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Abstract: This study investigated concentrations of cadmium (Cd) in 2465 vegetable samples
(52 species) from 2018 to 2022 and estimated the associated health risk for local consumers. The
average concentration of Cd was 0.035 mg kg−1, and the percentage of samples exceeding the Chinese
maximum allowed concentration was 3.89% (96/2465). The top five species with highest Cd levels
were Lilium brownii F (0.182 mg kg−1), Allium chinense G (0.117 mg kg−1), Allium macrostemon Bunge
(0.105 mg kg−1), Colocasia esculenta (0.064 mg kg−1), and Amaranthus tricolor L (0.054 mg kg−1). Bulb
vegetables had a higher relative accumulation of Cd compared to other vegetables. The levels of Cd
in vegetables varied significantly across sampling areas and years. The mean estimated daily intake
(EDI) of cadmium through consumption of vegetables was 0.519 µg kg−1 bw per day for adults and
0.217 µg kg−1 bw per day for children. The target hazard quotients (THQs) were all less than the
threshold of 1 for both adults and children. This indicates that there is low health risk for Cd through
vegetable consumption. However, routine monitoring of Cd levels in food is still crucial to ensure
food safety and protect public health.
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1. Introduction

Vegetables are important sources of food for the world’s population. In Asia, especially
in China, they account for a large proportion of the food structure due to the traditional
vegetarian habit. The Dietary Guidelines for Chinese Residents (2016 Edition) suggest that
the daily vegetable intake for the general population should be between 300 and 500 g [1].
Vegetable consumption can provide carbohydrates, protein, dietary fiber, vitamins, and
minerals to the human body. However, there is increasing concern about the accumulation
of toxic substances from the environment.

Toxic metal pollution is a worldwide environmental problem that causes tremendous
harm to public health. Soil can easily become polluted with metals due to industrial
wastewater, mining emission, fossil fuel burning, sewage sludge, and fertilizers [2]. Once
these chemicals enter the soil and water, they can be absorbed by plants and transferred to
the human body through the food chain. According to a nationwide survey by the Chinese
Ministry of Environmental Protection (MEP) [3], 19.4% of recognized cropland locations
had accumulated toxic metals at abnormal levels. Cadmium (Cd) is the main pollutant,
with 7% of soil samples exceeding the Chinese soil quality limit [4].

Cd has been widely used in metal electroplating industries, batteries, ceramics, elec-
tronic instruments, pigments, petroleum products, textiles, insecticides, solders, synthetic
chemicals, and photography [5]. When Cd accumulates in the human body, it can cause
irreversible damage to biological systems. Furthermore, the Cd in the human body is usu-
ally bound firmly to metallothioneins [6]. The liver and kidney are the main targets of Cd,
which has a long biological half-life, about 2–3 decades in the kidney [7]. Chronic exposure
to elevated levels of Cd can cause liver damage, bone degeneration, blood damage, and
renal dysfunction.
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Several reports have revealed [8] varying concentrations of Cd in different types of
vegetables. For instance, Singh et al. discovered 5.35 mg kg−1 dry weight (dw) of Cd in
B. vulgaris from carpet industrial and residential areas in India. Ahmed et al. [9] observed
0.19–0.83 mg kg−1 dw of Cd in leafy vegetables, such as spinach, water spinach, malabar
spinach, jute mallows, red amaranths, and stem amaranths from the Keraniganj agricultural
area in Bangladesh. Quispe et al. [10] found 0.0136 mg kg−1 wet weight (ww) of Cd in
peppermint, coriander, garlic, and leek from Arequipa, Peru. Chen et al. [11] reported an
average value of 0.17 mg kg−1 ww of Cd in vegetables, where 34.3% of leafy vegetables and
33.3% of rootstalk vegetables exceeded the Chinese maximum permissible limit (0.02 mg
kg−1 ww for leafy vegetables and 0.1 mg kg−1 ww for rootstalk and legume vegetables) in
Xiangtan county, Hunan province, south China.

The Yangtze River Delta region in southeast China has high population density and
rapid economic activities. Our previous reports [12–17] have found potential pollution
of toxic metals in marine fish, fresh meat, rice and seaweeds in the region. Accordingly,
it is reasonable to hypothesize that there is potential metal contamination in vegetables
from the Yangtze River Delta region in southeast China. In this study, we conducted an
extensive investigation on the concentration of cadmium (Cd) in vegetables by collecting a
large number of samples from Zhejiang province in southeastern China. The characteristics
of Cd distribution and target hazard quotient (THQ) for local residents were analyzed. The
data from this study will provide scientific support for population health risk assessment
in this area and inform future efforts to monitor and regulate the levels of cadmium and
other toxic metals in food.

Overall, the study underscores the importance of ongoing research and monitoring
efforts to ensure food safety and to protect public health in regions with high levels of
economic activity and population density. By identifying and addressing potential sources
of pollution and contamination, researchers and policymakers can work together to promote
a safe and healthy food supply for all.

2. Materials and Methods
2.1. Monitoring Samples

From 2018 to 2022, 2465 fresh vegetable samples were collected from 11 monitoring
areas in Zhejiang Province. The simple sampling map is shown in Figure 1. The simple
map was drawn by MapGIS K9 SP2 free trial edition (Zondy Cyber Comp., Beijing, China).
The analysis of monitoring samples was completed by the laboratories of the Centers for
Disease Control and Prevention (CDC) in Hangzhou, Huzhou, Jiaxing, Jinhua, Lishui,
Ningbo, Quzhou, Shaoxing, Taizhou, Wenzhou and Zhoushan. All edible parts of samples
were collected and homogenized, and they were pretreated and tested immediately within
one day.

In total, 2465 fresh vegetable samples were classified into 10 types with 52 species.
They were Brassica (Brassica campestris L., broccoli, cabbage, cauliflower and purple cabbage),
bulb vegetable (Allium cepa L., Allium chinense G., Allium macrostemon Bunge, Allium tubero-
sum Rottler, Lilium brownii F.), Cucurbitaceae (Benincasa hispida, Cucumis sativus L., Cucur-
bita moschata, Cucurbita pepo, Lagenaria siceraria, Lagenaria siceraria var. hispida, Luffa aegyptiaca
Miller, Momordica charantia L.), leaf vegetable (Amaranthus tricolor L., Apium graveolens L.,
Brassica campestris L., Brassica rapa var. glabra RegeL., Coriandrum sativum L., Glebionis coro-
naria, Houttuynia cordata, Ipomoea aquatica Forsk, Lactuca sativa L., Lactuca sativa var longifoliaf,
Spinacia oleracea L.), stem vegetable (Asparagus officinalis L., Apium graveolens L., Lactuca sativa
var angustana), fresh legume vegetable (Phaseolus vulgaris L., Vigna unguiculata), Aquatic veg-
etable (Artemisia selengensis Turcz, Eleocharis dulcis, lotus root, Oenanthe javanica, Trapa bispinosa
Roxb, Zizania latifolia), root and tuber vegetable (Colocasia esculenta, Daucus carota, Dioscorea
polystachya, Ipomoea batatas, Raphanus sativus L., Solanum tuberosum L., Zingiber officinale Roscoe),
Solanaceous vegetables (Capsicum annuum L., green pepper, Solanum lycopersicum L., Solanum
melongena L.), and bamboo shoot. The samples were stored at −20 ◦C.
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2.2. Analysis and Quality Control

The concentrations of Cd in vegetables were analyzed using the Chinese standard
analysis method of GB 5009.268-2016 [18]. Briefly, fresh samples (1–2.0 g) were digested in
acid-clean Teflon vessels containing 8 mL HNO3 in a Mars-6 microwave digestion system
(CEM, Charlotte, NC, USA). The samples in closed vessels were heated at 190 ◦C for 20 min.
After digestion, the residue was heated at 150 ◦C until nearly dry. Then, it was diluted
to 20 mL by de-ionized water and analyzed by the ICP-MS instrument (NexION 300,
Perkin Elmer, Inc., Shelton, CT, USA). To ensure the quality of sample analysis, the certified
reference materials (CRMs) (GBW10014 cabbage and GBW10015 spinach) were analyzed
coupled with samples. The Cd values of CRMs were tested alongside the samples, and
the results were within 10% of certified values (0.035 ± 0.006 and 0.019 ± 0.02 mg kg−1).
Furthermore, the spiking samples (blank sample matrix addition of 0.05 mg kg−1 to
blank sample matrix) were investigated for quality control. All recoveries of spiking
ranged from 90% to 105%. The limit of detection (LOD) was defined by three times the
standard deviation of 10 runs of blank measurements. The LOD of Cd was found to be
0.002 mg kg−1.

2.3. Exposure Assessment

All test data were processed according to the Assessment Method for Low Content
Pollutants in Food stipulated by the WHO in 1995 [19]. That is, when the number of
undetected samples is not more than 60% of the total number, the undetected value is
expressed as half of the LOD.

The target hazard quotient (THQ) was used to assess non-carcinogenic risk of cadmium
intake by residents in vegetables [20]. THQ is calculated as follows, THQ = EDI/RfD.
Wherein, RfD is the reference dose of pollutants, referring to the recommended monthly
cadmium tolerance dose of JECFA PTMI 0.025 mg kg−1 body weight (bw) (equivalent to
0.8 µg kg−1 bw per day). EDI is the daily metal intake caused by eating vegetables. EDI is
calculated as follows: EDI = (R × C)/BW, where R is the vegetable consumption. According
to the data of the dietary survey report of Zhejiang Province, adults take 273.30 g d−1 and
children take 185.7 g d−1; C is the concentration of cadmium; BW is the average weight of
adults (18 years old and above), 60 kg, and children (7–18 years old), 30 kg.

For cancer risk analysis, the lifetime target cancer risk (TR) was calculated by mul-
tiplying the daily dose by the cancer slope factor (CSF) derived from the response–dose
curve for toxicant ingestion. TR is calculated as: TR = EDI × CSF × 10−3. Based on the
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USEPA Integrated Risk Information System (USEPA, 2010) database, the CSF value for Cd
is 6.3 mg kg−1 per day. If TR > 1 × 10−4, it indicates that the risk of developing cancer
over a human lifetime is a 1 in 10,000 carcinogenic risk. If 1 × 10−6 < TR < 1 × 10−4, it
indicates an acceptable level of carcinogenic risk. If TR < 1 × 10−6, it indicates a negligible
carcinogenic risk [10].

2.4. Data Processing and Statistical Analysis

SAS JMP 10.0 (free trial version) software was used for statistical analysis, and Mapinfo
12.0 (free trial version) software was used to draw the geographic spatial distribution map.
The data of various toxic metals cadmium were tested by Shapiro–Wilk W, and the results
showed that the data were presented as a non-normal distribution. Therefore, Kruskal–
Wallis test in the non-parametric test method was used to analyze the statistical difference
of Cd content among different areas and years. An alpha level of 0.05 was adopted for all
statistical groups.

3. Results and Discussion
3.1. Cadmium Content in Vegetables

Our results found that the average level of Cd in 2465 vegetables was 0.035 mg kg−1

wet weight (ww) (<LOD~1.82 mg kg−1 ww), with the P97.5 at 0.074 mg kg−1 ww. Accord-
ing to the Chinese national food safety standard GB2762-2021, the maximum allowable
concentration (MAC) of cadmium is 0.2 mg kg−1 ww for Apium graveolens L., 0.1 mg kg−1

ww for legume vegetables, root and tuber vegetables and stem vegetables (excluding Apium
graveolens L.), 0.2 mg kg−1 ww for leaf vegetables, and 0.5 mg kg−1 ww for other fresh
vegetables. Our data showed that 3.89% (96/2465) of the samples exceeded the MAC for
Cd (see Table 1). The ratio was higher than the value in our previous report, which was
0.25% in 1196 vegetable samples collected in 2016 [16], but lower than the result in another
one of our reports, which was 4.37% in 343 samples collected in 2014 [15]. The data also
showed that the main vegetable categories that exceeded the MAC were bulb vegetables,
root and tuber vegetables and aquatic vegetables.

Table 1. The concentrations of Cd in vegetables (wet weight).

Types N Mean a

(mg kg−1)
P97.5
(mg kg−1)

Range
(mg kg−1)

MAC b

(mg kg−1)
No. of >MAC

All vegetables 2465 0.035 ± 0.021 0.074 <LOD~1.82 - 96
Bulb vegetables 175 0.189 ± 0.105 1.20 0.008~1.82 0.05 47
Stem vegetables 177 0.010 ± 0.008 0.049 <LOD~0.099 0.1 0
Cabbage, Brassica 116 0.007 ± 0.006 0.033 <LOD~0.047 0.05 0
Solanaceous vegetables 90 0.010 ± 0.009 0.041 <LOD~0.075 0.05 2
Leaf vegetables 409 0.030 ± 0.017 0.120 <LOD~0.210 0.2 1
Fresh legume vegetables 44 0.008 ± 0.006 0.049 <LOD~0.097 0.1 0
Root and tuber vegetables 852 0.034 ± 0.022 0.124 0.006~0.740 0.1 38
Melons and vegetables
(Cucurbitaceae) 256 0.004 ± 0.002 0.015 <LOD~0.041 0.05 0

Aquatic vegetables 316 0.022 ± 0.013 0.221 <LOD~0.522 0.05 8
Bamboo shoots 30 0.006 ± 0.005 0.013 <LOD~0.014 0.05 0

a Target analytes with concentrations lower than LOD were treated as one-half of LOD when calculating the mean
values. b MAC, the maximum allowable concentration set by Chinese government.

A detailed description of the levels of 10 types of vegetables, including 52 species,
is shown in Figure 2. The top 10 species with the highest average Cd concentration
were Lilium brownii F. (0.182 mg kg−1 ww) > Allium chinense G. (0.117 mg kg−1 ww) >
Allium macrostemon Bunge (0.105 mg kg−1 ww) > Colocasia esculenta (0.064 mg kg−1 ww)
> Amaranthus tricolor L. (0.054 mg kg−1 ww) > Houttuynia cordata (0.0.049 mg kg−1 ww)
> Spinacia oleracea L. (0.047 mg kg−1 ww) > Coriandrum sativum L. (0.034 mg kg−1 ww) >
Ipomoea aquatica Forsk (0.030 mg kg−1 ww) > Lactuca sativa L. (0.029 mg kg−1 ww). The
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descending order of Cd accumulation in different types was bulb vegetable > leaf vegetable
> stem vegetable > root and tuber vegetable > solanaceous vegetable > bamboo shoot >
aquatic vegetable > brassica > fresh legume vegetable > cucurbitaceae. Another report
also found that roots and leafy vegetables accumulated higher amounts of Cd than legume
vegetables [21]. In addition to the possible pollution, the difference in Cd accumulation
among various vegetables may depend on the transfer efficiency of Cd from roots to shoots
or from leaves and stem to fruits.
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Figure 2. Cd levels in different vegetables. (1) Brassica campestris L., (2) broccoli, (3) cabbage,
(4) cauliflower, (5) purple cabbage, (6) Allium cepa L., (7) Allium chinense G, (8) Allium macroste-
mon Bunge, (9) Allium tuberosum Rottler, (10) Lilium brownii F, (11) Benincasa hispida, (12) Cucumis
sativus L., (13) Cucurbita moschata, (14) Cucurbita pepo, (15) Lagenaria siceraria, (16) Lagenaria siceraria var.
hispida, (17) Luffa aegyptiaca Miller, (18) Momordica charantia L., (19) Amaranthus tricolor L., (20) Apium
graveolens L., (21) Brassica campestris L., (22) Brassica rapa var. glabra RegeL., (23) Coriandrum sativum
L., (24) Glebionis coronaria, (25) Houttuynia cordata, (26) Ipomoea aquatica Forsk, (27) Lactuca sativa
L., (28) Lactuca sativa var longifoliaf, (29) Spinacia oleracea L., (30) Asparagus officinalis L., (31) Apium
graveolens L., (32) Lactuca sativa var angustana, (33) Phaseolus vulgaris L., (34) Vigna unguiculata,
(35) Artemisia selengensis Turcz, (36) Eleocharis dulcis, (37) lotus root, (38) Oenanthe javanica, (39) Trapa
bispinosa Roxb, (40) Zizania latifolia, (41) Colocasia esculenta, (42) Daucus carota, (43) Dioscorea polystachya,
(44) Ipomoea batatas, (45) Raphanus sativus L., (46) Solanum tuberosum L., (47) Zingiber officinale Roscoe,
(48) Capsicum annuum L., (49) green pepper, (50) Solanum lycopersicum L., (51) Solanum melongena L.,
(52) Bamboo shoot.

The average Cd level (0.030 mg kg−1 ww) in this study was higher than the value
(0.015 mg kg−1 ww) in 28 vegetable species reported in our previous survey [16]. We
investigated more types of vegetables (52 species), particularly Lilium brownii F, Allium
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Chinense G, Allium macrostemon Bunge, and Colocasia esculenta with high Cd accumulation.
Our data were similar to those collected from common planting areas, not the special and
potential polluted zones [10,22]. However, in areas with possible contamination, vegetables
were found with high Cd concentration. For example, a spinach sample with 0.479 mg kg−1

ww Cd was found in specific regional areas of the United Kingdom [23]. In an industrial
area nearby Dhaka Export Processing Zones, Bangladesh, high Cd levels in 10 vegetable
species with 0.33 ± 0.10 mg kg−1 were found, with a range of 0.18–0.49 mg kg−1 [24].
Hussain et al. [25] reported that the cadmium content in leafy vegetables, such as lettuce
and spinach, was generally lower than in root vegetables, such as carrots and potatoes.
González et al. [26] conducted a review on the Cd content in organic and conventional
vegetables and found that the organic vegetables generally had lower levels of cadmium,
likely due to the use of organic farming practices. Islam et al. [27] investigated the cadmium
content in vegetables grown in different parts of Bangladesh and found that vegetables
grown in areas with high levels of industrial pollution had much higher levels of cadmium.

Previous studies have also shown that the accumulation of cadmium (Cd) in vegetables
varies significantly among different vegetable species. Lettuce, spinach, and parsley are
among the most efficient accumulators of Cd, while peas, beans, and sweet corn are among
the least efficient [28]. However, the efficiency of Cd accumulation also varies between
cultivars within the same vegetable species. Furthermore, the location of cultivation can
impact Cd accumulation in vegetables. For instance, a study in Bangladesh found that
amaranth and spinach were among the highest Cd accumulators, while bottle gourd and ash
gourd accumulated the lowest levels [29]. Similarly, in Pakistan, Cd accumulation varied
widely among different vegetable species, with spinach and coriander accumulating high
levels, while okra and eggplant accumulated relatively low levels [30]. Cd accumulation in
vegetables was found to be highest in leafy vegetables such as lettuce and parsley, while
root vegetables such as carrots and turnips accumulated relatively low levels of Cd [31].
These studies indicated that certain vegetable species are more prone to accumulating
Cd than others, and this may have implications for the selection of vegetable crops for
cultivation in areas with known or potential Cd contamination.

The maximum acceptable level of cadmium in vegetables varies depending on the
country and the type of vegetable. The World Health Organization (WHO) has set a
maximum acceptable level of 0.2 mg kg−1 for cadmium in leafy vegetables, 0.3 mg kg−1

for root vegetables, and 0.1 mg kg−1 for other vegetables [32]. The European Commission
also sets maximum limits for cadmium in certain types of vegetables, including leafy
vegetables, root vegetables, and tubers. For example, the maximum limit for cadmium
in leafy vegetables such as spinach and lettuce is 0.2 mg kg−1, while the maximum limit
for cadmium in root vegetables such as carrots and potatoes is 0.1 mg kg−1 [33]. For the
Food Safety and Standards Authority of India (FSSAI), the maximum limit for cadmium
in leafy vegetables such as spinach and lettuce is 0.3 mg kg−1, while the maximum limit
for cadmium in root vegetables such as carrots and potatoes is 0.2 mg kg−1 [34]. In
China, the maximum limits for cadmium in various vegetables are set as leafy vegetables
0.2 mg/kg, root and tuber vegetables 0.3 mg kg−1, and other vegetables 0.1 mg kg−1 [18].
These maximum acceptable levels are based on the best available scientific evidence and
are designed to protect public health. However, it is still advisable to limit exposure to
cadmium by consuming a varied and balanced diet that includes a variety of different
types of vegetables.

3.2. Different Areas and Monitoring Years for Cd in Vegetables

Geographic spatial distribution of cadmium content in vegetables was mapped based
on sampling areas of 11 cities including Hangzhou, Huzhou, Jiaxing, Jinhua, Lishui, Ningbo,
Quzhou, Shaoxing, Taizhou, Wenzhou, and Zhoushan. Figure 3 shows that the average
content of Cd in vegetables in each region is 0.019~0.044 mg kg−1. The Kruskal–Wallis
test was used to analyze the Cd content in different regions, and the results showed that
areas of Zhoushan, Quzhou and Jiaxing had significantly different Cd content (p < 0.05)
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compared to other places (except for Hangzhou). The highest average content was found
in Zhoushan, located in the northeast of Zhejiang province, and the lowest was found in
Wenzhou in the southeast of Zhejiang.

Foods 2023, 12, x FOR PEER REVIEW 7 of 12 
 

 

such as spinach and lettuce is 0.3 mg kg−1, while the maximum limit for cadmium in root 
vegetables such as carrots and potatoes is 0.2 mg kg−1 [34]. In China, the maximum limits 
for cadmium in various vegetables are set as leafy vegetables 0.2 mg/kg, root and tuber 
vegetables 0.3 mg kg−1, and other vegetables 0.1 mg kg−1 [18]. These maximum acceptable 
levels are based on the best available scientific evidence and are designed to protect public 
health. However, it is still advisable to limit exposure to cadmium by consuming a varied 
and balanced diet that includes a variety of different types of vegetables. 

3.2. Different Areas and Monitoring Years for Cd in Vegetables 
Geographic spatial distribution of cadmium content in vegetables was mapped based 

on sampling areas of 11 cities including Hangzhou, Huzhou, Jiaxing, Jinhua, Lishui, 
Ningbo, Quzhou, Shaoxing, Taizhou, Wenzhou, and Zhoushan. Figure 3 shows that the 
average content of Cd in vegetables in each region is 0.019~0.044 mg kg−1. The Kruskal–
Wallis test was used to analyze the Cd content in different regions, and the results showed 
that areas of Zhoushan, Quzhou and Jiaxing had significantly different Cd content (p < 
0.05) compared to other places (except for Hangzhou). The highest average content was 
found in Zhoushan, located in the northeast of Zhejiang province, and the lowest was 
found in Wenzhou in the southeast of Zhejiang. 

 
Figure 3. Concentrations of Cd in vegetables from different sampling areas. The columns without 
the same letter are significantly different at P<0.05. 

Analysis of monitoring data from 2018 to 2022 showed a statistical difference be-
tween 2020~2019 and 2020~2022 (p < 0.05) (Figure 4). Over the past three years, Cd con-
centration in vegetables was increased compared to previous two years, which may be 
attributed to the varieties of vegetable species, such as bulbs, tuberous and aquatic vege-
tables. 

Figure 3. Concentrations of Cd in vegetables from different sampling areas. The columns without
the same letter are significantly different at p < 0.05.

Analysis of monitoring data from 2018 to 2022 showed a statistical difference between
2020~2019 and 2020~2022 (p < 0.05) (Figure 4). Over the past three years, Cd concentration
in vegetables was increased compared to previous two years, which may be attributed to
the varieties of vegetable species, such as bulbs, tuberous and aquatic vegetables.
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The difference of Cd levels may be caused by a number of factors, including soil,
cultivar variation, and atmospheric deposition [35]. The pH value of soil has been identified
as playing an important role in the process of cadmium accumulation in plants [36]. Other
soil properties, including organic matter, cation exchange capacity, and clay content, also
affect Cd accumulation in vegetables [37]. Ouyang et al. [38] found that the concentration
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of atmospherically deposited Cd, rather than particle size or solubility, can regulate the
foliar uptake and accumulation in water spinach (Ipomoea aquatica Forsk) and pak choi
(Brassica chinensis L). Rizwan et al. [35] concluded that the uptake and accumulation of Cd
in vegetables is primarily driven by two factors: (i) the concentration of Cd in the soil and
(ii) the availability of nutrients such as nitrogen, phosphorus, and potassium. The study
noted that Cd uptake in vegetables occurs through the roots, and that the efficiency of
uptake depends on factors such as the plant species, the age of the plant, and the soil pH.
Furthermore, Xia et al. reported that the Cd level varied among different pak choi cultivars
based on the morphological parameters of roots [39].

3.3. Exposure Assessment

Exposure assessment is the process of evaluating the level of exposure of individuals
or populations to a chemical, physical, or biological agent. In this study, we estimated the
exposure of adults and children to cadmium in vegetables using the point estimate method.
The method involves using the average value of Cd level in vegetables to represent the
exposure of the general population and the P97.5 value to represent the population with
high health risk.

The estimated daily intake (EDI) of cadmium through consumption of vegetables was
0.519 µg kg−1 bw per day for adults and 0.217 µg kg−1 bw per day for children in the
general population (Table 2). We then calculated the Target Hazard Quotient (THQ) as
the ratio of the exposure dose to a reference dose. A THQ greater than 1 indicates that the
consumers are likely to experience adverse effects. In this study, THQs were lower than
those reported in polluted areas. For example, Singh et al. revealed the THQ of Cd with
0.8~21 for vegetable consumption at carpet industry irrigational areas in northern India [8].
However, in southeast China, it is still necessary to pay attention to those consumers who
consume large amounts of specific vegetables, such as Lilium brownii F, Allium chinense G,
Allium macrostemon Bunge, and Colocasia esculenta.

Table 2. EDI and THQ of Cd for vegetable consumption.

Consumers
EDI (µg kg−1 bw per day) THQ TR

Mean P97.5 Mean P97.5 Mean P97.5

Adults 0.159 0.337 0.199 0.421 1.00 × 10−3 2.12 × 10−3

Children 0.217 0.458 0.271 0.573 1.37 × 10−3 2.89 × 10−3

Vegetables are an essential component of a healthy diet, but they can also be a sig-
nificant source of Cd exposure. Health risk assessment of Cd in vegetables is, therefore,
essential for the development of strategies to minimize health risks. Chen et al. [40], in
China, found that the average Cd concentration in vegetables was 0.012–0.11 mg kg−1.
The THQ values calculated for each vegetable type showed that the consumption of leaf
vegetables was a risk for children, with a THQ value of 0.1, followed by tuber vegetables
with a THQ value of 0.083 and fruit vegetables with a THQ value of 0.039. The study
concluded that the consumption of vegetables in the region poses a significant health risk
due to Cd contamination. Similarly, Wachirawongsakorn [41] in Thailand observed that
the consumption of vegetables grown in Cd-contaminated soils resulted in a THQ value
exceeding the safe level of 1. The implementation of strategies to reduce Cd exposure,
including the use of clean soils and reducing the use of Cd-based fertilizers, was recom-
mended. Another report by Yang et al. [42] in China found that the THQ values for Cd in
vegetables were all less than 1, with the highest value observed for leek. It was suggested
that the risk of Cd exposure through vegetable consumption was relatively low in the
region, but individuals with high vegetable consumption may still exceed the safe limit for
Cd exposure.

Cadmium is classified as a carcinogen because it has the ability to cause changes in cells
that can lead to the development of cancer [43]. The mechanism by which cadmium causes
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cancer is not fully understood, but it is thought to involve several different processes [44].
Cadmium exposure can also lead to the activation of inflammatory pathways and chronic
inflammation, which can cause damage to DNA and promote the growth of cancer cells.
In addition, cadmium exposure can alter the epigenetic regulation of genes, affecting the
expression of genes that control cell growth and division, and promote the uncontrolled
growth of cells. Furthermore, cadmium exposure can interfere with the body’s ability to
repair damaged DNA, leading to mutations in genes that regulate cell growth and division.

In this study, cancer risk analysis showed that TRs of Cd were all more than 1 × 10−4

for children or adults. This indicates a carcinogenic risk for exposure to Cd through the
consumption of vegetables from southeast China. The CSF of Cd (6.3 mg kg−1 per day)
used in our study was the inhalation CSF [45]. The oral CSF of Cd is not approved by the
United States EPA. Furthermore, cancer involving abnormal DNA is correlated with many
factors, such as environmental influence and genetic inheritance. However, there is still a
potential cancer risk for the consumption of analyzed vegetables.

The uncertainty of the present assessment should be noted. The point estimation of
THQ used in this study may not show the actual exposure value better than the probabilistic
assessment calculated by the Monte-Carlo simulation technique [46]. The synergic or
antagonistic effects for other toxic metals, such as lead, mercury, and chromium, were not
considered in the assessment of health risk.

4. Conclusions

Our study showed that the concentration of cadmium (Cd) in vegetables from 2018
to 2022 was generally low, with no more than 5% of samples exceeding the maximum
allowable concentration of Cd. However, some bulb vegetables, such as Allium cepa L.
and Allium chinense G, accumulated relatively high levels of Cd. Furthermore, the study
found a significant increase (p < 0.05) for Cd concentrations in vegetables from the years
2020 to 2022, compared to the previous years of 2018 and 2019. This upward trend in
Cd concentrations could potentially increase the risk of Cd exposure and pose a threat to
public health.

Health risk assessment for children and adults shows that there is low health risk
associated with Cd dietary exposure for vegetables from southeast China. However, given
the high levels of Cd in certain species, routine monitoring of Cd distribution in vegetables
from the region is recommended. Furthermore, Cd in vegetables varied significantly across
different sampling areas and years. These findings highlight the need for continued analysis
and research on Cd levels in food to ensure food safety and to protect public health. Our
future study will focus on more toxic elements, such as lead, mercury, and arsenic, in
vegetables and investigate the possible sources of these metals.
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