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Abstract: Endometrial cancer (EC) is a very common female cancer which has attracted more and
more attention. According to the individual patient’s condition, the current treatment of EC patients
is mainly based on surgery, which is supplemented by chemotherapy, radiotherapy, and endocrine
intervention. However, these existing treatment strategies also have some inevitable limitations.
Therefore, it is particularly important to find an active ingredient with low toxicity and a high safety
profile against EC. Isorhamnetin is a flavonoid known to be present in a variety of plants, such as
sea buckthorn, dry willow, and wolfberry. In recent years, the anti-tumor effects of isorhamnetin
have been reported. In our study, isorhamnetin was shown to induce apoptosis in Ishikawa cells by
inducing the endogenous mitochondrial apoptotic pathway and exogenous death receptor pathway,
promoting the endoplasmic reticulum stress-related pathway, and activating the corresponding mark-
ers of UPR response. In addition, isorhamnetin affected the expression of MMP2 and MMP9-related
proteins in vitro and in vivo and eventually repressed metastasis. Therefore, isorhamnetin can be
used as a promising medicinal material for the treatment of EC.

Keywords: endometrial cancer; Ishikawa; isorhamnetin; UPR response; mitochondria

1. Introduction

Endometrial cancer (EC) has a high incidence among female reproductive system
tumors and seriously affects women’s reproductive health. It is the third most common
malignancy causing death in women, behind only ovarian cancer and cervical cancer [1,2].
EC originates from the endometrium and is highly invasive and metastatic, which makes
the treatment of EC patients extremely challenging [3]. Depending on the conditions of
individual patients, the current treatment for EC patients is mainly surgical treatment with
chemotherapy, radiotherapy, and endocrine intervention as adjuvant therapy. However,
this treatment strategy has inevitable drawbacks, such as surgery possibly leading to the
loss of fertility and endocrine intervention therapy possibly generating drug resistance [4].
Therefore, it is of utmost urgency to discover some novel therapeutic modalities with
low toxicity and strong therapeutic targets. Currently, the most familiar EC cell lines
are Ishikawa, KLE, etc. The Ishikawa cell line was first discovered by Nishida et al. [5].
Subsequent histological studies of tumors in nude mice showed it to be a well-differentiated
adenocarcinoma, very similar to the original human tumor, and thus suitable for EC studies.

In recent years, antineoplastic drugs of plant origin have attracted significant attention
worldwide. These plant compounds can provide unique new chemical structures for the
design of more desirable novel drugs [6–8], which can also be lead compounds for the
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creation of new drugs. Among the natural compounds, isorhamnetin is a flavonoid known
to be present in a variety of plants, such as sea buckthorn, dry willow, and wolfberry.
Recent studies have shown that isorhamnetin and its glycoside form can exert a wide
range of pharmacological effects and health benefits, including cardio-cerebrovascular
benefits, nerve protection, anti-inflammation, kidney protection, lung protection, anti-
osteoporosis, anti-oxidation, prevention of obesity, and anti-tumor effects [9]. The various
effects of isorhamnetin play a significant role in the treatment of many kinds of diseases by
medicating some signaling pathways and cytokines, presenting high medicinal value [10].

Apoptosis acts as a vital character in the fate decision process of some tumor cells [11]
and undergoes morphological changes in cell contraction, which are accompanied by a
reduced degree of cell–cell adhesion and DNA fragmentation response [12–14]. The exoge-
nous death receptor pathway is a classical apoptotic response caused by the combination of
plasma membrane death receptors with extracellular ligands. When a cell is stimulated by
an external signal, the plasma membrane death receptor binds to the extracellular ligand,
causing a change in the structural domain of the receptor and, in response to this change,
many cytoplasmic proteins of the death structural domain can bind to it, eventually ac-
tivating Caspase-8 initiation which further activates the execution precursor Caspase-3,
ultimately triggering downstream programmed death [15].

In addition to death receptor exogenous signals, endogenous cellular signals such
as DNA damage can also induce the onset of apoptosis. When DNA damage occurs
inside the cell, it prevents efficient scavenging of large amounts of free radicals and causes
accumulation of high concentrations of calcium ions inside the cell. This intracellular
change can induce the activation of pro-apoptotic proteins in the Bcl-2 family, which can
alter the permeability of mitochondria, thereby helping cytochrome C to be released from
the mitochondrial membrane gap and enter the cytoplasmic lysis to bind Apaf-1 and the
precursor Caspase-9 to form apoptotic vesicles and finally activate Caspase-3, triggering
the onset of apoptosis [16].

Metastasis of tumor cells is a collection of intricate and complex processes, including
cell migration, invasion, and other related processes [17]. It refers to the process by which a
tumor diverges from its original location to different target tissues through various pathways.
Cancer invasion and metastasis are the most difficult stages of cancer treatment; therefore,
controlling cancer cell metastasis has been the most challenging part of the treatment of
various cancers in recent years [18]. Epithelial–mesenchymal transition is very important
and associated with cell migration and invasive growth; it reshapes the stability of the
extracellular matrix [19] and contributes to the maintenance of intracellular homeostasis.
E-cadherin, one of the important proteins of epithelial–mesenchymal transition, regulates
adhesion connection establishment, thus forming a continuous adherent epithelium and
maintaining the homeostasis of the intracellular environment. Once the above process is
disrupted, it will affect cell metastasis [20]. Therefore, the treatment of cancer can be effectively
inhibited by regulating the pathways associated with cancer cell metastasis.

To date, there is a limited amount of data available on the effects of isorhamnetin on
mitochondrial pathways and endoplasmic reticulum stress associated with apoptosis and
metastasis in human EC treatment. Therefore, we explored the effects of isorhamnetin on
the growth, morphology, cell cycle, apoptosis, and metastasis of EC in vitro. Moreover,
some effects of isorhamnetin on apoptosis and the metastasis of Ishikawa tumor-bearing
mice were also investigated by immunohistochemistry using an in vivo EC model. It is
speculated that our results can provide new approaches for the treatment of EC.

2. Materials and Methods
2.1. Materials and Chemicals

Isorhamnetin standards were purchased from Must Bio-Technology Co., Ltd. (Purity > 98%)
(Chengdu, China), cell cycle and apoptosis assay kits were procured from Beyotime Biotechnol-
ogy (Shanghai, China), and human endometrial carcinoma Ishikawa cells were purchased from
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Wuhan Pronset Life Sciences Co. (Wuhan, China). Antibodies were purchased from Abcam
(Cambridge, UK) and Cell Signaling Technology (Danvers, MA, USA).

2.2. Cell Culture

When the cells were polygonal in shape and firmly attached, the supernatant culture
medium was discarded and 1 × phosphate-buffered saline (PBS) was added and the
mixture was gently shaken. After that, 1 mL of trypsin was added for cell digestion.
After digestion, the reaction was terminated with 1 mL of fresh medium followed by
centrifugation (1200 rpm, 5 min) [21]. After centrifugation, the supernatant was discarded
and 1 mL of fresh medium was added to resuspend the cells. The resuspended cells were
aspirated and slowly spotted into the culture dish by the 5-point method and then placed
in an incubator.

2.3. Cell Inhibition Assay

Cells were incubated with different concentrations of isorhamnetin for 24 h. After MTT
(3-(4,5-dimethylthiazol-2)-2,5-diphenyltetrazolium bromide salt) treatment, the absorbance val-
ues were measured at the detection wavelengths of 490 nm and 630 nm and a full-wavelength
enzyme marker (TS100, Nikon, Tokyo, Japan) was used for calculation [22].

2.4. Tumor-Bearing Mice Assay

All the protocols of the Ishikawa cell-based tumor-bearing mice assay were performed
according to the National Institute of Health’s Guide for the Care and Use of Laboratory
Animals and approved by the Animal Ethics and Use Committee of the Hefei University
of Technology (SYXK (Anhui) 2021—007). The 4~5-week-old mice were selected and then
fed for one week to construct a tumor-bearing mouse model constructed from Ishikawa
cells from EC. When the tumors grew to 90 mm3, 16 mice were randomly divided into
two groups by average size [23]. After grouping, the isorhamnetin-treated group was
injected intraperitoneally with 20 mg/kg of drug solution (isorhamnetin-soluble DMSO)
once a day for 15 days. The anti-tumor effect of the solution was observed by measuring
the diameter of the transplanted tumors in nude mice with vernier calipers every two days
and calculating the corresponding volume by the formula 0.5 × length × (width) 2, with
dietary intake and body weight changes also recorded. After 15 days of administration, all
the mice were asphyxiated with CO2 and their body weights were recorded. The tumors
were surgically removed and weighed, which was then followed by the fixation of different
organs; tumor tissues were fixed with 4% paraformaldehyde, embedded using paraffin,
and used for hematoxylin and eosin (H&E) staining, as well as immunohistochemistry and
other related tests.

2.5. H&E Staining Test

Different organs from the control and isorhamnetin-treated nude mice group were
fixed with 4% paraformaldehyde, and these tissues were transferred to embedding boxes
and rinsed in running water for 20–30 min in order to remove the fixative from the tissues.
Excess water was gradually removed from the tissues, using alcohol as a dehydrating agent,
with a gradient elution concentration. Tissues were transparently treated with xylene, a
clearing agent, before paraffin embedding, cooling, and fixation. The wax blocks were cut
with a tissue slicer and subsequently dried. The dried sections were sequentially placed
in different concentration gradients of xylene solution and alcoholic aqueous solution for
dewaxing and washing. After the dewaxing and washing were completed, staining was
performed. The sections were stained in hematoxylin for 5–8 min and rinsed with running
water after staining. Subsequently, 1% hydrochloric acid and ammonia were added to
separate the tissues, which were then rinsed with running water. After rinsing, the eosin
staining solution was added to the tissue, which was left to stain for 2~3 min. After eosin
staining, the sections were then dehydrated in aqueous alcohol and xylene [24]. Finally, the
sections were removed from xylene, dried, sealed with neutral chewing gum, and observed
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with a microscope before three fields of view were then randomly selected for recording
(80i, Nikon, Tokyo, Japan).

2.6. Cell Morphology Observation

Ishikawa cells were collected and inoculated, 2 mL was added to each well, and cells
were then incubated for 24 h. If they were plastered, the medium in the six-well plate
was removed by pipetting and 2 mL of medium containing different concentrations of
isorhamnetin (20 µM, 40 µM, and 60 µM) was added to the group. After incubation, the
medium was discarded and then washed with PBS and observed.

2.7. Cell Cycle Assay

Ishikawa cells were collected and inoculated (2 mL) in each well. After washing with
1 × PBS, 1 mL of chilled 70% ethanol was added into each centrifuge tube containing cells
that had been kept overnight at 4 ◦C [25]. The cells were precipitated by centrifugation
at 1000 g for 5 min and the supernatant was carefully removed. The cells were then
resuspended by adding 1 mL of 1 × PBS and centrifuged again. The cells were detected
by flow cytometry (Beckman Coulter, Pasadena, CA, USA) at an excitation wavelength of
488 nm, and the results were statistically analyzed using Flowjo software.

2.8. Apoptosis Assay

After treatment with 20, 40, and 60 µM of isorhamnetin for 24 h, walled cells and
suspended cells were collected in 1.5 mL sterile EP tubes, washed with 1 × PBS, and
400 µL of Annexin V-FITC conjugate was gently added to the collected cell sediment [23].
These cells were resuspended and stained with Annexin V-FITC for 15 min (5 µL) and
propidium iodide for 15 min (10 µL). After staining, the cells were detected by flow
cytometry (Beckman Coulter, Pasadena, CA, USA). All results were statistically analyzed
with Flowjo software.

2.9. Cellular Calcium Ion Permeation Assay

Ishikawa cells at the logarithmic proliferation stage were transferred (1 × 105 cells/mL)
to 6-well plates for the test [22]. Each group was repeated 3 times and incubated overnight
in a constant temperature incubator. On the next day, the cells were observed to verify
adherence and, if the cells were adherent, the medium in the six-well plate was pipetted off
and 2 mL of medium containing different concentrations of isorhamnetin was added. After
24 h of treatment, the adherent and suspended cells were collected in 1.5 mL sterile EP tubes.
After washing with 1 × PBS, 5 µM of Fluo-3 AM was added to different concentrations
of isorhamnetin tubes before being incubated at 37 ◦C for 30 min. The incubation period
was then reversed and cells were mixed every 5 min. The cells were resuspended with PBS
and detected at an excitation wavelength of 488 nm by flow cytometry (Beckman Coulter,
Pasadena, CA, USA).

2.10. Reactive Oxygen Assay

After collecting Ishikawa cells treated with isorhamnetin, Ishikawa cells were resus-
pended with DCFH-DA (0.5 µM) and incubated in an incubator at 37 ◦C for 20 min [26]. The
cells were washed three times with a serum-free medium, and the cells were immediately
examined at an excitation wavelength of 488 nm before being statistically analyzed with
Flowjo software.

2.11. Cell Scratch Heal Test

After the cells had grown to a single cell layer after being cultured for 24 h, 200 µL was
used to scratch a straight line wound on the monolayer of cells. The cell debris generated
in the cell line was then removed by washing the sample three times with PBS [24]. The
remaining walled cells were treated with different concentrations of isorhamnetin for 24 h.
Photographs were taken at different times (0 h and 24 h) with a microscope (TS100, Nikon,
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Tokyo, Japan). Three fields of view were randomly selected from each cell plate culture
well for recording. The area of the scratches in the photographed images in each well was
measured by Image J software.

2.12. Cell Migration and Invasion Assay

A Transwell assay was used to detect the invasion and migration of Ishikawa cells
with different concentrations of isorhamnetin. After collecting cells treated with different
concentrations of isorhamnetin, Ishikawa cells were resuspended in serum-free DMEM
cell medium until the final concentration of cells was 5 × 105 cells/mL. In the Transwell
assay, cell suspensions with different concentrations of isorhamnetin were cultured in
the upper chamber, and 90% DMEM + 10% FBS were put in the lower chamber [27].
After isorhamnetin treatment, the upper chambers were washed with sterilized distilled
water to remove the excess cell culture medium, which was followed by fixation with 4%
paraformaldehyde for 10–15 min, washing with distilled water, and staining with crystal
violet staining solution for 20 min. After washing with distilled water to remove excess
staining solution, three fields were randomly selected from each chamber of the Ishikawa
cells cultured for 24 h using a microscope (TS100, Nikon, Tokyo, Japan). Three randomly
selected fields of view were photographed. For cell invasion experiments, before collecting
the cells, the stromal gel was diluted 5 times using a serum-free medium. After the stromal
gel was prepared, 200 µL was added to the upper chamber of the Transwell and solidified
in the incubator at 37 ◦C for 30–50 min before different concentrations of isorhamnetin were
added to the upper chamber. The rest of the treatment and observation procedures were
the same as cell migration.

2.13. Cell Protein Extraction and Western Blotting Experiments

After isorhamnetin treatment, 500 µL of trypsin digestion solution was added to each
well, and digestion was allowed to take place for 3–5 min. After washing, the supernatant
was discarded. The cells were added into RIPA cell lysate depending on the number of cells
deposited at the bottom of the centrifuge tube, which was then followed by centrifugation
(15,000 rpm, 20 min). The protein concentrations of the cells in the isorhamnetin-treated group
were determined according to the procedure of the BCA protein assay kit. The protein mixture
was diluted by adding 5 × loading buffer in a centrifuge tube at a ratio of 1:4 and then stored
in a water bath for 10 min at 98.3 ◦C. Western blotting included protein electrophoresis, protein
transfer, and antibody hybridization; the PVDF membranes were then removed and placed in
a chemiluminescence apparatus for 5 min with drop wise addition of contrast solution and
photographed. The expression of the remaining target proteins was compared with the Image
J software using β-actin as the internal reference protein [28].

2.14. Immunohistochemistry

Paraffin sections were dewaxed and rehydrated, which was then followed by false-positive
removal, serum blocking, primary antibody addition, secondary antibody addition, DAB
color development, nuclei re-staining, and microscopic examination (Leica, Wetzlar, Germany).
Three fields of view for each sample were randomly selected for photographic recording [22].

2.15. Data Analysis

The experiments were repeated at least three times in vitro, and nude mice experiments
had eight mouse samples per group. Data were counted and calculated using Excel 2019
(Microsoft, Redmond, WA, USA). Statistical analysis was performed using Origin 8.6 and
Duncan‘s test (SPSS), which was performed to compare the treatment group and the control
group. Statistical significance for all tests was expressed as mean ± standard deviation
(n ≥ 3) at a significance level of p < 0.05.
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3. Results and Discussion
3.1. Consequence of Isorhamnetin on the Proliferation of Ishikawa Cells

The inhibitory effect of isorhamnetin on the proliferation of Ishikawa cells was in-
vestigated by MTT assay as shown in Figure 1A,B. The proliferation of Ishikawa cells
was inhibited after 24 h of isorhamnetin treatment. The fitted curves showed that the
semi-inhibitory concentration (IC50) of isorhamnetin on Ishikawa cells was 37.27 µM.
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Figure 1. Effect of isorhamnetin on the proliferation of Ishikawa cells and Ishikawa xenograft mice.
(A): The 24 h inhibitory effect of isorhamnetin on Ishikawa cell and HEK 293 cell proliferation.
(B): Bar chart of the inhibitory effect of isorhamnetin on proliferation. (C): Effect of isorhamnetin
(20 mg/kg) on Ishikawa xenograft mice (n = 8). (D): Effect of isorhamnetin (20 mg/kg) on tumor
size in Ishikawa xenograft mice (n = 8). (E): A line graph of the tumor volume in control and
isorhamnetin–treated groups (20 mg/kg). (F): Line graph of the body weight of mice in the control
and isorhamnetin groups (20 mg/kg). (G): Tumor volume of the control and isorhamnetin–treated
groups (20 mg/kg). (H): H&E staining of tumors in the control and isorhamnetin–treated groups
(20 mg/kg). The experiments were repeated at least three times in vitro, and nude mice experiments
had at least eight mouse samples per group in vivo. Different alphabetic letters (including a, b, c, and
d) denote significant differences between different groups (p < 0.05, n > 3). ** p < 0.01 included to
show group differences in the in vivo experiment.
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3.2. Effect of Isorhamnetin on the Growth of Tumors in Ishikawa Tumor-Bearing Mice

As shown in Figure 1C–E, the growth of tumors in the isorhamnetin-treated group was
significantly inhibited, with the inhibition rate of the tumor as high as 50.42% (Figure 1G). The
tumor cells in the isorhamnetin-treated group were rounder or fat and shuttle-shaped, the
nuclei were larger and darker, and the tumor cells were mildly necrotic, as shown in H&E
staining compared to the control group (Figure 1H). The tumor cells in the isorhamnetin-
treated group were rounder or fat and spindle-shaped, with larger and darker colored nuclei
and mild necrosis of tumor cells (Figure 1F). The above results suggest that isorhamnetin can
inhibit the growth of tumor formation in Ishikawa tumor-bearing mice with EC.

3.3. Effect of Isorhamnetin on the Morphology of Ishikawa Cells

The number of morphologically altered cells was increased significantly with the
different concentrations of isorhamnetin, and the morphology gradually changed from
the irregular shape of the untreated group to the round shape while exhibiting some
vacuolation (Figure 2).
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(0 µM, 20 µM, 40 µM, and 60 µM).

3.4. Isorhamnetin Blocks the G2/M Phase in Ishikawa Cells

Cell cycle disruption is one of the mechanisms by which tumor growth is inhibited. We
explored the effect of isorhamnetin on the Ishikawa cell cycle and found that isorhamnetin
can block the progression of the G2/M phase in Ishikawa cells, which is probably due to
the activation of p53 as an upstream regulatory protein of the cell cycle and forms p-p53
in response to isorhamnetin treatment, which in turn activates its downstream protein
p21 which then acts as a switch regulating cell mitosis. As a result, the threonine 14 site
of cdc2 and the tryptophan 15 site of cdc2 could not be effectively phosphorylated and
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could not bind to the maturation promoting factor (MPF), thus hindering the cell cycle
G2/M process [29]. If damaged cells are not repaired promptly, cell cycle arrest may lead to
programmed cell death. In order to investigate the mechanism of action of isorhamnetin on
human EC Ishikawa cells, the next step was to examine both cell proliferation and apoptosis.
After co-culture with Ishikawa cells and different concentrations of isorhamnetin for 24 h,
cells were blocked in the G2/M phase and increased from 15.17% to 43.76% with increasing
drug concentration, while cells in the S phase decreased from 35.93% to 1.27% (Figure 3A,B).
These phenomena suggest that isorhamnetin can block the cell cycle of Ishikawa cells in
the G2/M phase.
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In order to further investigate the mechanism of the cell cycle influenced by isorham-
netin, we investigated protein expression levels. The expression of Cyclin B and cdc2
was significantly decreased, but the expression of p-p53 and p21 upstream of them was
remarkably increased (Figure 3C,D). The above results show that isorhamnetin can inhibit
the proliferation of Ishikawa cells in the G2/M phase [30].
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3.5. Isorhamnetin Promotes Apoptosis in Ishikawa Cells

The apoptosis rates of early apoptotic cells were 7.5% ± 0.51%, 18.99% ± 1.95%,
23.04% ± 0.15%, and 27.29% ± 1.39%, respectively (Figure 4A,B). The above results suggest
that isorhamnetin can induce apoptosis in Ishikawa cells in a dose-dependent manner.
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3.6. Effect of Isorhamnetin on Calcium Leakage from the Endoplasmic Reticulum of Ishikawa Cells

In a normal environment, the endoplasmic reticulum is responsible for the correct pro-
cessing and folding of proteins; however, once the intracellular environment is disturbed,
proteins fail to fold and are processed incorrectly due to a lack of molecular chaperones,
cellular energy delivery, Ca2+ deficiency, impairment of the redox environment, protein
mutation, and disulfide bond reduction [31–33]. After staining with Fluo-3 AM fluorescent
dye [34] and observation by flow cytometry, the intracellular calcium ion permeation rates
after treatment with isorhamnetin were found to be 1.41% ± 0.01%, 5.35% ± 0.0.87%,
8.99% ± 0.93%, and 21.13% ± 1.90%, respectively (Figure 5A,B). The above results suggest
that isorhamnetin can affect the release of calcium ions from Ishikawa cells. Unfolded
proteins were accumulated in the endoplasmic reticulum, which then leads to a UPR re-
sponse under ER stress that allows the UPR sensor to dissociate from PERK, ATF6, and
IRE1α and thus induces downstream apoptotic signaling. Among these proteins, PERK
activates cell membrane structural domains through dimerization and autophosphory-
lation, which in turn phosphorylates and activates the downstream regulator eIF2α. In
addition, it phosphorylates Nrf-2 activated by PERK, which in turn dissociates from Keap1
and becomes a nuclear transcription factor in the nucleus to regulate downstream pro-
tein expression. IRE1α contains an endonuclease structural domain which is activated
by dimerization and autophosphorylation. Activated IRE1α induces the expression of
XBP1s mRNA, which translates into an active transcription factor. Furthermore, the kinase
structures of TRAF2 and ASK1 were also activated by IRE1α, which eventually induces
apoptosis [35,36]. PERK and IRE1α, key regulatory proteins of endoplasmic reticulum
stress, were significantly increased, which in turn promoted the expression of the Chop
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protein downstream (Figure 5C,D), an important transcription factor that can lead to DNA
damage and thus apoptosis [37].
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Figure 5. Endoplasmic reticulum stress on Ishikawa cells treated with isorhamnetin. (A): Flow
diagram of the effect of different concentrations of isorhamnetin (0 µM, 20 µM, 40 µM, and 60 µM) on
calcium ion permeation. (B): Quantitative analysis of the effects of isorhamnetin (0 µM, 20 µM, 40 µM,
and 60 µM) on calcium ion permeation. (C): Effect of isorhamnetin on PERK, IRE1α, p-eIF2α, and
Chop under endoplasmic reticulum stress. (D): Quantitative protein map of the effect of isorhamnetin
on PERK, IRE1α, p-eif2α, and Chop under endoplasmic reticulum stress. Different alphabetic letters
(a, b, c, d) denote significant differences between different groups (p < 0.05, n ≥ 3).

3.7. Effect of Isorhamnetin on Mitochondrial Apoptosis and Death Receptor Signaling Pathways in
Ishikawa Cells

In recent years, various types of programmed cell death have been reported, in-
cluding the classical apoptotic pathway, autophagy, pyroptosis, ferroptosis, and copper
death [38–40]. Among them, the apoptotic pathway, as one of the most classical forms of
programmed death, is subdivided into the endogenous apoptotic pathway and the exoge-
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nous apoptotic pathway [41]. In terms of the endogenous signaling pathway regulating
apoptosis, isorhamnetin can inhibit the expression of the apoptosis inhibitor Bcl-2 and
conversely promote the expression of the pro-apoptosis protein Bax (Figure 6A,B). The
mitochondrial signaling pathway, known as the endogenous signaling pathway, is com-
posed of enzymes and proteins that regulate mitochondria, particularly the Bcl-2 family of
mitochondrial enzymes that regulate apoptosis [42]. When the ratio of pro/anti-apoptotic
proteins increases, it allows for Cytochrome C to increase, and the precursor Caspase-9
then forms apoptotic vesicles inducing the activation of Pro-Caspase-9 which ultimately
leads to the eventual apoptosis of the cell via Caspase-3. In terms of extracellular signaling
pathways regulating apoptosis, the death receptor signaling pathway is a pathway that
exogenously causes apoptosis in cells and, so far, several pairs of ligand/death receptor
signaling systems [43–45]. Upon activation of the ligand/death receptor signaling system,
the death receptor binding protein (FADD) and Pro-Caspase-8 are recruited to form the
death-inducing signaling complex (DISC). After Pro-Caspase-8 activation, Pro-Caspase-3 is
sheared and apoptosis is induced.
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Figure 6. Endogenous and exogenous key proteins of apoptosis for Ishikawa cells treated with
different concentrations of isorhamnetin (0 µM, 20 µM, 40 µM, and 60 µM). (A): Consequence of
isorhamnetin treatment on endogenous apoptosis key proteins Bcl-2, Bax, Cytoc, Pro-Caspase-9,
Pro-Caspase-3, and PARP in Ishikawa cells. (B): Quantitative protein map of the effect of isorhamnetin
on the key proteins of endogenous apoptosis (Bcl-2, Bax, Cytoc, Pro-Caspase-9, Pro-Caspase-3, and
PARP). (C): Effect of isorhamnetin on the key proteins of exogenous apoptosis (TNF-R1, Fas, and
Pro-Caspase-8) in Ishikawa cells. (D): Quantitative protein map of the effect of isorhamnetin on the
key proteins of exogenous apoptosis (TNF-R1, Fas, and Pro-Caspase-8). Different alphabetic letters
(a, b, c, d) denote significant differences between different groups (p < 0.05, n ≥ 3).
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In addition, endoplasmic reticulum stress is also involved in apoptosis. Importantly,
TNF-R1 protein expression was activated, which then triggered the activation of its down-
stream Caspase-8, resulting in a decrease in the expression of Pro-Caspase-8 and ultimately
inducing apoptosis (Figure 6C,D).

3.8. Effect of Isorhamnetin on Immunohistochemical Assessment In Vivo

Ki-67 is an indicator of cell proliferation in immunohistochemistry, and the higher
the value of this indicator, the higher the malignancy of tumor cells [46]. The positive
brown areas in the isorhamnetin-treated group were found to be significantly reduced,
which means that isorhamnetin is beneficial in alleviating the malignancy of tumor cells.
Immunohistochemical staining with Caspase-3 as the key protein of apoptosis showed a
significant decrease in the positive brown area in the isorhamnetin-treated group. Chop, as
the key protein of endoplasmic reticulum stress, showed a significant increase in the positive
brown area in the isorhamnetin-treated group (Figure 7). The above results indicated that
isorhamnetin could affect the expression of Caspase-3 (a key protein of apoptosis) and
Chop (a key protein of endoplasmic reticulum stress in Ishikawa tumor-bearing mice with
endometrial cancer).
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Figure 7. Immunohistochemistry of key proteins Ki-67, Caspase-3, and Chop (the key protein of cell
proliferation, key protein of cell apoptosis, and key protein of endoplasmic reticulum stress-induced
cell apoptosis, respectively).

3.9. Reactive Oxygen Species Levels of Ishikawa Cells Treated by Isorhamnetin

Oxygen radicals generated by ROS are normal products of cellular metabolism and are
“double-edged swords” within the cell [47–49]. During cellular stress and injury, the cell
response is regulated by some levels of superoxide dismutase (SOD), glutathione (GSH),
and vitamins through enzymatic and non-enzymatic reactions, and these can reduce the
production of ROS [50]. However, once cells experience prolonged oxygen radical invasion,
the balance between the rate of oxygen radical production and elimination is disturbed,
which in turn affects the normal cell growth process.

As shown in Figure 8A,B, the levels of cellular ROS production were 2.93% ± 0.367%,
9.28% ± 0.783%, 16% ± 0.593%, and 30% ± 2.11%, respectively. N-acetylcysteine (NAC)
was added in the same way as in previous studies [22]. When NAC was added, the level of
cellular ROS production in isorhamnetin was 26.34% ± 0.95%. These above results suggest
that isorhamnetin can promote the ROS level.
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3.10. Effect of Isorhamnetin on Metastasis of Ishikawa Cells and Ishikawa Xenografts in Mice

The effects of isorhamnetin on scratch healing in Ishikawa cells are shown in Figure 9A,B.
Compared to 0 h, the cell scratches in the control group (0 µM isorhamnetin) were significantly
healed after 24 h. However, the rate of cell scratch healing with different concentrations
of isorhamnetin was reduced after 24 h treatment. Tumor metastasis is a complex process
involving cell migration, invasion, and adhesion, and the ability of cell migration and inva-
sion is usually detected using Transwell assays [51] (Figure 9C,D). MMP2 and MMP9 are
metalloprotein kinases which degrade tissue barriers; furthermore, they are also related to
epithelial–mesenchymal transition and are associated with cell migration and invasion [52].
At the cellular protein expression level, it can be found that the expression of MMP2 and
MMP9, the key metalloprotein kinases associated with migration, was down-regulated in a
concentration-dependent manner. All the results express that isorhamnetin can reduce cell
migration and invasion in a concentration-dependent manner (Figure 9E,F). Immunohisto-
chemical staining demonstrated that MMP2 and MMP9 are the key proteins of migration
and invasion-related pathways [53] (Figure 9G). The establishment of cell adhesion junctions
was regulated by E-cadherin, resulting in the formation of a continuous adherent epithelium.
If there is an absence of E-cadherin in mesenchymal cells, the tight cell-to-cell junctions are
lost. The inhibition of cell migration by isorhamnetin in epithelial–mesenchymal transition
deserves further investigation. The results of MMP2 immunohistochemistry showed that
the positive brown area after isorhamnetin action was significantly weaker compared to the
control group, and MMP9 also showed the same trend.
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doplasmic reticulum stress-related pathway, the mitochondria-related pathway, and the 
death receptor-related pathway by regulating the intracellular ROS level, and finally 

Figure 9. Metastasis of Ishikawa cells and Ishikawa xenografts in mice treated with isorhamnetin.
(A): Scratch healing of Ishikawa cells with different concentrations of isorhamnetin (0 µM, 20 µM,
40 µM, and 60 µM). (B): Quantification of the effects of isorhamnetin (0 µM, 20 µM, 40 µM, and 60 µM)
on scratch healing. (C): Migration and invasion of Ishikawa cells treated with different concentrations
of isorhamnetin (0 µM, 20 µM, 40 µM, and 60 µM). (D): Quantification of the migration and invasion
of Ishikawa cells treated with different doses of isorhamnetin (0 µM, 20 µM, 40 µM, and 60 µM).
(E): Effect of isorhamnetin on Ishikawa cell migration and invasion toward MMP2 and MMP9.
(F): Quantification of the effects of isorhamnetin on MMP2 and MMP9 in terms of Ishikawa cell
migration and invasion. (G): Immunohistochemistry of key proteins in Ishikawa xenograft mice
treated with isorhamnetin (20 mg/kg). Different alphabetic letters (a, b, c, d) denote significant
differences between different groups (p < 0.05, n ≥ 3).

Altogether, isorhamnetin affected the expression of proteins in the cell cycle, the
endoplasmic reticulum stress-related pathway, the mitochondria-related pathway, and
the death receptor-related pathway by regulating the intracellular ROS level, and finally
induced apoptosis in human EC Ishikawa cells while also inhibiting cell metastasis, as
revealed in Figure 10.
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4. Conclusions

In conclusion, our findings suggest that isorhamnetin induced apoptosis in Ishikawa
cells by inducing the endogenous mitochondrial apoptotic pathway and exogenous death
receptor pathway while also promoting the endoplasmic reticulum stress-related pathway
and activating the corresponding markers of UPR response. In addition, isorhamnetin
affected the expression of MMP2 and MMP9-related proteins and eventually inhibited
the metastasis of human endometrial cancer Ishikawa cells. In Ishikawa tumor-bearing
mice, isorhamnetin inhibited tumor growth through the key proteins of mitochondrial
and endoplasmic reticulum-related pathways. Thus, isorhamnetin could be considered a
promising natural compound with therapeutic and/or preventive effects against cancer.
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