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Abstract: Oats are considered an exceptional source of high-quality protein. Protein isolation methods
define their nutritional value and further applicability in food systems. The aim of this study was
to recover the oat protein using a wet-fractioning method and investigate the protein functional
properties and nutritional values among the processing streams. The oat protein was concentrated
through enzymatic extraction, eliminating starch and non-starch polysaccharides (NSP), treating oat
flakes with hydrolases, and reaching protein concentrations of up to about 86% in dry matter. The
increased ionic strength from adding sodium chloride (NaCl) improved protein aggregation and
resulted in increased protein recovery. Ionic changes improved protein recovery in provided methods
by up to 24.8 % by weight. Amino acid (AA) profiles were determined in the obtained samples, and
protein quality was compared with the required pattern of indispensable amino acids. Furthermore,
functional properties of the oat protein, such as solubility, foamability, and liquid holding capacity,
were investigated. The solubility of the oat protein was below 7 %; foamability averaged below
8%. The water and oil-holding reached a ratio of up to 3.0 and 2.1 for water and oil, respectively.
Our findings suggest that oat protein could be a potential ingredient for food industries requiring a
protein of high purity and nutritional value.

Keywords: oat protein concentrate; enzymatic hydrolysis; functional properties; amino acids

1. Introduction

Oat protein is famous for its nutritional value comprising one of the highest concen-
trations of essential amino acids among crops [1,2]. Oats are considered as being absent of
carrying negligible amounts of potentially harmful protein, such as gluten [3,4], which is
intrinsic to conventional crops, such as wheat or barley [5]. The protein amount is relatively
high in oats and accounts for about 15–20% of the weight [6]; its main fraction by Osborne
mainly comprises globulin [7,8]. Oats might substantially vary in protein content and
amino acid profiles depending on their variety and growth conditions [9]. Protein location
in crops determines their amino acid profile; protein vacuoles closer to the outer layers and
fractioned as fiber are believed to display protein content that is richer in essential amino
acids [10]. The superior nutritional properties of oat protein generate interest in utilizing it
as a food ingredient [11], although a commercial protein concentration method has not yet
been established.

Oat protein has been mainly concentrated through two general techniques, dry or
wet fractioning, where the former provides the protein of lower purity, mainly due to its
inability to eliminate the attached-to-protein crop fractions, in particular starch [12,13].
The most common wet-fractioning method proposes alkaline protein extraction with its
subsequent precipitation at the isoelectric point [10,14]. However, the process of alkaline
treatment apparently influences the structure of the protein at the very beginning of the
process. Thus, the subsequent investigation of protein properties relies on the characteristics
of the protein, which have already been predetermined by the initially applied extraction

Foods 2023, 12, 965. https://doi.org/10.3390/foods12050965 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods12050965
https://doi.org/10.3390/foods12050965
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0002-6760-1375
https://doi.org/10.3390/foods12050965
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods12050965?type=check_update&version=1


Foods 2023, 12, 965 2 of 13

parameters. That might not replicate the properties of native oat proteins. In addition,
the harsh alkaline treatment induces the formation of potentially harmful substances,
such as lysinoalanine [15]. Reported modifications of processes, such as oat material
defatting [16] or pre-treating oat material, in particular, oat brans with enzymes prior
to alkaline extraction [17,18], facilitate or improve protein extraction, although limiting
factors were not considered and still remain. Some functional properties of oat protein were
recently reported, wherein the protein was extracted from oat brans treated enzymatically
by glucoamylase [19]. The proposed method investigated the protein retained in the
supernatant, which initially passed the relatively high centrifugal force. The functional
properties of the protein were improved compared to the control, which passed the alkaline
extraction. The protein recovery was not reported; however, it is believed that the recovery
of the particle might be improved by changing the settling velocities, wherein an increased
particle size might improve sedimentation [20], in particular the protein, finally resulting
in increased protein recovery. Alternatively to the isoelectric precipitation discussed above,
protein aggregation might be induced through an ionic shift [21]. Li and Xiong [22] recently
reported on the effect of salt on oat protein aggregation. The ionic strength modified by
ionizable salts, NaCl and NaP, increased the particle size of oat protein. We speculate that
in the present study, the enzymatic protein extraction led by the successive increase in
the size of the protein particle should result in the increased recovery of oat protein. In
addition, the composition of the protein in the presence of salts alters due to the weakened
electrostatic repulsion of the protein [22], causing the binding of protein subunits during
aggregation formerly restricted to an association.

The objective of this study was to extract and concentrate oat protein by a method
wherein oat starch and non-starch polysaccharides were subjected to enzymatic hydrolysis
with subsequent protein concentration through separation. Furthermore, the influence
of ionic change on protein aggregation and protein recovery was investigated; in addi-
tion, the amino acid redistribution and nutritional value among the processed streams
were determined.

2. Materials and Methods
2.1. Materials

For each trial, commercial oat flakes (Latvia) were used: 17.6 g/100 g of protein in dry
matter (DM), 5.7 g/100 g of fats in DM, 2.13 g/100 g of fiber in DM, 54.1 g/100 g of carbohy-
drates, 4.4 g/100 g of beta-glucans, and 0.01 g/100 g of salt, as sampled. Enzymes used for
the hydrolysis of starch and non-starch polysaccharides were as follows: commercial-grade
enzyme SQzyme HSAL as the source of alpha-amylase (HTAA; from Bacillus Licheniformis,
alpha-amylase activity 40,000 u/mL; Suntaq International, Guangzhou, China), and com-
plex commercial-grade enzyme Grainzyme FL with the main xylanase activity (XYL; from
Trichoderma reesei, xylanase, beta-glucanase, and cellulase activities were 12,000 u/mL,
5000 u/mL, and 1000 u/mL, respectively; Suntaq International, Guangzhou, China). NaCl
was a commercial-grade table salt; water deionized; NaOH 0.1 M; HCl 0.1 M.

2.2. Chemical Characterization Methods

The following methods were applied to characterize the samples: protein LVS EN ISO
20483:2014, moisture ISO 6496:1999, fiber ISO 5498:1981, fat ISO 6492:1999, and amino acids
LVS EN ISO 13910-2005.

2.3. Protein Extraction from Oat Flakes
2.3.1. Oat-Protein-Extraction Hydrolyzing Starch by Alpha Amylase

Oat flakes were mixed with previously heated water at the temperature of 80 ± 1 ◦C,
wherein HTAA was added at the amount of 0.05% by volume. Then, while continuously
stirring, oat flakes (room temperature) were added at the ratio of 1:10 by weight. The
mixture was stirred periodically at intervals of about 30 s every 3 min using the hand
mixer Promix (Phillips, Hungary) for 30 min while the temperature of hydrolysis was kept
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within the range of 75–80 ◦C. The hydrolysate was then separated by Hereus Multifuge
X3 (Thermo Fisher Scientific, Osterode am Harz, Germany) at the G-force 900 for 1 s to
separate the fiber. The obtained clarified hydrolysate was then separated at G-force 4800 for
5 min. The extracted protein biomass was washed with water at a ratio of 1 to 4 by weight.
The washed protein biomass passed separation by the aforementioned centrifuge at G-force
4800 for 5 min and then dried in a 65 ± 2 ◦C hot air oven B5745-5-M (AEG, Germany) for
24 h. The dried oat protein was milled by hammer mill LM 3100 Perten Instruments (Perkin
Elmer, USA) and a sieve of 0.8 mm. The separated fiber was dried in a 65 ± 2 ◦C hot air
oven for 24 h. Obtained samples were coded as A1 for protein and AF1 for fiber.

2.3.2. Oat-protein-Extraction Hydrolyzing Starch by HTAA and Non-Starch
Polysaccharides by XYL

Oat flakes were mixed with previously heated water at a temperature of 60 ± 1 ◦C,
wherein HTAA and XYL were each added at the amounts of 0.05% by volume. Room-
temperature oat flakes were added to the water at a ratio of 1:10 by weight while the
water was continuously stirred. The mixture was stirred periodically at intervals of about
30 s every 3 min using the hand mixer Promix (Phillips, Hungary) for 20 min. Then, the
temperature of the mixture was raised to 80 ± 1 ◦C while keeping the stirring intervals at
the same periodicity for the next 20 min. The subsequent processing steps were the same
as the said above for the oat-protein-extraction hydrolyzing starch by alpha-amylase. The
obtained samples were coded as AX1 for protein and AXF1 for fiber.

2.3.3. Oat-Protein-Extraction Shifting-Ionic Strength of the Solution

Oat protein was extracted by the said-above methods, treating oat flakes with HTAA
and a combination of HTAA and XYL prior to the separation step at G-force 4800. NaCl
was then added to the clarified hydrolysate up to 0.1 M, then stirred using the hand mixer
Promix (Phillips, Hungary) for 1 min and kept in a 75 ◦C hot air oven for 4 h. After the
retention, the protein extraction was processed by the same methods as above, wherein
HTAA and combined enzymes of HTAA and XYL were used. The obtained protein samples
were named AR1 and AXR1 for the proteins, wherein HTAA was used only as an enzyme
and in combination with XYL, respectively.

2.4. Protein Solubility

The samples obtained by the methods said above were subjected to protein solubility
treatments in aqueous solutions wherein the pH levels were set at values of 3, 6, and 9.
This method was adopted with minor modifications, as published by Morr et al. [23] and
Sewada et al. [24]. Briefly, aliquots were prepared by dispersing 1 g of the obtained samples
in a 0.1 NaCl solution. The dispersions were then set to a certain pH value by 0.1 N NaOH
or HCl and adjusted to 50 mL of volume. The dispersions were continuously stirred using
a magnetic stirrer for 2 h at room temperature. Measurements of pH were controlled
by the pH-metre Mettler Toledo Seven Compact equipped with an Inlab Expert Pro-ISM
pH-electrode. After 2 h, the samples were separated by means of centrifugation at G-force
4600 for 5 min with Hermle Z 206 A (Hermle Labortechnik GmbH, Wehingen, DE) at room
temperature. The supernatants were filtered through the filtration paper FB-III-20 (GOST
12026-76, ash content, no more than 0.00133%, filtration capacity <26 s, bursting strength
5 kPa, Melior XXI, Ltd., Moscow, RU). The content of nitrogen in filtrates was determined
using the Kjeldal method. The protein solubility index (PSI) for samples was determined
according to Equation (1):

PSI =
Protein in f iltrate, % × weight o f solution (g)

Protein in dried sample, % × weight o f sample (g)
× 100%, (1)

the protein conversion factor determining oat protein is set to 6.25 × N.
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2.5. Water and Oil-Holding Capacity

Water and oil-holding capacity were determined according to the method described
by Mirmoghtadaie et al. [25] with minor modifications. The samples of protein concentrate
were dispersed in deionized water or in refined deodorized sunflower oil at room tempera-
ture, then stirred by a vortex mixer VXHDDG (Ohaus, Parsippany, NJ, USA) for 1 min and
kept for 30 min, periodically vortexing in periods of 10 min for 10 s. The vortex mixer speed
for water and oil was set at 2500 rpm and 1200 rpm, respectively. The amount of substance
subjected to measurement was 1 g per sample, with the water and oil ratio being 1:10 by
weight. Dispersions after 30 min were centrifuged at G force 3000 for 5 min by centrifuge
Hermle Z 206 A (Hermle Labortechnik GmbH, Wehingen, Germany) at room temperature.
The supernatants of the samples were poured out, and the pellets were weighed. The water
and oil binding capacities were expressed as the amounts of water and oil in grams retained
per gram of sample of the protein concentrate.

2.6. Foaming

The method of determining the foaming capacity with minor modifications was ap-
plied as described by Mirmoghtadaie et al. [25]. Briefly, the samples of protein concentrate,
in the amount of 1 g each, were dispersed in 33 mL of the deionized water and continuously
stirred with the magnetic stirrer for a period of 30 min. Then, the dispersions were sub-
jected to high shear mixing with a T10 Ultra Turrax (IKA Werke GmbH & Co. KG, Staufen,
Germany), which lasted 5 min. The total volume of foam was measured at periods of 5, 10,
30, 60, and 120 min. The foaming capacity of the oat protein concentrate was calculated
according to Equation (2):

Foaming capacity =
Foam volume (mL)
Initial volume (mL)

× 100%, (2)

2.7. Data Processing

Friedman’s non-parametric test and Anova test were applied to analyze the median
and mean differences, respectively, among the polar and non-polar amino acid groups
previously validated by the Shapiro-Wilk normality test. Data in tables and graphs are
expressed as the mean ± standard deviation for at least three replications, if not mentioned
separately. Statistical analysis was conducted using R [26], and figures were produced
using packages of ggstatsplot [27], ggplot2 [28], and Microsoft excel. RStudio [29] was used
for Integrated Development Environment for R.

3. Results and Discussion
3.1. Protein Extraction
3.1.1. Protein Recovery

Oat protein was extracted by eliminating the starch through enzymatic hydrolysis
by treating the oat material with HTAA and XYL, affecting non-starch polysaccharides.
Additionally, the step of the ionic shift was introduced to promote the aggregation of the
protein. The results characterize the obtained samples’ protein concentration, crude oil, and
fiber content, as well as protein yield among the obtained samples, as presented in Table 1.

Protein extraction was carried out in separate batches of about 400 g of initial oat
material in each. The dried samples were analyzed for protein concentrations which varied
from 84.6% to 86.5% in dry matter (DM) by weight, for A1 and AXR1, respectively. For
example, it was reported that applying harsh alkaline protein solubilization allowed the
concentration of the protein up to 68.4% in DM, wherein the pH of the slurry was set to
12.1 [10]. Some modified methods, including enzyme pre-treatment (treated with xylanase,
alpha-amylase, glucoamylase, and cellulase), prior to the subsequent 2M NaOH alkaline
extraction, resulted in a protein concentration of up to 82% [18] when oat brans were
used as a raw material. Other reports demonstrated that oat brans, treated by means of
amyloglucosidase, allowing the concentration of the protein up to 83.8%, although the yield
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was not reported [19]. Recently published methods, introducing protein-glutaminase with
subsequent protein separation through ultrafiltration, revealed improved protein solubility,
although the protein concentration was only achieved up to 52.4% [30].

Table 1. Chemical characterization of oat protein concentrates, g/100 g in DM. Different letters within
a column indicate significant differences for each parameter (p < 0.05).

Samples Protein Crude Oil Fiber Protein Yield *

FL1 17.56 ± 0.03 d 5.7 ± 0.11 d 2.1 ± 0.1 b NA
A1 84.64 ± 1.64 a 3.0 ± 0.14 e 1.4 ± 0.08 c 35.9 ± 0.70 c

AR1 84.2 ± 1.89 a 5.2 ± 0.06 d NA 44.8 ± 0.83 b
AX1 85.86 ± 1.80 a 5.7 ± 0.08 d 1.1 ± 0.05 c 28.1 ± 0.56 e

AXR1 86.46 ± 2.23 a 6.3 ± 0.20 c NA 33.1 ± 0.51 d
AF1 30.30 ± 0.62 c 7.6 ± 0.16 b 5.5 ± 0.37 a 35.9 ± 0.73 c

AXF1 39.36 ± 0.76 b 9.0 ± 0.40 a 5.2 ± 0.34 a 47.6 ± 1.02 a
* % of protein content in initial material.

In the current study, the concentration of the protein in fiber samples varied in the
range from 30.3 g/100 g in AF1 to 39.6 g/100 g in AXF1, both in DM. The oil content was
higher in samples wherein non-starch polysaccharides were affected by XYL enzymes. The
retention step affected the oil concentration level in the samples of oat protein concen-
trate. The oil increased in both cases wherein the retention step with an ionic shift was
introduced. The retention step substantially increased the protein yield. The increase in
protein yield reached up to about 24.8% and 17.8% of raw protein in samples, wherein oat
flakes were treated by HTAA and in addition to XYL, respectively. This can be explained by
increased ionic strength in solutions, which finally promoted the development of protein
aggregates due to a change in intramolecular electrostatic forces [31]. In addition, salts, in
particular 0.1 M NaCl at neutral pH, might stimulate the insolubility of the protein. Such
a phenomenon was linked to a declined electrostatic repulsion and the development of
hydrophobic interactions [22]. Based on that, we concluded that a 0.1 M NaCl concentration
stimulated the protein aggregation and facilitated its precipitation.

The difference in effect for samples treated with XYL should be considered in terms of
the first separation of fiber at 900× g. The separation force was determined experimentally
by the authors as minimal, effectively separating the insoluble fiber. Applying enzymes
subsequently that break down non-starch polysaccharides promoted protein sedimentation
along with the fiber. That apparently reduced the yield of the protein in AX1 compared
to A1 free of XYL treatment. The high protein concentration in the fiber might also be
considered as an associated material with aleurone and sub-aleurone layers which are
typically rich in protein [6].

3.1.2. AAs in Protein Concentrates

The amino acid compositions of the analyzed samples are given in Table 2. Generally,
changes in the amino acid composition of products passing treatment might reveal their
extent of modification [32]. In the present research, the AA profiles among the samples
were relatively identical. Minor decreases of about 10% in Cys and about 8% in Met were
observable in AR1 as compared to A1. On the other hand, slight increases of about 7% in
His and about 8% in Ile were detected in AR1 as compared to A1. The ionic shift had no
significant impact on the AA content in samples treated with XYL. The content of AAs
in those samples was quite equal and varied in the range of 3% for certain AAs such as
His and Ile. Other changes in the AA content between AX1 and AXR1 were even at a
lower extent.
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Table 2. The amino acid compositions of oat protein in analyzed samples, with g/100 g of total
protein. Means followed by the same letter within a row indicate no significant difference among the
samples (p < 0.05).

FL1 A1 AR1 AX1 AXR1 AF1 AXF1 FL1

Ala 3.77 ± 0.13 b 3.77 ± 0.05 b 3.8 ± 0.1 b 3.83 ± 0.05 b 3.83 ± 0.05 b 4.48 ± 0.14 a 4.25 ± 0.11 a
Arg 6.55 ± 0.17 d 7.08 ± 0.19 cd 7.22 ± 0.08 c 7.14 ± 0.16 c 7.16 ± 0.34 c 11.17 ± 0.21 a 7.83 ± 0.15 b
Asp 7.54 ± 0.28 a 7.33 ± 0.33 a 7.57 ± 0.2 a 7.33 ± 0.17 a 7.44 ± 0.2 a 7.45 ± 0.17 a 7.61 ± 0.32 a
Cys 2.23 ± 0.05 c 2.83 ± 0.12 a 2.58 ± 0.08 b 2.82 ± 0.03 a 2.85 ± 0.03 a 2.18 ± 0.09 c 2.4 ± 0.12 bc
Phe 5.07 ± 0.18 c 5.9 ± 0.08 b 5.86 ± 0.22 b 5.88 ± 0.06 b 5.99 ± 0.07 ab 5.12 ± 0.25 c 6.4 ± 0.17 a
Gly 4.39 ± 0.14 bc 4.12 ± 0.14 c 4.32 ± 0.19 c 4.41 ± 0.19 bc 4.39 ± 0.12 bc 5.01 ± 0.15 a 4.77 ± 0.08 ab
Glu 19.91 ± 0.42 b 23.84 ± 0.65 a 23.85 ± 0.79 a 23.55 ± 0.31 a 23.44 ± 0.47 a 18.7 ± 0.3 b 19.71 ± 0.76 b
His 2.29 ± 0.05 c 2.4 ± 0.04 bc 2.58 ± 0.12 ab 2.46 ± 0.07 bc 2.54 ± 0.05 b 2.44 ± 0.1 bc 2.76 ± 0.08 a
Ile 3.59 ± 0.16 c 4.05 ± 0.06 b 4.38 ± 0.14 a 4.25 ± 0.13 ab 4.39 ± 0.06 a 4.01 ± 0.06 b 4.14 ± 0.15 ab
Leu 7.23 ± 0.13 b 8.46 ± 0.17 a 8.51 ± 0.19 a 8.49 ± 0.1 a 8.47 ± 0.36 a 7.45 ± 0.3 b 7.66 ± 0.17 b
Lys 3.71 ± 0.05 bc 3.45 ± 0.08 d 3.48 ± 0.06 cd 3.44 ± 0.05 d 3.51 ± 0.16 cd 4.12 ± 0.04 a 3.78 ± 0.11 b
Met 1.67 ± 0.08 c 2.14 ± 0.02 a 1.99 ± 0.04 ab 2.14 ± 0.08 a 2.16 ± 0.06 a 1.65 ± 0.08 c 1.82 ± 0.05 bc
Pro 6.18 ± 0.14 a 5.96 ± 0.15 ab 5.93 ± 0.26 ab 5.94 ± 0.25 ab 5.93 ± 0.11 ab 5.48 ± 0.25 b 5.6 ± 0.16 b
Ser 4.08 ± 0.05 a 4.28 ± 0.17 a 4.33 ± 0.15 a 4.34 ± 0.13 a 4.34 ± 0.17 a 4.41 ± 0.13 a 4.47 ± 0.2 a
Tyr 3.59 ± 0.12 b 4.41 ± 0.2 a 4.54 ± 0.12 a 4.61 ± 0.2 a 4.68 ± 0.07 a 3.87 ± 0.12 b 4.69 ± 0.16 a
Thr 3.09 ± 0.08 b 3.08 ± 0.14 b 2.99 ± 0.12 b 3.06 ± 0.1 b 3.08 ± 0.05 b 3.44 ± 0.07 a 2.92 ± 0.04 b
Val 5.25 ± 0.26 a 5.59 ± 0.11 a 5.45 ± 0.08 a 5.56 ± 0.2 a 5.55 ± 0.21 a 5.37 ± 0.17 a 5.35 ± 0.07 a

Since the protein consists of AAs, its interaction with solvents, including water, as-
sumes the involvement of functional groups or the peptide bonds of the individual AAs
independently [33]. The presence of chaotropic salts influences electrostatic interactions
with polar and charged groups, affecting hydrophobic interactions that enhance the un-
folding tendency of the proteins [34]. Exposed groups are known to be important in
salt-induced protein-protein interactions [35]. Given that the albumin fraction normally
has an increased content of polar amino acids, whereas the increased amount of non-polar
amino acids is typically attributed to oat globulins [36], AAs were grouped by polarity,
although significant differences among the groups have not been revealed, as shown in
Figure 1. The lack of significant changes in AA content might indicate that the ionic shift
did not affect the protein composition in the protein concentrate.
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In contrast to the similarity of AA profiles among the protein concentrates, the redis-
tribution of AAs among the rolled oats and its derivatives obtained through the process,
particularly the oat protein concentrates and oat fiber fractions, varied substantially and
are discussed below.

3.1.3. AA Redistribution among the Samples A1, AR1, AF1

AA redistribution was compared between the samples treated with HTAA, in particu-
lar A1, AF1, AR1, and the initial oat material; the percentage change is shown in Figure 2.
A considerably increased concentration of Cys, Met, and Tyr was observable in protein
concentrates. The peak of change was observed for Arg, of which the concentration sub-
stantially increased in the oat fiber stream. An increased amount of Arg in the bran fraction
was also observed by Ma [10]. Arg prevails in 7S fractions of oat globulin [37], although this
association might be considered with some degree of uncertainty assuming the challenging
sedimentation of 7S at low-speed G-force, which was operated in the present study. Lys,
which is considered a limiting AA in oat proteins, decreased in the concentrated protein,
though it increased in the fiber stream. The decrease in Pro was observed in all samples
treated with HTAA. Due to the ionic shift, the Cys and Met content was lower in AR1 than
in A1, although AR1 contained higher amounts of His and Ile than A1.
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initial oat material, oat flakes (FL1).

3.1.4. AA Redistribution among the AX1, AXR1, and AXF1

It is believed that some of the oat protein is bound within the non-starch polysac-
charide matrix and could be effectively liberated by enzymes hydrolyzing non-starch
polysaccharides [17], in particular glucosidases [38]. However, introducing XYL has not
changed the AA profile in AX1 substantially compared to A1. Interestingly, the retention
has not influenced AA redistribution; the resulting AA profiles of AXR1 and AX1 revealed
negligible deviations only (see Figure 3). Generally, current AA redistribution harmonizes
with the aforementioned profile, wherein oat flakes were treated with HTAA only. Lys
content was reduced in protein concentrates, while it slightly increased in the fiber stream.
Pro was present at a lower extent in all samples, whereas its concentration increase was
observed in most of the analyzed AAs.

Apparently, the ionic shift does not promote the aggregation of various protein sub-
units; rather, the changed ionic charge stimulates protein aggregation, attracting proteins
of the same fraction, or changes to forms disposed to faster sedimentation. On the other
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hand, the presence of xylanase during hydrolysis changes the concentration of AAs in the
fiber stream considerably.
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Figure 3. The percentage change of amino acid amount in samples AX1, AXF1, AXR1, compared to
initial oat material, oat flakes (FL1).

3.1.5. Nutritional Value of Fractioned Oat

The amount of essential amino acids in all fractions was clearly higher than the FAO
recommended for the ideal protein [39]. The composition of indispensable amino acids was
surpassed in all samples. The graph representing averaged content (oat fractions averaged
wherein A1, AR1, AX1, and AR1 are protein fractions, while AF1 and AXF1 are fiber
fractions) of indispensable AAs in samples is represented by Figure 4. The only limiting
amino acid in the samples was lysine, which is typically low in the initial oat material. A
deficiency of lysine was observed in all samples. The summarized content of indispensable
amino acids in averaged samples overcame the recommended 36% ratio for essential/total
amino acid content [36]. The highest content of the summarized indispensable amino acids
was determined for the oat protein concentrate.
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3.2. Protein Solubility

The results of the solubility test for samples A1, AR1, and AX1 are presented in
Figure 5. The solubility of the protein has reached about 6% in all ranges of pH values in
the measured samples. Interestingly, the pH shift to the acidic or alkaline side improved
the protein solubility only to an insignificant extent, despite the fact that the protein is sus-
ceptible to hydrolysis at harsh pH conditions [40], by its subsequent reduction in molecular
size followed by an increased solubility [41]. Earlier reported solubility of the oat protein,
obtained through alkaline solubilization with subsequent protein precipitation, ranged
from 20% [42] to 70% [43]. Air-separated native oat proteins were reported as being soluble
by more than 20% at pH 7 [44]. The solubility of oat proteins which passed enzymatic
extraction was reported in the range of 10% to 50% at pH 9 and pH5, respectively [19].
However, it is rather difficult to explain such a low solubility of the current investigated
samples as various factors might affect protein solubility, from salt concentration [8] to the
oat variety used for tests [45]. Though, the authors of the present research speculated that
the resulting data represented the protein self-assembling due to increased protein concen-
trations. It was observed that protein concentrations exceeding 1.0 mg/mL initiate protein
aggregation, subsequently increasing the protein molecule in size through the association
of proteins [46]. Increased protein molecule size might reduce protein solubility [41].
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3.3. Foaming Properties

The foaming capacity of protein concentrate samples was evaluated and expressed
as a change in the foam volume and stability within a 2-h period. Results are presented
in Figure 6. Low protein concentration in the mixture was suggested to be used to avoid
the viscosity effect on the colloidal stability [47]. The highest capacity was determined in
AXR1 and A1, whereas the lowest capacity was found in AR1. The foam stability was poor
for all tested samples and started to decrease sharply. The lowest foaming capacity and
stability were observed for A1 as it was negligible at the start of the measurement and
disappeared after 10 min. Interestingly, the ionic shift demonstrated dissimilar foaming
characteristics; while the foaming capacity of AXR1 was the highest, the AR1, on the
contrary, was the poorest. In general, the foaming capacity was substantially lower than
reported by Kaukonen et al. [48], wherein the foaming capacity for the oat protein (protein
content in the water extract used for the test was 0.33% with prior extracted lipids by CO2)
reached up to 137% by volume. However, it should be considered that the molecular weight
of the water-extracted protein was mostly detected at 10–15, 20–30, and 35–45 kDa bands.
Those relatively smaller than the oat protein MW, and the methods used for extraction
(water extraction), relate the reported protein to the soluble fraction, which was perhaps
the fractions of water-soluble albumins. These results suggest that the foaming capacity of
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soluble oat proteins is higher than in proteins with limited solubility. A similar statement
was reported earlier, indicating that albumins might contribute to foaming [49].
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Figure 6. Foaming capacity of oat protein concentrates, %. Different letters indicate significant
differences in each measurement (p < 0.05).

3.4. Water/Oil-Holding Capacity

The oil and water-holding capacities of oat protein concentrates are displayed in
Figure 7. In general, the moisture retention, when operating with water, was practically
identical for all samples. The highest and lowest water-holding capacity was detected for
A1, wherein water was bound at ratios of 3.0 to 1. The lowest results were for AR1 and AX1,
which ranged from a 2.84 and 2.83 to 1 ratio, respectively. Any substantial indifferences
could be detected among the protein samples treated with salts or XYL enzymes, where
the observed variation in the range of about 5% was too low to distinguish the influence of
the presence of salt on the water holding capacity. The samples held oil at an average of
about 2.19 to 1. Variation among the samples was negligible, with the highest value being
for AX1 and the lowest for AR1, which was determined for samples at a 2.21 and 2.16 ratio,
respectively. The extraction methods have not revealed a substantial impact on oil-holding
capacity. The effect of oil and water holding was higher than reported by Mirmoghtadaie
et al. [25], wherein the results for water and oil-holding capacity were determined at the
ratio of 1.27 g/g and 1.73 g/g, for water and oil, respectively. The results were reported for
the oat protein obtained through isoelectric precipitation after alkaline extraction. Similar
alkaline extraction of the oat concentrate was also reported to produce a water-holding
capacity ranging from 2.00 to 2.70 mL/g and an oil-holding capacity ranging from 2.25 to
2.80 mL/g [10]. Interestingly, the mentioned variation depended on the oat varieties. The
enzymatically-extracted oat protein concentrate from brans had a reportedly higher water
binding capacity of 3.73 mL/g and a lower oil-holding capacity which was determined in
the range of 1.26 mL/g [19].
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4. Summary

Oat protein, treated enzymatically, reached a concentration level of up to 86 g/100 g in
DM. Breaking down non-starch polysaccharides by enzymes did not influence the protein
concentration level, although this reduced the yield of protein extraction, supposedly due
to the viscosity of the media reduction, which caused the increase in the speed of protein
sedimentation. The ionic shift stimulated the aggregation of the protein, which resulted
in a substantially increased rate of protein recovery. Breaking down the enzymatically
non-starch oat polysaccharides did not affect the amino acid profile of the recovered
protein; the composition of amino acids remained the same. Applying complex enzymes to
depolymerize non-starch polysaccharides led to protein concentration in the fiber stream
during fiber separation. The amino acid profile in the fiber and protein concentrate varied;
the lysine content in the fiber was present to a higher extent. On the other hand, the
concentration of the essential amino acids was higher in both analyzed streams, in the
protein concentrate, and in fiber, compared to the initial material oat flakes. The liquid-
enzymatic oat processing produced a practically insoluble oat protein concentrate. The
water and oil-holding capacity of the protein concentrate was in the range of 2.8–3.0 g/g
and about 2.2 g/g, respectively; no substantial difference was observed among the samples.
The foaming capacity of the recovered oat protein concentrate was negligible.
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