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Abstract: Current food recommender systems tend to prioritize either the user’s dietary pref-
erences or the healthiness of the food, without considering the importance of personalized
health requirements. To address this issue, we propose a novel approach to healthy food rec-
ommendations that takes into account the user’s personalized health requirements, in addi-
tion to their dietary preferences. Our work comprises three perspectives. Firstly, we propose
a collaborative recipe knowledge graph (CRKG) with millions of triplets, containing user–recipe
interactions, recipe–ingredient associations, and other food-related information. Secondly, we
define a score-based method for evaluating the healthiness match between recipes and user
preferences. Based on these two prior perspectives, we develop a novel health-aware food
recommendation model (FKGM) using knowledge graph embedding and multi-task learning.
FKGM employs a knowledge-aware attention graph convolutional neural network to capture the
semantic associations between users and recipes on the collaborative knowledge graph and learns
the user’s requirements in both preference and health by fusing the losses of these two learning
tasks. We conducted experiments to demonstrate that FKGM outperformed four competing
baseline models in integrating users’ dietary preferences and personalized health requirements
in food recommendations and performed best on the health task.

Keywords: health; food recommendation; knowledge graph; graph convolution network; multi-task
learning

1. Introduction

A nutritious diet matters as the cornerstone of good health, and unhealthy dietary
habits can lead to a host of preventable illnesses. According to a statistical report [1] from
the World Health Organization in 2016, over 1.9 billion adults and 41 million children
under the age of five were clinically overweight, with 650 million living with obesity. Poor
dietary habits [2], particularly diets high in calories, sugar, and fat, and low in fiber, are
primarily responsible for this epidemic. Improving the dietary structure is considered
an effective approach to tackling this issue [3]. However, making healthy dietary choices
can be challenging for individuals due to their hectic lifestyles and limited knowledge of
food and nutrition.

In recent years, with the blossoming research in the food field [4–7], food recom-
mendation systems [8] have garnered considerable attention from the public, promising
tailor-made food choices to users [9–11]. However, current systems are constrained
by two main factors. Firstly, they frequently overlook crucial food-related information
such as recipe ingredients, food categories, and dietary restrictions when building rec-
ommendation models. This omission can significantly impede the system’s ability to
establish connections between users and foods, resulting in less accurate and varied rec-
ommendations. Secondly, most algorithms disregard users’ health needs when defining
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their objectives, relying solely on dietary preferences. For instance, conventional food
recommendation systems will offer recommendations based on a user’s preference for
high-fat and high-sugar diets, irrespective of potential health risks. Thus, food recom-
mendation systems must account for both dietary preferences and health requirements
to offer effective recommendations [12,13].

In this paper, we propose a novel health-aware food recommendation model, namely
FKGM, which leverages a knowledge graph and multi-task learning approach. The FKGM
takes into account both the user’s dietary preferences and the health impact of four critical
nutrients in recipes: sodium, fat, sugar, and saturated fat. By integrating these considera-
tions into the recommendation process, FKGM offers users personalized food recommen-
dations that are in line with their dietary preferences and health requirements.

The main contributions of this study are summarized into three oriented aspects
as follows:

• Data-oriented: We created a collaborative recipe knowledge graph (CRKG) by merging
the user–recipe bipartite graph and the recipe knowledge graph [14]. The CRKG
includes user–recipe interactions and food-related details such as ingredients, food
types, and cuisines. The CRKG provides the foundation of the recommendation model
with attribute-based and association-based information on users and recipes, enabling
the model to acquire a more comprehensive understanding of users and recipes that
better reflects their semantic similarity.

• Score-oriented: We defined a score-based method for evaluating the healthiness match
between recipes and user preferences. First, we defined a Nutrient Content Score in
recipes and a user Nutrient Intake Score based on the nutrition criteria recommended
by the UK Food Standards Agency to assess the healthiness of recipes and user prefer-
ences, respectively. We then defined a Nutrient Discrepancy Score between recipes
and users to determine the healthiness match between recipes and user preferences,
which is used to calculate the loss of the health learning task in the multi-task learning
layer of the recommendation model.

• Model-oriented: We developed a new health-aware food recommendation model,
FKGM, which embeds entities and relationships on the collaborative recipe knowledge
graph using TransD [15] and updates entity representations through message passing
using a knowledge-aware attention graph convolutional neural network. The model
was trained using multi-task learning, which involves preference learning and health
learning tasks. Our experimental results demonstrate that FKGM outperformed
four existing baseline models in striking a balance between preference needs and
health requirements.

The remainder of this paper is organized as follows. Section 2 describes related work,
Section 3 introduces the construction of the collaborative knowledge graph, Section 4
introduces the methods for evaluating recipe and user preferences, Section 5 presents
the proposed model, Section 6 details the experimental setup and results, and Section 7
provides a summary of this study.

2. Related Work

In this section, we first review knowledge graph-based recommendation methods,
then review preference-based and health-aware food recommendation methods. In the
field of food recommendation, preference-based and health-aware methods have their
own advantages and limitations. Therefore, it is a worthwhile and challenging problem to
effectively combine the two and balance users’ preferences and health. Consequently, the
work of our paper focuses on food recommendation that combines user preferences and
health requirements.

2.1. Knowledge Graph-Based Recommendation

Knowledge graphs organize entities and relations in the real world in the form of
graphs, which can effectively express the semantic relations between entities and have
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been applied to recommendation systems. The methods of knowledge graph-based recom-
mendation systems mainly fall into two categories: path-based methods and embedding-
based methods.

Path-based methods. These methods mainly use paths in knowledge graphs to
make recommendations, which can intuitively represent users’ preference propagation.
Hu et al. [16] proposed a context-aware recommendation method based on meta-paths,
which uses knowledge graphs to describe the relationships between users and items and
uses meta-paths to capture these relationships. Fan et al. [17] proposed a meta-path-guided
heterogeneous graph neural network for intent recommendation tasks. However, these
methods usually rely heavily on the design of meta-paths.

Embedding-based methods. These methods usually use knowledge graph embed-
ding [18] to learn a low-dimensional representation vector for each entity and relation in
knowledge graphs, while preserving the structural information of knowledge graphs [19–21],
and then use the vectors obtained by knowledge graph embedding to enhance the repre-
sentation of users or items in recommendation systems. Zhang et al. [22] proposed CKE,
which uses TransR for knowledge graph embedding and extracts semantic features from
structured knowledge to enrich item representation. Many studies in embedding-based
methods use graph neural networks to leverage their powerful modeling ability for graph
data to improve the recommendation performance. Wang et al. [23] proposed KGAT,
which explicitly models high-order connections in knowledge graphs in an end-to-end
manner and attempts to use message-passing mechanisms to exploit structural knowl-
edge for the first time. Ma et al. [24] addressed the problems of error propagation and
weak interpretability in recommendation systems that combine graph neural networks
and knowledge graphs and proposed KR-GCN, which designed a transition-based triplet
scoring method and introduced a path-level self-attention mechanism to distinguish the
contributions of different selection paths and predict interaction probabilities, achieving
results better than baselines.

Our model belongs to embedding-based methods, which use knowledge graph em-
bedding to learn entity and relation embeddings and use the message passing mechanism
of a graph neural network to capture high-order relational information for entities and
update entity representation.

2.2. Preference-Based Food Recommendation

In this section, we review the existing methods for preference-based food recommen-
dation, which aim to recommend foods to users based on their taste and dietary preferences.
We categorize these methods into three main types: collaborative filtering, content-based,
and hybrid methods. However, each method has its strengths and weaknesses, and there
are also challenges and open problems for future research.

Collaborative filtering methods. These methods learn user preferences from user–food
interactions, such as ratings and tags, and assume that users who have similar interactions
with foods will have similar preferences. For example, Ge et al. [25] combined user rat-
ings and tags in food recommendations and used matrix factorization to generate food
recommendations. Khan et al. [26] proposed a feature recognition technique based on
EnsTM to effectively model user preferences. Collaborative filtering methods can capture
the diversity and personalization of user preferences, but they also suffer from data sparsity
and cold start problems, which limit their scalability and applicability. Therefore, it is
important to explore other methods to overcome these limitations.

Content-based methods. These methods use food content to learn user preferences,
such as ingredients and food images, and assume that users will prefer foods that have
similar content to the foods they have liked before. For example, Freyne et al. [27]
decomposed recipes into individual ingredients and constructed user profiles composed
of ingredients that the user likes based on recipe ratings containing these ingredients,
thus improving the recommendation performance. Yang et al. [28] incorporated food
image information into food recommendations and learned user preferences based on
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food image content. Their work demonstrated the importance of food image information
in learning food preferences. Content-based methods can overcome the data sparsity and
cold start problems of collaborative filtering methods, but they also face the challenges
of extracting and representing food content features, as well as dealing with the semantic
gap between low-level features and high-level preferences. In addition, these methods
may not capture the diversity and novelty of food recommendations as effectively as
collaborative filtering methods.

Hybrid methods. These methods combine both collaborative filtering and content-
based methods to leverage their advantages and mitigate their disadvantages. Gao et al. [29]
considered food recommendation as a multimedia task and proposed a hierarchical attention-
based method, HAFR, which simultaneously considers factors such as user–recipe inter-
actions, food images, and food ingredients in modeling. Experimental results show that
the average recommendation performance of the proposed method is 12% better than that
of the baseline model. Gao et al. [30] considered the correlations between a user–recipe,
recipe–ingredient, and ingredient–ingredient, providing richer auxiliary information for
food recommendation models and helping to better model user preferences. They used
graph convolutional neural networks to model the relationships between these foods. This
method outperformed the state-of-the-art method in the recommendation performance by
5.4%. Consequently, hybrid methods have become a popular approach for food recommen-
dation due to their ability to capture diverse and personalized user preferences.

Compared to the above methods, our method further considers the complex relation-
ships between foods and uses knowledge embedding and a knowledge graph attention
network to model the vector representations of entities in the food knowledge graph. In
this way, the model can fully utilize the rich semantic information contained in CRKG,
explore users’ high-level preferences, and increase recommendation diversity. However,
there are also challenges in designing and optimizing knowledge-based models, such as
dealing with the sparsity and noise in knowledge graphs, as well as the complexity of the
model training and inference process. Therefore, future research can focus on address-
ing these challenges and developing more effective and efficient knowledge-based food
recommendation methods.

2.3. Health-Aware Food Recommendation

The healthy food recommendation based on the user’s health status, nutritional needs,
and dietary restrictions aims to recommend beneficial foods or recipes to improve users’
health levels and quality of life. However, it may not consider users’ personal preferences
and diversity. There are two main methods for existing healthy food recommendations:
rule-based and data-driven.

Rule-based methods. These methods rely on specific rules [31] or criteria, such as
filtering, sorting, or classification, often limited by the usage scenario and based on domain
knowledge, expert opinions [32], or logical reasoning. Shandilya et al. [33] proposed
a food recommendation system named MATURE-Food that recommends suitable foods
based on users’ current mandatory requirements, using a real food item dataset [34]
and medical records of chronic kidney disease (CKD) patients from University of Iowa
Hospitals and Clinics (UIHC), mainly for medical and health fields rather than general food
recommendation scenarios. Ribeiro et al. [35] presented a mobile catering recommendation
system named SousChe f , targeting elderly people and creating personalized meal plans
based on users’ information including body measurements, personal preferences, and
activity levels. The nutritional suggestions and application are designed for elderly people,
featuring a user-friendly interface and following the guidelines of nutritionists. User
testing was conducted to determine the applicability of recipes and nutrition plans and
the usability of the mobile application. The results showed that more than 70% of elderly
participants were satisfied with the simplicity of the meal plan recommendations and the
SousChe f application. Ge et al. [36] considered calorie balance and proposed a calorie
balance function based on the difference between user’s needs and recipe calories, where
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users can define whether food recommendations should focus more on taste or health.
However, rule-based methods typically use general or fixed rules without considering
users’ personalized needs.

Data-driven methods. With the development of the data era, data-driven methods
are becoming mainstream. These methods can utilize a large amount of data to learn users’
preferences and needs and generate more accurate and personalized recommendations
based on them. They usually use machine learning or statistical techniques to analyze data
and extract useful information from it. Wang et al. [37] proposed a personalized health
food recommendation scheme. The scheme consists of three parts: the recipe retrieval,
user health analysis, and health food recommendation. The authors describe users’ health
conditions by capturing text health-related information crawled from social networks, and
propose a novel recommender based on category-aware hierarchical memory networks
to learn health-aware user–recipe interactions, to better perform food recommendations.
Chen et al. [38] proposed a new framework called NutRec, which aims to provide users
with healthy recipe recommendations by simulating the interactions and proportions of
ingredients in recipes. The framework consists of three main parts: ingredient predic-
tion, ingredient quantity prediction, and healthy recipe recommendation. The authors
conducted experiments on two recipe datasets, and the results supported the intuition
of the framework and demonstrated its ability to retrieve healthier recipes. Li et al. [39]
introduced a novel approach to recipe recommendation that incrementally shifts users
towards healthier recipe options while respecting their past preferences. The authors
proposed a model that jointly learns recipe representations via a graph over two graphs
extracted from a large-scale Food KG, capturing different semantic relationships across the
preferences and healthiness aspects. Experimental results on two large real-world recipe
datasets showcase the model’s ability to recommend tasty as well as healthy recipes to
users. However, this approach only considers the healthiness of the food itself and does
not take into account users’ personalized health requirements.

Our work belongs to the data-driven method. Compared with the methods mentioned
above, our method can represent the complex relationship between users and food more
comprehensively by learning rich semantic information on CRKG. Furthermore, our
method simultaneously learns user preferences and personalized health requirements. By
providing corresponding constraints in the recommendation process, our work aims to offer
food recommendations that not only satisfy users’ tastes but also meet their personalized
health requirements.

3. Collaborative Recipe Knowledge Graph

In this paper, the collaborative recipe knowledge graph (CRKG) refers to a collabo-
rative knowledge graph that combines the user–recipe bipartite graph and recipe knowl-
edge graph. It contains user–recipe interaction relationships and various food-related
information, such as recipe–ingredient and recipe–cuisine relations. This provides food
recommendation models with a better understanding of the semantic relationships between
users and recipes and allows for the exploration of implicit associations between users and
recipes. To clarify the construction process of CRKG, we first provide a formal description
of the user–recipe bipartite graph, recipe knowledge graph, and CRKG, and then introduce
the method for constructing CRKG.

3.1. Formal Definition

• User–Recipe Bipartite Graph G1: We defined the set of m users as U = {u1, u2, . . . , um}
and the set of n recipes as RP = {rp1, rp2, . . . , rpn}. The user–recipe interaction data
are represented as a bipartite graph G1 = {(u, interact, rp) | u ∈ U, rp ∈ RP}, where
interactu,rp = 1 if there exists an interaction history between user u and recipe rp, and
interactu,rp = 0 otherwise.

• Recipe Knowledge Graph G2: The constructed recipe knowledge graph is rep-
resented as G2 = {(h, r, t)|h ∈ E, r ∈ R, t ∈ E}, which consists of many entity-
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relation-entity triplets (h, r, t), where h, r, t, respectively, represent the head entity,
relation, and tail entity, describing the relationship between the head entity h
and the tail entity t through the relation r. For instance, consider the triplet is
(pizza, f ood.dish.ingredients, mozzarella cheese). In this case, ‘pizza’ is the head
entity, ‘ f ood.dish.ingredients’ is the relation, and ‘mozzarella cheese‘ is the tail en-
tity. This triplet indicates that mozzarella cheese is one of the ingredients of pizza.
E and R represent the sets of entities and relations in the recipe knowledge graph
G2, respectively.

• Collaborative Recipe Knowledge Graph CRKG: We integrated the user–recipe bi-
partite graph G1 and the recipe knowledge graph G2 into a unified graph CRKG.
Specifically, for any recipe rp ∈ RP in G1, a corresponding entity e ∈ E can be found
in G2. For example, Roast Chicken with Rosemary is a recipe in both G1 and G2.
G1 and G2 are aligned and fused into a unified graph CRKG based on the matched
recipes, denoted as CRKG = {(h, r, t)|h ∈ E′, r ∈ R′, t ∈ E′}, where E′ = E ∪U and
R = R′ ∪ {interact}.

3.2. Construction Method

In this study, we first constructed a user–recipe bipartite graph G1 using the widely
used public dataset Allrecipes for food recommendation. The Allrecipes dataset contains
user–recipe interaction data, ingredients, and nutritional information. We extracted user–
recipe interaction data from Allrecipes to construct the user–recipe bipartite graph G1,
which includes 48,111 users, 38,115 recipes, and 1,267,176 interactions between them.

Then, the recipe knowledge graph G2 was constructed using the large-scale knowledge
base Freebase to provide recommendation models with recipe-related relational informa-
tion. Freebase [40] is a large-scale knowledge base consisting of nodes and edges, where
each node represents an entity (such as a person, place, organization, etc.), and each edge
represents a relationship between two entities. It was proposed by Google in 2007 and cov-
ers knowledge in various fields such as arts, history, and food. It has been widely used in
research on knowledge graphs, natural language processing, intelligent question answering,
and other fields. This study used food-related knowledge from Freebase to construct the
recipe knowledge graph G2. Specifically, entity linking technology was used to construct
G2. This process first linked food entities in the Allrecipes dataset to their corresponding
entities in Freebase and extracted the other entities that the corresponding entity is linked
to in Freebase and the relationships between them to obtain triplets to form G2. Then, the
obtained triplets were refined by filtering out low-frequency relations and entities. Finally,
a recipe knowledge graph G2 was constructed, which contains 69,799 entities, 10 types of
relations, and 2,500,801 triplets. G2 includes 10 food-related relationships, encompassing
various aspects such as the food dish-type (recipe-type), compatibility of ingredients with
dietary restrictions (recipe–dietary restrictions), cuisine of food dishes (recipe–cuisine),
ingredient compatibility with dietary restrictions (ingredient–dietary restrictions), narrower
categorization of ingredients (ingredient categories), cuisine associated with an ingredient
(ingredient–cuisine), dishes served with a specific dish (served-with), regions associated
with a dish (region), and recipe–ingredient relationship.

After obtaining the user–recipe bipartite graph G1 and recipe knowledge graph G2, the
two are fused into CRKG, as shown in Figure 1; the nodes of different colors in the figure
represent different types of entities in CRKG. The green node represents a user, the orange
node is a recipe, and the connection between the user and the recipe indicates that there
is an interaction between them. In the figure, the recipe–ingredient association relation
is shown as an example. The purple nodes are recipe ingredient nodes, and the recipe
nodes and ingredient nodes are connected to indicate that the recipe is composed of these
ingredients. The blue nodes are other types of entities in the collaborative knowledge graph.
The nodes in CRKG are called entities, and the edges between entities are represented
as relations.
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4. Assessment of Recipe and User Preference Healthiness

In this section, we first propose a calculation method for assessing the healthiness of
recipes and the healthiness of user preferences and then define a method for calculating the
healthiness match between recipes and user preferences.

4.1. Recipe Nutrient Content Score (NCS)

Before making healthy food recommendations, a standard needs to be developed to
measure the healthiness of a recipe. In this paper, we refer to the nutrient rating system
proposed by the UK Food Standards Agency (FSA) [41] to evaluate the healthiness of
recipes. This rating assesses the healthiness of a recipe based on the content of four
nutrients: sodium, fat, sugar, and saturated fat, as the long-term excessive intake of any
of these nutrients can lead to health risks. We defined the set of these four nutrients as
the nutrient set = sodium, f at, sugar, saturated f at. The FSA rating evaluates the nutrient
content of recipes and classifies them into three levels: healthy, medium, and unhealthy.
Table 1 shows the healthy threshold values for the four nutrients (the salt content is
converted to sodium content using a conversion factor of 0.388 g of sodium per 1 g of salt),
and a recipe is considered unhealthy if the content of any nutrient exceeds its corresponding
threshold value.

Table 1. Health threshold values for each nutrient in FSA rating.

Nutrient Sodium Fat Sugar Saturated Fat

Threshold value (g/portion) 0.7 21.0 27.0 6.0

In this study, the nutrient content of each recipe was obtained from Allrecipes and
Table 2 shows examples of the nutrient content of several recipes in the dataset.

Table 2. Examples of nutrient content in recipes (partial).

Recipe Sodium (g) Fat (g) Sugar (g) Saturated Fat (g)

Homemade Bacon 2.01 23.58 0.09 7.73
Foolproof Rosemary Chicken Wings 0.76 23.62 0.23 5.68

Cranberry Pork Chops II 0.40 6.31 26.46 2.73
Chinese Pot Roast 2.81 19.97 12.16 7.11
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In this study, the Nutrient Content Score (NCS) of a recipe was defined with reference
to the FSA rating. The healthiness of a recipe was assessed based on the content of the
recipe on four nutrients, which was calculated as shown in Equation (1). NCSk(rp) denotes
the Nutrient Content Score of recipe rp on the k-th nutrient. k is the k-th nutrient in the
nutrient set k ∈ nutrient set. thresholdk is the limit value of nutrient k out of the health
range in the FSA rating. content(rp, k) is the content value of nutrient k in recipe rp.

NCSk(rp) =
content(rp, k)× 10

thresholdk
(1)

The NCSs of a recipe calculated by Equation (1) for the four nutrients are continuous
values and unified to the same scale. Table 3 shows the NCSs calculated by Equation (1) for
the recipes in Table 2. According to the NCS scoring system, the scores can be categorized
into three intervals: the healthy range is defined as [0,4), the moderate range is defined as
[4,10), and the unhealthy range is defined as [10,+∞).

Table 3. Nutrient Content Scores calculated for the recipes in Table 2.

Recipe NCSsodium NCSfat NCSsugar NCSsaturated fat

Homemade Bacon 28.81 11.23 0.03 12.90
Foolproof Rosemary Chicken Wings 10.90 11.25 0.09 9.47

Cranberry Pork Chops II 5.84 3.00 9.80 3.89
Chinese Pot Roast 40.14 9.51 4.50 11.86

4.2. User-Preferred Nutrient Intake Score (NIS)

The core of this study’s recommendation task is to recommend healthier recipes
based on users’ dietary habits. Since different users have different dietary habits, their
health requirements are also different. Users’ dietary habits reflect not only their dietary
preferences but also their health status. Therefore, we defined the Nutrient Intake Score
to calculate users’ high and low intake levels in four nutrient categories. In calculating
the Nutrient Intake Score (NIS), a grouped weighted average method is used instead of
directly averaging a certain nutrient in the user’s interaction history to effectively avoid
the influence of extreme values. The formula for calculating the Nutrient Intake Score for
a certain nutrient is shown in Equation (2), where k ∈ nutrient set.

NISk(u) =
c1 ×med1 + c2 ×med2 + c3 ×med3

Count
(2)

The specific calculation process is as follows:
Input: User’s recipe history interaction data.
Procedure:
Step 1. First, all the recipes in the user’s historical recipe interaction data are counted,

and they are divided into three groups based on the NCS of each recipe in nutrient k,
where [0,4) is the low level group, [4,10) is the medium level group and [10,+∞) is the high
level group.

Step 2. Calculate the frequency of recipes in each group and calculate the median NCS
in each group. The frequency of each group is denoted as c1, c2, and c3; the median NCS of
recipes in each group is denoted as med1, med2, and med3; and Count is the total number of
user recipe interaction records.

Step 3. Apply Equation (2) to obtain NISk(u).
Output: User’s Nutrient Intake Score in nutrient k.
The NIS is calculated for the user in terms of sodium, fat, sugar, and saturated fat

according to Equation (2). Typically, if a user’s score for a certain nutrient intake is high, it
indicates that the user has consumed too much of that nutrient in their diet, and therefore
restrictions should be added to that nutrient in food recommendations.
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4.3. Nutrient Discrepancy Score (NDS)

After defining the calculation method for recipe healthiness and user preference for
healthiness, we defined the Nutrient Discrepancy Score (NDS) of a recipe for a user, which
measures the degree of match between a recipe and a user in terms of healthiness. It is
calculated based on the Nutrient Intake Score of the user and the Nutrient Content Score of
the recipe. The higher the NDS, the less suitable the recipe is for the user’s health.

The specific calculation process is as follows:
Input: Nutrient Content Score of recipe rp, Nutrient Intake Score of user u.
Procedure:
Step 1. Modifying the original so f tplus function [42] as shown in Equation (3), the

modified function will map values less than four to close to zero. Using this equation, the
values of each item in NCS and NDS are mapped, and small values are mapped to values
close to zero, while larger values are preserved. The purpose of this modification is to
focus on the unhealthy nutrients in NCS or NIS, and ignore the healthy nutrients, when
calculating the Nutrient Discrepancy Score between the recipe and the user in the next step.
The Nutrient Content Score NCSk(rp) of recipe rp and the Nutrient Intake Score NISk(u)
of user u are processed using Equation (3).

so f tplusmod(x) = log
(

1 + ex−4
)

(3)

Step 2. Based on the so f tplusmod(NISk(u)) and so f tplus_mod(NCSk(rp)) obtained
above, the Nutrient Discrepancy Score NDS(u, rp) of recipe rp and user u is calculated as
shown in Equation (4). When the NIS of a user on a certain nutrient is equal to 10 and
the NCS of a recipe on a certain nutrient is equal to 10, the NDS of both is calculated by
Equation (4) ≈ 36. Therefore, in general, when the NDS(u, rp) exceeds 36, the recipe is
considered unfavorable to the health of the user.

NDS(u, rp) = ∑
k∈nutrient set

so f tplusmod(NISk(u))× so f tplusmod(NCSk(rp)) (4)

Output: Nutrient Discrepancy Score (NDS) of recipe rp for user u, denoted as
NDS(u, rp).

The following is an example to illustrate the calculation method of NDS. Assume that
the Nutrient Intake Scores of two users (u1 and u2) and the Nutrient Content Scores of two
recipes (rp1 and rp2) are known, as shown in Table 4.

Table 4. The NISs and the NCSs in case study.

k Sodium Fat Sugar Saturated Fat

NISk(u 1) 5.11 12.33 3.03 6.40

NISk(u 2) 10.39 4.50 13.14 6.24

NCSk(rp 1) 10.90 11.25 0.09 9.47

NCSk(rp 2) 4.63 5.80 11.38 5.51

Table 5 shows the results of users u1 and u2 with recipes rp1 and rp2, respectively, to
calculate the Nutrient Discrepancy Scores.

Table 5. NDSs in case study.

NDS(u1,rp1) NDS(u1,rp2) NDS(u2,rp1) NDS(u2,rp2)

74.55 16.40 44.51 68.99
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From Table 5, it can be analyzed that for user u1, recipe rp1 is not conducive to
their health, while recipe rp2 is more suitable for user u1. This is because user u1 has
an excessive intake in terms of fat and has unhealthy eating habits, while recipe rp1 is
too high in terms of fat content and is shown to be unhealthy, while recipe rp2 is low in
fat content. For user u2, both recipes rp1 and rp2 are not conducive to their health. This
is because user u2 has unhealthy dietary habits in terms of sodium and sugar, and recipe
rp1 is too high in sodium and is shown to be unhealthy, while recipe rp2 is too high in
sugar and is also shown to be unhealthy. Therefore, both recipe rp1 and recipe rp2 have
a high NDS for user u2.

5. Recommendation Model FKGM

We define the task of personalized healthy food recommendation as follows: given the
CRKG, the goal is to learn a prediction function F(u, rp|Θ, CRKG) with parameters Θ that
can capture both the user’s preference and health requirements, and output the matching
degree between user u and recipe rp.

5.1. Preliminary

Before delving into the details of our proposed model, we introduce the data prepro-
cessing steps and how the model works in this section. This will help readers understand
the underlying processes.

When constructing the positive and negative sample sets for user preference, for each
user, the recipes that have been interacted with are considered as the positive sample set
P+

u , while the recipes that have not been interacted with are considered as the negative
sample set P−u .

When constructing the positive and negative sample sets for user health, the NDS
calculation method proposed in Section 4 is first applied to calculate the NDS between all
users and recipes in the recommendation dataset. Based on the NDS values between the
user and the recipe, the positive and negative sample sets for healthy recipes, H+

u and H−u ,
are defined for each user. If the NDS between a user and a recipe is greater than or equal
to 36, the recipe is added to the negative sample set H−u for that user. The positive and
negative sample sets for user health defined here will be used for the health learning task
of the model.

The multi-task learning stage of FKGM learns the user’s preference and health needs
through the preference learning task and the health learning task. In both learning tasks,
the Bayesian Personalized Ranking [43] loss is used as the loss function [44] to optimize
the model parameters. The optimization goal is to make the model’s recommendation
results closer to the recipes in the positive sample set. In deep learning, the loss function is
a function that measures the gap between the model’s prediction results and the true results.
During the training process, the optimization algorithm adjusts the model’s parameters
continuously, making the value of the loss function gradually decrease, thereby making the
model’s prediction results closer and closer to the target results.

The overall framework and operation process of the model is introduced below. The
framework of the healthy food recommendation model FKGM is illustrated in Figure 2,
which consists of three components: (1) the embedding layer, which vectorizes each
entity and relation in CRKG into a vector through knowledge graph embedding; (2) the
message passing layer, which utilizes a knowledge-aware attention graph convolutional
neural network to perform iterative updates on the vector representation of each entity by
receiving messages from its neighborhood; and (3) the multi-task learning layer, performing
the preference learning task and health learning task, respectively.
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senting the calculation of inner products between entities for outputting predicted matching scores
during the model inference phase.

The input of the FKGM is CRKG constructed in Section 3. Firstly, in the embedding
layer, all the entities and relations on the CRKG are embedded into vector [45] forms so
that the computer can better understand and process this data. The vectors corresponding
to entities or relations are also known as their representation. Then, in the message passing
layer, each entity on the CRKG iteratively receives information from its neighboring entities
that are connected to itself and assigns different weights to the information from different
neighboring entities according to the relation attention coefficients. This process is also
known as message passing. Through multiple layers of message passing, each entity can
obtain extensive neighborhood information, thereby better capturing the complex relations
in the graph structure. Figure 2 shows an example of three-layer message passing, where
an entity is updated to a new representation after each layer of message passing. The final
representation of an entity is obtained by concatenating its vector representation before
message passing and its vector representations after each layer of updating.

Then, the model predicts the matching score between a user and a recipe by taking the
inner product of vectors [46], a method commonly used in recommendation or classification
tasks to calculate the similarity between two vectors. During the optimization phase of the
model, which is the multi-task learning layer, the preference learning task calculates the
loss of the model in terms of preference prediction and the health learning task calculates
the loss of the model in predicting health requirements. The two losses are then weighted
and summed to obtain the final loss used for optimizing the model parameters.

5.2. Embedding Layer

Embedding is the process of transforming entities and edges into vectors, which
are usually called embedding vectors. Embedding vectors can map entities and edges
from their original symbolic form (such as strings or IDs) to a continuous vector space,
which facilitates computation and processing. We first used xavier_uniform to initialize
the vectors of entities and relations. Then we used knowledge graph embedding to
update the vector representations. Knowledge graph embedding aims to learn the latent
representations of entities and relationships in the knowledge graph while preserving
the structural information of the graph. CRKG is a heterogeneous graph with rich
semantic information. We adopted TransD [15] as the method of knowledge graph
embedding, which embeds entities and edges in CRKG into continuous vector space
while retaining its structural information. TransD employs a method of dynamically
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constructing mapping matrices. Given a triplet (h, r, t), its vector includes vh, vhp , vr , vrp ,
vt, and vtp , where the subscript p indicates the projected vector, vh, vhp , vt, vtp ∈ Rd and
vr, vrp ∈ Rz. As shown in Figure 3, TransD maps the head entity h and tail entity t into
a common space constructed by the entity and relation in the triplet using two mapping
matrices, Mrh and Mrt.
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The head entity h and tail entity t are mapped to the relation space by constructing the
projection matrix, as shown in Equation (5).

vh⊥ = Mrhvh, vt⊥ = Mrtvt (5)

The symbols vh⊥ and vt⊥ in Equation (5) indicate the representations of the head
entity h and the tail entity t in the relation space, respectively. The plausibility score
g(h, r, t) of a triplet is defined by Equation (6). TransD uses embedding scores to measure
the plausibility of a triplet’s embedding in a knowledge graph. The embedding score of
a triplet (h, r, t) is defined by Equation (6), where a higher score indicates a more plausible
embedding and a lower score indicates a less plausible one. The TransD scoring function
first projects the head and tail entities into vector spaces that correspond to the relation
and then calculate the distance between the projected head entity and the projected tail
entity plus the relation vector. The smaller the distance, the higher the score, indicating
the plausibility of the triplet. In other words, if the projected head entity is close to the
projected tail entity plus the relation vector, then it is more likely that the triplet (h, r, t) is
valid in the knowledge graph.

g(h, r, t) = −‖vh⊥ + vr − vt⊥‖2
2 (6)

TransD adopts the Bayesian Personalized Ranking loss, which aims to maximize the
margin between positive and negative samples. The loss function is shown in Equation (7).

Lkg = ∑
(h,r,t)∈ε+

∑
(h,r,t′)∈ε−

−lnσ(g(h, r, t′)− g(h, r, t)) (7)

In Equation (7), ε+ represents the set of true triplets in the CRKG, which has positive
samples, while ε− represents the negative samples. Negative samples are constructed
by randomly selecting an entity t′ to replace the true tail entity t in the triplet (h, r, t). σ
denotes the sigmoid function.

5.3. Message Passing Layer

In this layer, the model constructs a knowledge-aware attention graph convolutional
neural network, which updates entity representations through message passing [47]. In the
message passing layer, each entity in CRKG broadcasts its representation to its first-order
neighborhood entities that are directly connected to it and receive information from its
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neighborhood entities. The first-order neighborhood of an entity refers to the entities
that are directly connected to it, while the high-order neighborhood refers to the entities
that are indirectly connected to it. In one layer of message passing, all entities in CRKG
integrate the received neighborhood information to generate their new representations. By
stacking multiple layers of such operations, each entity can receive information from high-
order neighborhoods, thus capturing the high-order similarity between entities. Inspired
by KGAT [23], we introduced a knowledge-aware attention mechanism in the message-
passing process, which can better distinguish the influence of different relations on entities
in CRKG.

The first stage of message passing is to receive information from neighboring entities.
The computation method for propagating neighborhood information for an entity e on
CRKG is defined as Equation (8).

vN(e) = ∑
(r,t)∈N(e)

πr(e, t)vt (8)

Here, vN(e) represents the neighborhood information of entity e, N(e) represents the
set of all neighboring entities of entity e, vt denotes the representation of the neighboring
entity t, and πr(e, t) is the normalized relation attention coefficient between entity e and
entity t under relation r. When entity e and entity t are mapped to relation space r and their
distance is closer to r, it indicates that entity t is more important to entity e under relation
space r. In this step, the representations of all neighboring entities of entity e are multiplied
by the normalized relation attention coefficients and summed to obtain the neighborhood
information of entity e. The definition of relation attention coefficient π̂r(e, t) is shown in
Equation (9).

π̂r(e, t) =
(

vt⊥)
Ttanh(ve⊥ + vr) (9)

We used the so f tmax function to normalize the relation attention coefficients for all
neighboring entities connected to entity e, as shown in Equation (10). The relation attention
coefficient distinguishes the different importance levels of neighboring entities when entity
e receives their information.

πr(e, t) =
exp(π̂r(e, t))

∑(r′ ,t′)∈N(e) exp(π̂r′(e, t′))
(10)

After obtaining all the information from the neighborhood of entity e, the next step is
to aggregate the information. In this step, the neighborhood information of entity e and the
representation of entity e itself are aggregated to update the representation of entity e. We
adopted the bi-interaction approach to aggregate the neighborhood information, which can
comprehensively capture and process the interaction information between entities. The
specific aggregation formula is shown in Equation (11).

fAggregator = LeakyReLU
(

W1(ve + vN(e))
)
+ LeakyReLU

(
W2(ve � vN(e))

)
(11)

The matrices W1, W2 ∈ Rd are trainable parameter matrices, and the � operator
denotes element-wise multiplication between vectors. The LeakyReLU activation function
was used. After one layer of message passing, the entity representation is updated, which
is abstracted as Equation (12).

v(l)e = f
(

v(l−1)
e , v(l−1)

N(e)

)
(12)

Here, v(l)e represents the representation of entity e in the l-th layer of message passing.
After one layer of message passing, the entity updates its representation based on the
aggregation function and neighborhood information, enabling it to obtain information from
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the first-order neighborhood. By stacking more layers, entities on graph CRKG can capture
information from higher-order neighborhoods, and thus mine users’ latent preferences.

After L layers of message passing, entities on CRKG are updated to a new representa-
tion at each layer. The final representation of entities on CRKG is obtained by concatenating
their representations across all layers.

v*
e = v(0)e

∣∣∣∣∣∣. . .
∣∣∣∣∣∣v(L)

e (13)

The model outputs the predicted matching score by calculating the inner product
between the user entity representation v∗u and the recipe entity representation v∗rp. The
larger the inner product between the user entity representation v∗u and the recipe entity
representation v∗rp, the higher the degree of match between them predicted by the model.

y(u, rp) = v*T
u · v*

rp (14)

5.4. Multi-Task Learning Layer

The task of the FKGM model is to learn the user’s preferences and health requirements,
so two learning tasks are set at the multi-task learning layer, namely the preference learning
task and the health learning task.

5.4.1. Health Learning Task

In Section 4.3, we define the Nutrient Discrepancy Score of a recipe for a user, where
a higher NDS(u, rp) means that in terms of health, recipe rp is less suitable for user u.
Based on the Nutrient Discrepancy Score, we defined a healthy positive sample set H+

and a healthy negative sample set H− for each user. In the context of the health learning
task, it is anticipated that the value of y(u, rp) will be higher when the recipe rp is better
aligned with the health requirements of user u, and conversely, lower when the recipe is less
suitable for user u’s health needs. We used the idea of the Bayesian Personalized Ranking
loss, and for the health learning task, the loss function Lhealth is shown in Equation (15).

Lhealth = ∑
(u,rp+h )∈H+ ,(u,rp−h )∈H−

−lnσ
((

NDS
(
u, rp−h

)
− NDS

(
u, rp+h

))(
y
(
u, rp+h

)
− y

(
u, rp−h

)))
(15)

In Equation (15), NDS
(
u, rp+h

)
and NDS

(
u, rp−h

)
represent the NDS between user u

and recipe rp+h and between user u and recipe rp−h , respectively. σ is the sigmoid function.
Recipe rp+h is randomly selected from user u’s healthy positive sample set H+, while
recipe rp−h is randomly selected from user u’s healthy negative sample set H−. For user
u, the NDS of recipes in H+ is lower than that of recipes in H−. The difference in NDS
between the healthy positive sample rp+h and the healthy negative sample rp−h is used as
the weight for the score difference of the predicted matching between the healthy positive
and negative samples. When the difference in NDS between the two samples is larger, the
match between these two recipes and user u’s health requirements is further apart, and the
loss in the health learning task is greater.

5.4.2. Preference Learning Task

For the preference learning task, the expectation is that y
(

u, rp+p
)

should be greater

than y
(

u, rp−p
)

when there exists an interaction between user u and recipe rp+p but not

between user u and recipe rp−p . We used the Bayesian Personalized Ranking loss as the loss
function Lpre f erence to optimize the model parameters, which is formulated as Equation (16).

Lpre f erence = ∑
(u,rp+p )∈P+ ,(u,rp−p )∈P−

−lnσ
(

y(u, rp+p )− y(u, rp−p )
)

(16)
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In Equation (16), P+ is the set of positive samples of user interactions, i.e., the inter-
actions between user u and recipe rp+p that exist in the interaction history. P− is the set of
negative samples of user interactions, i.e., the interactions between user u and recipe rp−p
that do not exist.

5.4.3. Multi-Task Loss Combination

The final objective function is a weighted combination of Lhealth and Lpre f erence, as
defined in Equation (17), where λh is the health loss weight of the health learning task and
λ‖Θ‖2

2 is the regularization term [48] used to prevent overfitting.

Loss = λhLhealth + Lpre f erence + λ‖Θ‖2
2 (17)

We used mini-batch Adam [49] to optimize the prediction loss and update the model’s
parameters. Adam is an algorithm used for gradient descent optimization, typically used
for training deep learning models. Adam has the characteristic of an adaptive learning rate
and performs well in handling large-scale datasets and high-dimensional parameter spaces.

6. Performance Evaluation

We evaluated the proposed healthy food recommendation model, aiming to answer
the following questions.

• RQ1: How does the performance of the FKGM compare to several baseline models in
balancing the performance on both preference and health requirements in the food
recommendation task?

• RQ2: How should the health loss weight of the health learning task be set to balance
the preference needs and health requirements?

• RQ3: How do different hyper-parameters affect the performance of the FKGM model?

6.1. Datasets and Baselines

We conducted experiments on the recipe dataset Allrecipes, which has been described
in Section 3. The experimental dataset includes 48,111 users, 38,115 recipes, and 1,267,176 in-
teractions between them. The interaction history of each user was divided into a training
set and a test set according to a 9:1 ratio.

We compared our proposed FKGM with four baseline models on the task of healthy
food recommendation.

CKE [22]: Collaborative knowledge base embedding is a recommendation algorithm
that combines collaborative filtering with knowledge graph embedding. It uses TransR
to extract information from the knowledge graph and extract semantic features from
structured knowledge.

CFKG [50]: Collaborative filtering with knowledge graphs is a recommendation
model that enhances the accuracy of recommendations by integrating collaborative filtering
and knowledge graphs. It maps the relationships among users, relations, and items to
a triplet prediction to achieve more precise recommendations.

KGAT [23]: A knowledge graph attention network is a recommendation model tai-
lored to knowledge-aware personalized recommendation. Built upon the graph neural
network framework, KGAT explicitly models the high-order relations in collaborative
knowledge graphs to provide better recommendations with item side information.

BPRMF [43]: Bayesian Personalized Ranking matrix factorization is a recommendation
algorithm based on matrix factorization, which uses the Bayesian Personalized Ranking
loss function to consider both the similarity of users’ interests and the relative level of
interest in items.

The hyper-parameters setting of FKGM is presented in Table 6.
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Table 6. Hyper-parameters setting.

Parameter Name Values Parameter Name Values

Embedding Dimension 64 Parameter_update Adam
Message Passing Layer 3 Learning_rate 0.0001

Batch_size 2048 Message_dropout 0.1
Epoch 300 λh 0.1

6.2. Evaluation Metrics

To evaluate the effectiveness of the model’s recommendation results in meeting users’
preferences and health requirements, separate evaluation metrics were set for preference
and health requirements.

For preference evaluation, we used the commonly used recommender system evalua-
tion metric, Recall. The equation is shown as Equation (18).

Recall = ∑u∈U |R(u) ∩ T(u)|
∑u∈U T(u)

(18)

R(u) represents the set of recipes recommended to a user, and T(u) represents the set
of recipes that the user has interacted with in the test set. Recall [46] measures the proportion
of recommended recipes in the final recommendation list that the user has interacted with
in the past, reflecting the relevance of the recommended results to the user’s historical
interaction list. The higher the recall value, the higher the relevance of the recommended
results. Recall@K represents the recall value of the top K recommended recipes.

The goal of this study for evaluating users’ health requirements is to constrain the
recommendations provided by the food recommendation model for users who have exces-
sive intakes of nutrients such as sodium, fat, sugar, and saturated fat to achieve nutritional
balance. To evaluate whether the model can meet users’ health requirements, we ranked
users based on their Nutrient Intake Scores in sodium, fat, sugar, and saturated fat in the
dataset. In each ranking group, we selected the top 500 users, which were then divided
into four groups: high-sodium, high-fat, high-sugar, and high-saturated fat. These four
groups represent populations with excessive nutrient intake in the corresponding areas and
should reduce their intake of these nutrients. This paper will use the average content of the
corresponding nutrients in the top K recommended recipes generated by the model as the
evaluation metric, in grams, represented as Sodium@K, Fat@K, Sugar@K, and Saturated
Fat@K, respectively, to evaluate the recipes recommended to these four groups of users.
The lower the value of this metric, the better the recommendation.

6.3. Model Comparison (RQ1)

To validate the effectiveness of our approach in combining preferences and health
requirements, we compared the performance of FKGM with several baseline models in
Top-N food recommendation, where ranking position K is set to 20. The experimental
results are shown in Table 7.

Table 7. Performance of compared models.

Models
Test Set High-Sodium High-Fat High-Sugar High-Saturated Fat

Recall@20 Sodium@20 Fat@20 Sugar@20 Saturated Fat@20

CKE 0.087 0.812 14.756 16.400 6.051
CFKG 0.086 0.772 13.799 16.414 5.858
KGAT 0.090 1.264 15.837 18.592 6.319

BPRMF 0.080 1.004 14.933 16.143 5.879
FKGM (ours) 0.074 0.451 12.539 15.731 5.325
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Table 7 shows the performance of FKGM and four baseline models in terms of the
preference evaluation metric Recall@20 and four health evaluation metrics. The analysis
shows that although FKGM did not achieve an optimal performance in dietary preference
recommendation, it outperformed other models that only focus on preferences in terms of
meeting user health requirements. A further analysis of the comparison between FKGM
and other models in terms of health recommendation with the ranking parameter K set to
{20, 40, 60, 80, 100} is shown in Figure 4.
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After analyzing the experimental results shown in Figure 4, it can be concluded that
our proposed model consistently outperformed other baseline models in health requirement
recommendation, demonstrating the effectiveness of our approach in combining preference
needs and health requirements.

6.4. Health Loss Weight Study (RQ2)

In this section, we study the impact of health loss weight on balancing preference
needs and health requirements in food recommendations. By setting different health loss
weights for experiments and comparing the model performance in health requirement
recommendations, the results are shown in Table 8.
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Table 8. Performance comparison when FKGM sets different health loss weights.

Health Loss Weight Recall@20 Sodium@20 Fat@20 Sugar@20 Saturated Fat@20

λh = 0 0.089 1.167 16.186 17.567 6.316
λh = 0.05 0.077 0.884 14.147 17.517 5.889
λh = 0.1 0.074 0.451 12.539 15.731 5.325

λh = 0.15 0.042 0.653 9.262 9.632 3.881
λh = 0.2 0.032 0.175 4.329 7.734 1.757

Experimental results show that with the increase of the health loss parameter λh,
the performance of the model in health recommendation also increases. However, if λh
is too large, the performance of the model in dietary preference recommendation will
be compromised. To balance the preference and health requirements of users in food
recommendation, we suggest setting the health loss weight λh to 0.1 for the model. Through
experiments, it can be found that the model can control whether the recommendation results
are more biased towards preferences or health requirements by adjusting the value of the
health loss weight.

6.5. Hyper-Parameter Studies (RQ3)

To investigate the impact of different hyper-parameters on the performance of the
FKGM model, we conducted multiple experiments and analyzed the performance of
FKGM under different settings of embedding dimensions and message propagation layers.

6.5.1. The Impact of FKGM Embedding Dimension

To investigate the impact of embedding dimensions on the performance of the FKGM
model, we conducted multiple experiments. We set the embedding dimensions of the model
to 8, 16, 32, 64, and 128, kept other parameters constant, and compared the experimental
results. Table 9 shows the performance of FKGM under different embedding dimensions.

Table 9. Performance comparison when model sets different embedding dimensions.

Dimension Recall@20 Sodium@20 Fat@20 Sugar@20 Saturated Fat@20

8 0.055 1.026 15.793 17.011 6.181
16 0.063 0.735 15.855 14.631 6.293
32 0.071 0.812 14.756 18.382 5.850
64 0.074 0.451 12.539 15.731 5.325

128 0.067 0.571 13.331 16.235 5.855

The experimental results indicate that with the increase in embedding dimensions,
the model’s performance in preference recommendation first increases and then decreases.
When the embedding dimension is set to 64, the model achieves the best performance
in preference recommendation. In terms of healthy recommendation, the embedding
dimension of 16 achieves the best performance in regulating sugar intake, while the other
three nutrient constraints perform best when the embedding dimension is set to 64. Overall,
the model performs best when the embedding dimension is set to 64.

6.5.2. The Impact of the Number of Message Passing Layers

To investigate the impact of message passing layer depth on the performance of the
FKGM model, we conducted experiments by setting the message passing layer depth to
1–5 and keeping other parameters constant. Table 10 presents the performance of FKGM
under different layer depths.
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Table 10. Performance comparison when model sets different message passing layers.

Layers Recall@20 Sodium@20 Fat@20 Sugar@20 Saturated Fat@20

FKGM-1 0.063 0.698 14.815 17.950 5.688
FKGM-2 0.071 0.816 14.755 16.400 5.188
FKGM-3 0.074 0.451 12.539 15.731 5.325
FKGM-4 0.065 0.871 14.426 16.358 5.566
FKGM-5 0.056 1.060 15.299 17.414 6.117

The experimental results show that the performance of the FKGM model in preference
recommendation initially increases with the depth of the message passing layer, but then
starts to decrease. Stacking too many message passing layers does not always lead to
an improvement in the recommendation performance of the model. This implies that overly
deep message passing layers can lead to overfitting and loss of the model performance.
Overall, the FKGM model achieved the best performance when the message passing layer
depth was three.

7. Discussion

In this section, we discuss the main findings and implications of our proposed model
FKGM. We also acknowledge the limitations of our study and suggest some directions for
future research.

7.1. Main Findings and Implications

Our study aimed to address the issue of personalized healthy food recommen-
dations by considering both user dietary preferences and health requirements. We
constructed a collaborative recipe knowledge graph (CRKG) that contains user–recipe
interactions and various food-related information. We also proposed a method for calcu-
lating the healthiness match between recipes and user preferences based on the Nutrient
Content Score (NCS) of recipes and the Nutrient Intake Score (NIS) of users. To achieve
this, we developed a novel health-aware food recommendation model (FKGM) that uses
knowledge graph embedding and a knowledge-aware attention graph convolutional
neural network to capture the semantic associations between users and recipes on CRKG,
and learns the user’s requirements in both preference and health by fusing two losses of
these two learning tasks.

We conducted experiments on the Allrecipes dataset and compared our model with
four baseline models: CKE [22], CFKG [50], KGAT [23], and BPRMF [43], aiming to show
that the FKGM model can learn users’ dietary preferences while considering their health
requirements. The experimental results show that the FKGM model did not achieve the
best performance in terms of preference; however, in the health recommendation task, our
model achieved a significant advantage and outperformed the other baseline models. This
suggests that our proposed FKGM can make balanced food recommendations in terms
of preference and health requirements, rather than simply focusing on users’ preferences
or the healthiness of the food itself. We believe that this advantage in terms of health has
important practical application value in the future food recommendation field.

Furthermore, we conducted a study on the health loss weight in the multi-task learning
layer, which directly affects the model’s performance on the preference recommendation
and health recommendation tasks. The health loss weight can be adjusted to decide whether
the model is more inclined to consider health or preference.

Our study has several implications for both research and practice. For research, our
study contributes to the literature on food recommendation by proposing a new solution
that integrates user preferences and health requirements. Our study also demonstrates the
usefulness of knowledge graphs and multi-task learning techniques for food recommen-
dation. For practice, our study provides a practical tool for food-related applications and
services that aim to promote healthy eating habits among users. Our model can help users
discover new recipes that suit their tastes and health requirements.
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7.2. Limitations and Future Work

Despite the significant contributions of our study, we recognize certain limitations that
require attention in future research. Firstly, we only considered four nutrients (sodium, fat,
sugar, and saturated fat) as indicators of healthiness, which may not encompass all aspects
of healthiness. Future research could integrate additional nutrients or other factors, such as
calories, allergies, and dietary restrictions, in health assessments. Secondly, we evaluated
our model using only one dataset (Allrecipes), which may restrict the generalizability of
our results. Future research could apply our model to alternative domains or datasets, such
as restaurant reviews or online grocery shopping. Thirdly, we did not conduct user studies
or surveys to validate user satisfaction and acceptance of our model. Future research could
gather user feedback or ratings to assess the user experience and perceived usefulness of
our model.

8. Conclusions

This work applies food-related knowledge to food recommendation and proposes
a healthy food recommendation model FKGM that considers both health requirements and
user dietary preferences. FKGM is a knowledge graph-based multi-task learning model
that learns semantic information between users and recipes through knowledge graph
embedding and message-passing mefchanisms. It also emphasizes users’ unhealthy eating
habits by learning their historical dietary behavior. This work constructed a large-scale
collaborative recipe knowledge graph that contains user–recipe, recipe–ingredient, and
other information for multi-task food recommendation, and extensive experiments were
conducted on it. The results show that FKGM outperformed current competing baseline
methods in the task of healthy food recommendation. The proposed health-aware food
recommendation model is expected to have significant practical application value in the
future food recommendation field.
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