watt, S.; et al.

Using time series analysis approaches for improved prediction of pain outcomes in subgroups of patients with painful diabetic
peripheral neuropathy. PLoS ONE 2018, 13, e0212959. [CrossRef]

16. Yu, W.P.; Han, X.Y.; Wang, Y.Y.; Yang, J. Prediction of pesticide residues in agricultural products based on time series model in
Chengdu, China. IOP Conf. Ser. Earth Environ. Sci. 2020, 594, 012022. [CrossRef]

17. Zhou, X.; Sun, J.; Tian, Y.; Chen, Q.; Wu, X.; Hang, Y. A deep learning based regression method on hyperspectral data for rapid
prediction of cadmium residue in lettuce leaves. Chemom. Intell. Lab. Syst. 2020, 200, 103996. [CrossRef]

18. Arthur, D.; Vassilvitskii, S. K-Means++: The Advantages of Careful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2007, New Orleans, LA, USA, 7–9 January 2007.

19. Wu, Y.; Zhao, Y.; Li, J. Chapter Two: Food consumption data. In The Fifth China Total Diet Study; Luo, J., Yue, M., Eds.; Science
Press: Beijing, China, 2018; pp. 66–69.

20. Wang, X.Q.; Wu, Y.N.; Cheng, J.S. Low level data processing in food contamination monitoring. Chin. J. Prev. Med. 2002, 4, 63–64.
21. Bekhet, H.A.; Yasmin, T. Exploring EKC, trends of growth patterns and air pollutants concentration level in Malaysia: A

Nemerow Index Approach. In Proceedings of the International Conference on Energyand Environment, Putrajaya, Malaysia,
5–6 March 2013. [CrossRef]
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