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Abstract: A ratiometric fluorescent sensor with hydrogen sulfide (H2S) and methanthiol (CH3SH)
sensitivity was developed to real-time monitor beef freshness. A silicon quantum dots (SiQD) and
silver nanoclusters (AgNC) complex, namely SiQD-AgNC, was used as the dual emission fluorescence
materials. Due to the fluorescence resonance energy transfer (FRET) effect between SiQD and
AgNC, when the fluorescence of AgNC (610 nm) was quenched by H2S or CH3SH, the fluorescence
of SiQD (468 nm) recovered, resulting in an increase of the fluorescent intensity ratio (I468/I610).
I468/I610 showed a linear relationship with the H2S concentration within the concentration range of
1.125–17 µM, with a limit of detection (LOD) value of 53.6 nM. Meanwhile, I468/I610 presented two
linear relationships with the CH3SH concentration within the concentration range of 1.125–17 µM
and 23.375–38.25 µM, respectively, with a LOD value of 56.5 nM. The SiQD-AgNC complex was
coated on a polyvinylidene fluoride (PVDF) film to form a portable SiQD-AgNC/PVDF film sensor.
This film showed purplish red-to-cyan color changes in response to H2S and CH3SH, with LOD
values of 224 nM and 233 nM to H2S and CH3SH, respectively. When the film was used to monitor
beef freshness at 4 ◦C, its fluorescent color gradually changed from purplish red to cyan. Hence, this
study presented a new ratiometric fluorescent sensor for intelligent food packaging.

Keywords: fluorescent sensor; silicon quantum dots; silver nanoclusters; beef freshness; intelli-
gent packaging

1. Introduction

Beef is one of the most consumed meats in the world. Cold storage (0–4 ◦C) is a
common preservation method for fresh beef because the original nutrition, taste, and flavors
could largely be maintained under this condition. However, beef spoilage inevitably occurs
under cold storage due to microbial contamination and enzymatic reaction, which leads to
food waste issues and food safety risk [1]. To date, most methods to evaluate beef freshness,
such as the determination of total volatile basic nitrogen (TVBN), thiobarbituric acid reactive
substances, and microbial population, are generally time-consuming. As a result, these
methods can hardly determine real-time beef freshness to meet the requirements of both
manufacturers, consumers, and supervisors. Hence, it is always highly desirable to develop
novel methods to evaluate real-time beef freshness.

Intelligent packaging has received great interest in the recent two decades. Intelligent
packaging was defined as a packaging system that is capable of carrying out intelligent
functions, such as detecting, sensing, recording, tracing, communicating, and applying
scientific logic, to facilitate decision making to extend shelf life, enhance safety, improve
quality, provide information, and warn about possible problems [2]. Among various intel-
ligent packaging systems, food freshness indicators are extremely attractive. Nowadays,
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freshness indicators for meats, fish, vegetables, fruits, and so forth have been widely re-
ported [3,4]. Generally, the principle of freshness indicators was that they were sensitive to
volatile gases produced from foods and able to show detectable signal changes, such as
color [5] and electrical changes [6].

During beef spoilage, volatile sulfides, including hydrogen sulfide, mercaptans, and
thioethers, are generated due to the decomposition of proteins [7]. Hence, these sul-
fides have been regarded as one of the important compounds to evaluate beef freshness.
Nowadays, the most common sulfides sensors are electrochemical sensors [8]. However,
electrochemical sensors can hardly be integrated with an intelligent packaging system due
to the requirement of power sources. By contrast, colorimetric sensors are more simple,
portable, and easy to fabricate. To date, there are still limited reports on developing volatile
sulfides-responsive colorimetric sensors for beef freshness monitoring [9–13]. Therefore,
more novel colorimetric sensors are highly desirable.

Fluorescent sensors have been widely applied in many fields, including biology, phys-
iology, medicine, and pharmacology, by virtue of their high sensitivity, fast response time,
and so on. In recent years, fluorescent sensors have also been reported to monitor meat
freshness or spoilage in intelligent packaging [14–16]. As to the beef freshness, Long,
Cao, Jin, Yuan, Han, and Wang [9] developed a fluorescent probe of H2S, and its blue
fluorescent intensity increased with the increase of H2S concentration. When this probe
was used to monitor beef freshness, its blue color gradually became deeper with storage
time. However, one shortage of such fluorescent sensors was that the changes of single flu-
orescent intensity generally were not highly visible for naked eyes. By contrast, ratiometric
fluorescent sensors with diverse color changes are generally easier to recognize by naked
eyes. Meanwhile, ratiometric fluorescent sensors are highly anti-jamming compared to
single-emission fluorescent sensors because ratiometric fluorescent sensors could provide
built-in self-calibration by calculating the strength ratio of the two fluorescent signals, so as
to provide more accurate quantification [17]. Recently, we developed a ratiometric fluo-
rescent sensor based on carbon dots-copper nanoclusters with H2S sensitivity to monitor
chilled pork and chicken spoilage [18]. This sensor showed red-to-blue color changes with
the storage of these meat samples. Nevertheless, to the best of our knowledge, studies on
developing ratiometric fluorescent sensors with volatile sulfides sensitivity to monitor beef
freshness have not been reported yet.

Hence, in this study, we aimed to develop a new ratiometric fluorescent sensor to
monitor beef freshness based on its sensitivity to volatile sulfides. The sensor was composed
of silicon quantum dots (SiQD) and silver nanoclusters (AgNC). The SiQD and AgNC were
combined through dehydration condensation reaction to form a SiQD-AgNC complex. As
a result, the fluorescence resonance energy transfer (FRET) effect was formed between SiQD
and AgNC, namely the emission light of SiQD served as the excitation light of AgNC. When
the SiQD-AgNC complex was exposed to volatile sulfides, the red fluorescent emission of
AgNC was quenched due to the production of the Ag-S bond, while the cyan fluorescent
emission of SiQD recovered, inducing a red-to-cyan color change. In the application
experiment, the SiQD-AgNC complex was coated onto a polyvinylidene fluoride (PVDF)
film to form a portable sensor to detect volatile sulfides and monitor beef freshness.

2. Materials and Methods
2.1. Materials

Fresh beef was purchased from the local market (Zhenjiang, China). Silver nitrate,
polymethacrylic acid sodium salt (PMAA, Mw = 9500), 3-aminopropyltriethoxysilane
(APTES), D-glucose, 1-ethyl-3-(3-(dimethylamino) propyl)-carbodii-mide (EDC), and N-
hydroxysulfosuccinimide (NHS) were purchased from Singapore. A high-pressure mercury
lamp (λ = 365 nm, 100 W) was purchased from Sylvania (Lucas, OH, USA).
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2.2. Synthesis of AgNC

AgNC was synthesized by using the one-step illumination method according to a
previous study with a slight modification [19]. First, 48 mL of 0.05 M silver nitrate solution
and 6 mL of PMAA solution were mixed for 10 min under dark, and then kept for 20 min.
After that, the mixture was transferred to a beaker (1 L) and illuminated with the high-
pressure mercury lamp for 15 min to synthesize AgNC. Finally, the obtained AgNC solution
was dialyzed for 24 h using a 500 Da dialysis tube, and then freeze-dried for further use.

2.3. Synthesis of SiQD

SiQD was synthesized by using the one-step reducing method according to a previous
study with a slight modification [20]. Firstly, 4.5 g of D-glucose was dissolved in 40 mL
of water. Then, 5 mL of APTES was dropwise added to the D-glucose solution under
stirring and kept stirring for 48 h under 25 ◦C. During this process, the mixture gradually
changed from colorless to brown, indicating the formation of SiQD. Finally, the obtained
SiQD solution was dialyzed for 24 h using a 500 Da dialysis tube, and then freeze-dried for
further use.

2.4. Synthesis of SiQD-AgNC Complex

Firstly, 250 µL of mixture containing 10 mg/mL of EDC and 10 mg/mL of NHS was
added to 3 mL of AgNC solution (1 mg/mL) and then stirred for 2 h. Then, 500 µL of SiQD
solution (0.2 mg/mL) was added to the above mixture and stirred then for 3 h to form the
SiQD-AgNC complex. Finally, the obtained SiQD-AgNC solution was dialyzed for 24 h
using a 1000 Da dialysis tube, and then freeze-dried for further use.

2.5. Detection of H2S and CH3SH

Firstly, H2S was generated from the reaction between HNO3 and Na2S. Here, the
molarity of nitric acid was three times the molarity of sodium sulfide to ensure that the
molecular number of H2S was equal to the molecular number of Na2S. Then, H2S was
blown to the SiQD-AgNC solution using N2, and the fluorescent spectra of the SiQD-AgNC
solution were recorded. Similarly, CH3SH was generated from the reaction between HNO3
and CH3NaS, and then reacted with SiQD-AgNC solution.

2.6. Volatile Compounds Analysis of Beef Samples

The determination of volatile compounds of beef samples was conducted by using
a gas chromatography-mass spectrometer (GC-MS) combined with the solid-phase mi-
croextraction (SPME) method, according to our previous study [10]. Briefly, 6 g of beef
samples were put into a headspace vial (15 mL). This vial was then sealed with a silicone
septum and screw-thread cap, and equilibrated for 15 min at 60 ◦C. The volatile gases
from beef samples were firstly extracted for 40 min at 60 ◦C using an SPME fiber assembly
(50/30 µm DVB/CAR/PDMS, ANPEL Laboratory Technologies Inc. (Shanghai, China)).
After extraction, the volatile gases were desorbed into the GC injector at 250 ◦C for 5 min
with a splitless mode on a Trace Ultra ITQ1100 GC-MS system (Thermo Scientific, Waltham,
MA, USA). In this system, the volatile gases were separated using a DB-WAX column
(60 m × 0.25 mm × 0.25 µm; Agilent Technologies, Santa Clara, CA, USA) with a helium
flow rate of 1.6 mL/min. The temperature was set at 40 ◦C for 4 min, then a ramp of
5 ◦C/min until 100 ◦C, followed by a ramp of 6 ◦C/min to 220 ◦C, and finally at 220 ◦C
for 3 min. MS detection was performed with a source temperature of 230 ◦C, quadrupole
temperature of 200 ◦C, electron energy of −70 eV, and the mass scan range of m/z 33–450.

2.7. Application of Sensor in Monitoring Beef Freshness

Firstly, 50 µL of SiQD-AgNC solution was added onto a PVDF film, and then dried in
an oven at 60 ◦C for 20 min. The obtained film was expressed as the SiQD-AgNC/PVDF
film. The SiQD-AgNC/PVDF film was adhered in the internal surface of the lid of a
polyethylene terephthalate (PET) box which contained a whole piece of 150 g fresh beef.
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The PET box was stored in the dark in a refrigerator with 4 ◦C. The fluorescent photograph
of the PET box was obtained by using a dark-box UV analyzer (CBIO-UV6, Saibaiao
Technology Co., Ltd., Beijing, China).

The total viable counts (TVC) of beef were measured using the plate count method fol-
lowing the Chinese standard GB 4789.2–2016. Briefly, 25 g of beef sample was homogenized
with 225 mL of phosphate buffer solution. Then, the homogeneous solution was filtered,
and the supernate was serially diluted at a volume ratio of 10. After that, 1 mL of the
diluted solution was carefully spread on bacteria-counting agar plates. These procedures
were carried out in a sterile environment. Finally, agar plates were incubated at 35 ◦C
with different times, and the number of colonies was recorded. The bacterial counts were
expressed as colony-forming units (CFU) per gram of beef, and then transformed to base
10 logarithm values, namely log10(CFU/g) or lg(CFU/g) [21].

3. Results and Discussions
3.1. Optimization of SiQD and AgNC Synthesis

First, SiQD was synthesized at room temperature using D-glucose as a reducing agent
and APTES as a silicon source. Due to the presence of the amino group at the end of APTES,
the surface of SiQD contained many amino groups, which prevented agglomeration of
SiQD by charge repulsion. At the same time, AgNC was synthesized by photoreduction
using silver nitrate as a silver source and PMAA as a protective agent. Due to the presence
of PMAA, the surface of AgNC contained numerous carboxyl groups, which prevented
AgNC agglomeration by charge repulsion.

The synthesis time was an important parameter for both SiQD and AgNC. As shown
in Figure 1A, under a 400 nm excitation light, the fluorescent intensity of SiQD increased in
the first 48 h, and remained nearly unchanged, even the synthesis time was extended to
60 h. This was because APTES was first reduced to form a small nucleus, and these small
nuclei with high specific surface areas were unstable. Subsequently, larger and more stable
nanocrystals were formed through the Ostwald maturation process [22]. Once the ripening
process was completed, extending the reaction time would not lead to the increase of
particle size and fluorescent intensity. Hence, 48 h was the optimal synthesis time for SiQD.
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The change of fluorescent intensity of AgNC is shown in Figure 1D. Under a 500 nm
excitation light, the fluorescent intensity firstly increased with time in the initial 15 min.
However, when the illumination time was longer than 15 min, the fluorescent intensity
decreased and the fluorescent peak gradually red shifted. This indicated that the particle
size of AgNC increased with illumination time. As the low-density electronic states of the
smaller nanoclusters are the main factor for their fluorescence generation, the increase of
AgNC particle size led to the decrease of their fluorescence. Therefore, 15 min was selected
as the optimal synthesis time.

TEM images of SiQD and AgNC particles are shown in Figure 1B,E, respectively. It can
be seen that both SiQD and AgNC showed a dispersive state without obvious aggregation.
According to TEM images, their particle sizes were calculated and size distributions are
shown in Figure 1C,F, respectively. The average particle sizes of SiQD and AgNC were 2.14
and 1.99 nm, respectively.

3.2. Fluorescence Characteristics of SiQD and AgNC

Figure 2A shows the fluorescent emission spectra of SiQD at different excitation
wavelengths. When the excitation wavelength increased from 340 to 400 nm, the intensity
of the emission spectrum gradually increased, while the maximum emission wavelength
shifted slowly from 450 to 468 nm. When the excitation wavelength was greater than
400 nm, the intensity of the emission peak decreased. Therefore, the maximum excitation
wavelength of SiQD was 400 nm, and the corresponding emission wavelength was 468 nm.
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fluorescent photos (insets) of the SiQD, AgNC, and SiQD-AgNC complex.

Figure 2B shows the fluorescent emission spectra of AgNC at different excitation
wavelengths. When the excitation wavelength increased from 410 to 500 nm, the intensity of
the emission spectrum gradually increased, and the wavelength of the maximum emission
peak remained almost constant. When the excitation wavelength was 510 nm, the intensity
of the emission peak decreased. Therefore, the maximum excitation wavelength of AgNC
was 500 nm, and the corresponding emission wavelength was 610 nm.
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The maximum emission spectrum of SiQD and the maximum excitation spectrum of
AgNC are shown in Figure 2C. It can be seen that there was a large overlap between these
two peaks within 450–550 nm, which made the FRET between SiQD and AgNC possible.
Figure 2D shows the fluorescent emission spectrum of SiQD-AgNC complex at 400 nm
excitation light. It can be seen that the SiQD-AgNC composite simultaneously showed
the emission peaks of SiQD at 468 nm and AgNC at 610 nm. Fluorescent photographs of
SiQD, AgNC, and SiQD-AgNC complexes are shown in Figure 2D. At the excitation light
of 365 nm, SiQD and AgNC showed cyan and red color, respectively, while SiQD-AgNC
showed purplish red, namely the hybrid color of cyan and red. These results indicated that
a dual emission fluorescent sensor was successfully developed.

3.3. Principle of Detection

In this study, the developed AgNC-SiQD complex was supposed to be sensitive to
H2S and mercaptan. The detection principle of the developed fluorescent sensor to H2S
and mercaptan is shown in Figure 3. During the synthesis of the AgNC-SiQD complex, the
positive amino group on the surface of SiQD and the negative carboxyl group on the surface
of AgNC could form amido bonds, with EDC/NHS as an activator. As a result, when the
distance between SiQD and AgNC was equal to or less than 10 nm, the emission light of
SiQD could act as the excitation light of AgNC, which was regarded as the FRET effect.
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It is generally known that the Ag atom has a low empty d electron orbital. When the
electron pair of the S atom enters the empty d-electron orbital of the Ag atom, it is easy to
form the Ag-S metal-ligand bond to cause fluorescence quenching of AgNC. As a result, the
emission light of SiQD could be enhanced because AgNC no longer absorbed the emission
light of SiQD.

The fluorescence quenching of AgNC in response to H2S was due to the formation of
Ag2S that had no fluorescence characteristics. However, the mechanism of fluorescence
quenching caused by the combination of mercaptan and AgNC was still unclear. According
to previous literature, the fluorescence quenching of AgNC seems to be related to the
change of particle size and surface protectant. For example, Zhang, et al. [23] prepared
AgNC with polyethyleneimine (PEI) as the protecting agent. When substances containing
mercaptan (cysteine, homocysteine, and glutathione) were added to AgNC, mercaptan
could combine with AgNC to destroy the binding site between PEI and AgNC. This would
reduce the positive surface charge of AgNC, thus causing aggregation of AgNC under Van
der Waals gravity to form large particle aggregates without fluorescence characteristics.
Li and Wei [24] prepared AgNC with DNA as the protecting agent. When mercaptan-
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containing substances (cysteine and glutathione) were added to AgNC, the polarity of the
solution changed. Meanwhile, the formation of the Ag-S bond changed the secondary
structure of DNA. The fluorescence lifetime experiment showed that the energy transfer
from the AgNC donor to the mercaptan receptor occurred. These factors together led to the
fluorescence quenching of AgNC. In this experiment, the fluorescence quenching of AgNC
induced by mercaptan was probably due to the formation of the Ag-S bond that destroyed
the cross-linking between AgNC and PMAA, causing the aggregation of AgNC.

3.4. Optimization of pH and Ionic Strength

The reaction of SiQD-AgNC with H2S and CH3SH was greatly affected by pH. As
shown in Figure 4A,B, the initial fluorescent intensity of SiQD-AgNC was different at
different pH. Between pH 4 and 7.5, the ratio of fluorescent intensity I468 of SiQD and
fluorescent intensity I610 of AgNC, namely I468/I610, gradually increased with the increase
of pH. Especially, when pH increased from 6 to 7, SiQD-AgNC increased greatly. When the
pH was less than 4 or more than 7.5, the solution became very unstable, and so the reaction
of SiQD-AgNC with H2S and CH3SH was measured only within pH 4–7.5. At different pH
values, the reactions tended to reach equilibrium within 30 min. At pH 7, the change of
I468/I610 before and after the reaction was the largest. The I468/I610 value increased 0.42
in response to H2S (Figure 4A) and increased 0.28 in response to CH3SH. Therefore, the
SiQD-AgNC solution was adjusted to pH 7 for further study.
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At pH 7, different concentrations of sodium nitrate were added to the solution to
determine the effect of ionic strengths on the reaction between SiQD-AgNC and H2S or
CH3SH. As shown in Figure 4C,D, the initial I468/I610 value of the solution decreased only
from 1.23 to 1.20 when the concentration of sodium nitrate increased from 0 to 200 mM.
Hence, the ionic strength had no significant effect on the stability of the solution in the
range of 0–200 mM. After adding 17 µM H2S (Figure 4C) or CH3SH (Figure 4D) to solutions
with different ionic strengths, the changes of I468/I610 values over time were also very close,
indicating that ionic strength has no significant influence on the reaction.
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3.5. Sensitivity of SiQD-AgNC to H2S and CH3SH

The sensitivity of SiQD-AgNC was investigated by reacting with different concentra-
tions of H2S and CH3SH. As shown in Figure 5A, with the increase of H2S concentration,
the fluorescent intensity of SiQD-AgNC at 610 nm decreased, while fluorescent intensity
at 468 nm increased. Here, the fluorescent intensity at 468 nm changed more significantly
than that at 610 nm, which may be because the spectrum of SiQD overlapped with the
spectrum of AgNC at 610 nm, weakening the decline of the overall spectrum at 610 nm.
The relationship between I468/I610 value and H2S concentration is shown in Figure 5B.
With the increase of H2S concentration, the I468/I610 value gradually increased. There
was a linear relationship between the value of I468/I610 and H2S concentration within
the concentration range of 1.125–17 µM, and the R2 of the calibration curve was 0.9936.
Similarly, as shown in Figure 5D, there were linear relationships between the I468/I610
value and CH3SH concentration, in the CH3SH concentration range of 1.125–17 µM and
23.375–38.25 µM, respectively. The R2 of the calibration curves was both 0.9944. According
to these calibration curves, the limit of detection (LOD) values of SiQD-AgNC to H2S and
CH3SH were 53.6 nM and 56.5 nM, respectively, using the following Equation (1):

LOD = 3 K/N (1)

where K is the standard deviation of blank measurements for 13 times, and N is the slope
of the linear calibration curve.
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The linear detection range and LOD of SiQD-AgNC to H2S were compared with
reported fluorescent sensors. As shown in Table 1, the developed SiQD-AgNC in this work
was comparable to other sensors based on dyes, quantum dots, and nanoclusters.
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Table 1. Comparison of previously reported fluorescent sensors and SiQD-AgNC in this work.

Sensor Materials Detection Target Linear Range (µM) LOD (nM) References

Isophorone-xanthene dye H2S 1.0–40.0 250 [25]

6-(2, 4-dinitrophenoxy)-2-naphthonitrile H2S 0–70 76 [26]

7-amino-4-methylcoumarin and fluorescein H2S 0–140 31 [27]

CsPbBr3 quantum dots H2S 0–100 180 [28]

Carbon quantum dots S2− 0–3 62.7 [18]

Carbon quantum dots -PNBD H2S 0–35 57 [29]

Gold nanoclusters H2S 0.002–120 1.8 [30]

Carbon dots-copper nanoclusters H2S 26–128 4.3 [31]

Silicon quantum dots- silver nanoclusters H2S 1.125–17 53.6 This work

3.6. Selectivity of SiQD-AgNC to H2S and CH3SH

To verify the selectivity of SiQD-AgNC to H2S and CH3SH, the volatile gases of beef
during storage at 4 ◦C was firstly determined. As shown in Table 2, 33 volatile gases
were identified in total, mainly including alkanes, alcohols, aldehydes, esters, amines, and
carbon dioxide. These compounds were very close to previous studies [32,33]. Generally,
alkanes are mainly generated from the cracking of alkoxy in fatty acids, and alcohols
result from the free-radical promoted saccharide decomposition due to lipid oxidation.
Aldehydes, ketones, and acids are mainly the result from the oxidative degradation of
fats [33]. Amines and sulfur-containing substances are generally generated from the
decomposition of amino acids and proteins. In this study, sulfur-containing substances,
including H2S, CH3SH, dimethyl disulfide, and dimethyl trisulfide, have been identified.
H2S and CH3SH were detected on the 4th and 3th day, respectively. Since it is difficult to
investigate the effect of each volatile compound on the selectivity of SiQD-AgNC one by
one, as a compromise, we selected some representative components from their homologues
or structural analogues, including hexane, ethanol, n-hexyl alcohol, acetic acid, acetone,
acetaldehyde, ethyl acetate, trimethylamine, aniline, and dimethyl disulfide. As shown
in Figure 6A, when the concentration of these volatile substances, except acetic acid, was
20 times the concentration of H2S and CH3SH, the I468/I610 values of SiQD-AgNC did not
show obvious change (∆I < 0.1). Here, acetic acid led to a decrease of I468/I610 more than 0.1,
which may be because acetic acid could reduce the fluorescence of SiQD through binding
to the amino group of SiQD. At the same time, these substances were mixed with H2S and
CH3SH, and then these mixtures were added to the SiQD-AgNC solution to investigate
their effects on ∆I under coexistence conditions. As shown in Figure 6B,C, SiQD-AgNC
still had good significant response to H2S and CH3SH in the presence of these substances.
Therefore, SiQD-AgNC could be used as a highly selective sensor for H2S and CH3SH.

Table 2. The volatile compounds of beef during storage at 4 ◦C.

Category Name
Relative Contents (w/w%)

0 d 1 d 2 d 3 d 4 d 5 d 6 d

Sulfides

Dimethyl disulfide - - 0.45 ± 0.22 - 0.58 ± 0.22 0.64 ± 0.35 -
Hydrogen sulfide - - - - 0.23 ± 0.10 1.17 ± 0.61 1.68 ± 0.24

Methanethiol - - - 0.35 ± 0.23 2.48 ± 0.43 4.46 ± 1.29 3.59 ± 2.37
Dimethyl trisulfide - - - - - 0.74 ± 0.32 0.81 ± 0.39

Hydrocarbon

Pentane 4.17 ± 1.85 6.33 ± 2.42 3.28 ± 2.06 2.30 ± 0.15 - 4.3 0 ± 2.74 -
Hexane 2.66 ± 0.56 5.54 ± 1.69 3.51 ± 1.78 1.57 ± 0.56 - 0.34 ± 0.24 3.16 ± 0.88

Pentadecane 3.39 ± 0.45 1.22 ± 0.62 - 3.53 ± 0.75 1.01 ± 0.14 - -
2,6,10-trimethyl-dodecane 4.87 ± 0.85 - 2.10 ± 0.43 - - 0.77 ± 0.17 -

Heptadecane 2.40 ± 0.33 5.04 ± 0.54 4.21 ± 2.16 - - 1.20 ± 0.53
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Table 2. Cont.

Category Name
Relative Contents (w/w%)

0 d 1 d 2 d 3 d 4 d 5 d 6 d

Alcohols

1-pentanol 3.34 ± 1.84 5.08 ± 2.42 3.14 ± 1.92 2.12 ± 0.67 1.56 ± 0.33 0.81 ± 0.81 4.21 ± 0.47
1-hexen-3-ol 2.89 ± 0.15 - 4.22 ± 0.43 3.78 ± 0.85 - 5.21 ± 1.64 -

Ethanol 0.63 ± 0.35 1.26 ± 0.27 - 0.85 ± 0.11 - 1.53 ± 0.38 1.69 ± 0.56
1-octene-3-ol - 2.2 ± 0.75 2.31 ± 0.64 1.89 ± 0.76 1.45 ± 0.63 0.80 ± 0.24 -

4-methyl-1-amyl alcohol - 1.88 ± 0.53 - - - 3.22 ± 0.68 -
Hexyl alcohol - - 1.57 ± 0.45 1.56 ± 0.16 1.91 ± 0.37 1.81 ± 0.55 3.56 ± 0.49

Butanol - - 0.38 ± 0.12 - 3.49 ± 0.26 -

Aldehydes/ketones

Hexanal 30.59 ± 7.12 23.40 ± 7.33 20.76 ± 5.68 21.72 ± 8.24 11.88 ± 5.15 7.01 ± 2.19 24.43 ± 8.32
Valeraldehyde - 0.47 ± 0.14 - 0.94 ± 0.18 1.89 ± 0.15 - -

3-methylbutyral - 0.56 ± 0.19 - - - 1.47 ± 0.13 -
Heptanal - - 1.88 ± 0.37 - - 1.08 ± 0.36 2.37 ± 0.54
Acetone 18.44 ± 6.52 10.69 ± 5.17 5.53 ± 2.63 3.15 ± 0.35 3.25 ±1.72 2.62 ± 0.87 1.90 ± 0.66

Hypnone - - - 2.32 ± 0.52 - - -

Acids/esters

Acetic acid 0.31 ± 0.16 0.52 ± 0.24 1.42 ± 0.12 2.53 ± 0.73 1.34 ± 0.41 2.88 ± 0.59 2.13 ± 0.81
Propionic acid - - 0.79 ± 0.42 1.33 ± 0.39 3.31 ± 0.37 2.78 ± 0.56 3.54 ± 1.17

Ethyl oenanthate 3.87 ± 0.82 3.52 ± 1.15 - 1.73 ± 0.21
Ethyl caprylate - - 0.91 ± 0.27 - - 0.48 ± 0.19 -

Ethyl acetate - 2.75 ± 0.22 - 0.71 ± 0.12 0.85 ± 0.34 0.41 ± 0.15 0.66 ± 0.26
Ethyl valerate - - - - 0.71 ± 0.23 0.96 ± 0.41 1.48 ± 0.36

Nitrogenous
compounds

Hexylamine 0.89 ± 0.31 - 0.46 ± 0.18 - - - -
Ethanediamine 1.43 ± 0.35 - - 1.09 ± 0.12 1.92 ± 0.45 - -
Trimethylamine - 0.77 ± 0.26 2.80 ± 0.70 3.32 ± 1.02 3.67 ± 0.89 6.23 ± 2.40 7.59 ± 2.37
Dimethylamine - - - 1.26 ± 0.39 - 2.32 ± 0.94 -

Heptylamine - - - - 0.80 ± 0.28 0.29 ± 0.09 -

Others
Carbon dioxide 11.20 ± 3.34 5.11 ± 1.72 2.32 ± 0.25 1.58 ± 0.31 3.28 ± 0.78 8.33 ± 2.04 15.23 ± 2.11

Butylated hydroxytoluene - - - - - 1.31 ± 0.22 3.45 ± 0.67
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Figure 6. (A) The ∆I values of SiQD-AgNC reacting with 340 µM of other volatile gases or 17 µM
of H2S and CH3SH.(B) The ∆I values of SiQD-AgNC simultaneously reacting with 340 µM of other
volatile gases in the presence of 17 µM of H2S. (C) The ∆I values of SiQD-AgNC simultaneously
reacting with 340 µM of other volatile gases in the presence of 17 µM of CH3SH.
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3.7. Sensitivity of Fluorescent Film to H2S and CH3SH

Considering that a solid film is generally more convenient than liquid solution for
use in practical food packaging, in this work, the SiQD-AgNC solution was coated onto a
PVDF film to form a portable fluorescent film, named the SiQD-AgNC/PVDF film. The
fluorescence changes of the SiQD-AgNC/PVDF film in response to H2S and CH3SH are
shown in Figure 7A,B, respectively. Its color gradually changed from purplish red to blue
and final cyan, with the increase of H2S or CH3SH concentration. To better determine the
relation between fluorescent color of the SiQD-AgNC/PVDF film and gas concentration,
the color change (∆C) of the film was calculated by using the following Equation (2):

∆C = (R − R0)
2 + (G − G0)

2 + (B − B0)
2 (2)

where R0, G0, and B0 are respectively the red, green, and blue color of the film before
reacting with H2S or CH3SH, while R, G, and B are respectively the red, green, and blue
color of the film after reacting with H2S or CH3SH, under a 365 nm UV light.

It can be seen from Figure 7C,D that the ∆C increased with the increase of H2S and
CH3SH concentration. A linear relation was obtained at the range of 0–40 µM for both
H2S and CH3SH, with R2 of 0.9954 and 0.9894, respectively. Accordingly, the limit of
detection (LOD) values for H2S and CH3SH were 224 nM and 233 nM, respectively, using
Equation (1).

It was also needed to mention that the reactions between the SiQD-AgNC/PVDF film
and H2S or CH3SH were not reversible, which was beneficial to monitoring the real-time
beef freshness.
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3.8. Application of Fluorescent Film in Monitoring Beef Freshness

The SiQD-AgNC/PVDF film was used to real-time monitor beef freshness. As shown
in Figure 8A, the film was adhered onto the internal surface of the lid of a transparent
polypropylene packaging box. The color of SiQD-AgNC on the PVDF film was very weak,
as shown in visible light photos, and this light purple color remained almost unchanged
during storage (Figure 8A), indicating its good stability. This good stability could also be
seen from the fluorescent light photos. As shown in Figure 8B, the purplish red color of the
SiQD-AgNC/PVDF film was constant. In comparison, when the SiQD-AgNC/PVDF film
was used to monitor beef freshness, its fluorescent color obviously changed from purplish
red to cyan (Figure 8C). The R, G, B values of the SiQD-AgNC/PVDF film are shown in
Table 3. It can be seen that the R value gradually decreased, while G and B values gradually
increased, verifying its purplish red-to-cyan color change.
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Figure 8. (A) The visible light photos and (B) fluorescent light photos of a polypropylene packaging
box integrated with a SiQD-AgNC/PVDF film, during storage at 4 ◦C. (C) The fluorescent light
photos of the packaging system with beef sample, during storage at 4 ◦C. (D) The change of TVC
values of beef during storage at 4 ◦C. (E) The relation between ∆C of SiQD-AgNC/PVDF film and
TVC value of beef.

Table 3. The R, G, B values of fluorescent light photos of the SiQD-AgNC/PVDF film during
beef spoilage.

Storage Time
(d)

TVC of Beef
(lg(CFU/g))

Color Parameters of SiQD-AgNC/PVDF Film

R G B ∆C

0 3.21 ± 0.33 156 ± 2.6 76 ± 1.3 220 ± 1.3 0

1 3.43 ± 0.24 150 ± 4.4 79 ± 2.5 221 ± 3.5 46

2 3.81 ± 0.35 140 ± 5.1 85 ± 3.3 225 ± 4.4 362

3 4.09 ± 0.31 128 ± 2.2 94 ± 4.7 229 ± 2.0 1189

4 5.41 ± 0.28 110 ± 3.3 109 ± 2.8 243 ± 0.9 3734

5 6.81 ± 0.26 96 ± 4.5 130 ± 3.1 255 ± 2.8 7741

6 7.65 ± 0.31 87 ± 3.5 150 ± 2.6 270 ± 1.9 12,737

The freshness of beef was evaluated according to its TVC value. As shown in Table 3,
the TVC of beef increased from initial 2.01 lg(CFU/g) to 7.95 lg(CFU/g) after six days.
According to European legislation (EC Regulation 1441/2007, 2007), ~6.7 lg(CFU/g) is
the maximum acceptable limit of TVC for raw meats [10]. In this study, the TVC of beef
reached 6.7 lg(CFU/g) after nearly 4.8 day of storage (Figure 8D), indicating that the beef
was inedible after 4.8 days of storage at 4 ◦C.

The relation between the color of SiQD-AgNC/PVDF film and the TVC value of
beef is shown in Figure 8D. There was a polynomial relation between ∆C and the TVC
value, with R2 of 0.9944. According to this polynomial relation, when the TVC value
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was 6.7, ∆C was calculated to be 7943. This indicated that if the ∆C value of the SiQD-
AgNC/PVDF film was higher than 7943, the beef could not be consumed. Hence, the
developed SiQD-AgNC/PVDF film was able to real-time monitor beef freshness for intelli-
gent food packaging.

4. Conclusions

A ratiometric fluorescent sensor based on SiQD-AgNC was successfully developed.
SiQD-AgNC exhibited two emission peaks at 468 and 610 nm. When SiQD-AgNC reacted
with H2S and CH3SH, the fluorescent intensity of AgNC at 610 nm decreased while the
fluorescent intensity of SiQD at 468 nm increased, forming a ratiometric fluorescent sensor.
The optimal condition of SiQD-AgNC for H2S and CH3SH sensing was pH 7.0. Under
pH 7.0, the LOD values of SiQD-AgNC were 53.6 nM and 56.5 nM for H2S and CH3SH,
respectively. SiQD-AgNC showed good selectivity to H2S and CH3SH in the presence of
other volatile gases generated from beef during storage. When the SiQD-AgNC/PVDF
film was used to monitor beef freshness, it showed a purplish red-to-cyan fluorescent color
change, and this color change was closely related to the TVC value of beef. Hence, the
developed ratiometric fluorescent sensor had great potential for practical application in
intelligent food packaging.
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