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Abstract: Hibiscus sabdariffa is a tropical plant with red calyxes whose anthocyanins, phenols, and
antioxidant activity make it attractive to consumers both from a nutritional and medicinal standpoint.
Its seasonality, perishability, and anthocyanin instability, led to the setup of stabilization methods
comprising drying and powdering. However, its properties can often be altered during these stabi-
lization processes. Treatments such as dehumidified-air-drying, infrared drying, and oven-drying,
and their combination showed better quality preservation. Moreover, powder production enables
superior biomolecule extractability which can be linked to a higher bioaccessibility. However, the
required temperatures for powder production increase the bioactive molecules degradation leading
to their antioxidant activity loss. To overcome this issue, ambient or cryogenic grinding could be an
excellent method to improve the biomolecule bioavailability and accessibility if the processing steps
are well mastered. To be sure to benefit from the final nutritional quality of the powder, such as the
antioxidant activity of biomolecules, powders have to offer excellent reconstitutability which is linked
to powder physicochemical properties and the reconstitution media. Typically, the finest powder
granulometry and using an agitated low-temperature reconstitution media allow for improving
anthocyanin extractability and stability. In this review, the relevant physicochemical and processing
parameters influencing plant powder features from processing transformation to reconstitution will
be presented with a focus on bioactive molecules and antioxidant activity preservation.

Keywords: Hibiscus sabdariffa; drying process; powder production; structure change; color change;
bioactive molecule; stability; antioxidant activity; extractability; reconstitutability

1. Introduction

Consumers are progressively giving more credence to minimally processed and nat-
ural products that naturally contain biomolecules with interesting properties such as
plant-based products. This market trend could be explained by their attractive character-
istics including the nutritional quality and the health properties. Such characteristics are
attributed to the plant-based product richness in vitamins, minerals, and some compounds
essential to the functioning of the human body [1] similar to the antioxidant biomolecules.
People’s preference for natural products is also a way to guarantee their quality since the
health effects of synthetic food ingredients have long been controversial. As a result, atten-
tion is also being paid to the substitution of synthetic antioxidant products with natural
antioxidants [2] or antioxidant-rich natural products, even though the current market offers
mostly synthetic vitamins and antioxidants.

To raise awareness of healthy foods, FAO (Food and Agriculture Organization of the
United Nations) has declared 2021 as the year of fruits and vegetables, including plants
that are consumed fresh or minimally processed (washing, peeling, slicing, packaging,
freezing, drying, etc.). This sensitization relates to major societal issues such as biodiversity,
diversified and healthy diet, food safety, and reduction of food waste of perishable products.
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Paradoxically, fruits and vegetables are included in the top two groups of food losses,
with 22% of losses worldwide, after roots and tubers (25%) [3]. This is explained by their
extremely perishable nature, due to their water content, which makes them an ideal reaction
medium for degradation reactions such as microbial growth. To lower the food loss rate,
a drying process is often suggested, which reduces the water content to a critical value
leading to limiting the microorganism development. Moreover, conversion to powder
is a complementary space-saving option when considering the transportation of these
products. Indeed, fruit and vegetable production is often limited to the production regions,
exportation is therefore essential so that the majority of the population can enjoy their
health and nutritional benefits.

Hibiscus sabdariffa (hibiscus) calyxes fit well in this context because this perishable
plant naturally contains minerals, biomolecules such as polyphenols, flavonoids, and
specifically anthocyanins [4–6]. On the one hand, this composition makes the hibiscus
calyxes particularly attractive thanks to their red color and their sour-fruity taste [7],
which are the first criteria for the choice and acceptability [8] of the final product by
consumers. Attention must therefore be paid to these sensory properties given some foods
with interesting biomolecule contents sometimes have an unattractive appearance (color,
smell, shape) for consumers [9].

On the other hand, polyphenols and anthocyanins promote an important antioxidant
activity, which attributes health benefits to Hibiscus sabdariffa calyxes, and makes them
highly coveted products [7]. Hibiscus therefore has real economic and health potential,
which can only be exploited if it is well preserved from production to processing. Adding
value to hibiscus also involves developing processes that will facilitate the extraction of key
biomolecules, make the most of their antioxidant properties, and facilitate the end products
uses for consumers.

In this context, drying and processing the calyxes into powder allows for stabilizing the
hibiscus calyx and facilitating access to its health benefits by improving the bioavailability
and biomolecule accessibility, provided the process is well mastered [10,11]. Indeed, a
reduced particle yields a higher specific surface area improving the biomolecule extraction.
To be appreciated, and for good economic return, hibiscus powder has to meet the best
organoleptic quality, physicochemical (fines powder, low water activity), flowability, and
reconstitutability properties (necessary to use powders), and mainly antioxidant activity.
However, the biomolecule sensitivity remains challenging due to their degradation during
the stabilization processing [12–15]. The biomolecule stability is therefore an important
criterion for the preservation of the initial properties (antioxidant activity) of products to
take advantage of the health benefits and nutritional quality of hibiscus.

This review will first report the growing conditions and hibiscus composition that jus-
tify the use of stabilization processing (drying methods). Secondly, the powder production
(drying and grinding or spray-drying) and fractionation processes will be discussed, with
particular reference to their potential impact on the product’s original properties (structure,
color, chemical composition, and antioxidant activity). Finally, the way in which powders
could be used, in terms of their suitability for reconstitution will be addressed.

2. Hibiscus sabdariffa Plant
2.1. Production, Growing, and Culture

Hibiscus sabdariffa is a herbaceous plant of the Malvaceae family [16] cultivated in
many tropical and subtropical countries [4,5,16–18]. The different parts of the plant are
illustrated in Figure 1.

From this Malvaceae family, two botanical types of Hibiscus sabdariffa are distinguished:
H. sabdariffa variety sabdariffa and H. sabdariffa variety altissima. The latter rich in fiber is
used as a substitute for jute, coarse sacking [16]. Two types of Hibiscus sabdariffa calyxes
exist, red and the other white, with similar compound content except for anthocyanins.
Many varieties of Hibiscus sabdariffa with red calyxes exist. For example, Vimto (the
most appreciated), Koor, CLT 92, Thaï, Burkinabe, Yoump, and Violette are all Senegalese
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varieties with specific features [4]. The world’s best crops come from Sudan, the most
important African producer [8]. Different vernacular names are given to the red calyxes
such as Jamaica flowers in Central America, Krachiap Daeng in Thailand, sorrel in Guinea,
bissap in Senegal and Ivory Coast, karkade in north Africa, ngai-ngai in Central Africa,
Folere in Cameroun [4,5,17–19].
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Hibiscus plants growth requirements are: a minimum temperature of 20 ◦C, drained
soils, although they can grow in poor soil, and reach maturity after 4 to 8 months [4,7,16,20].
The growing phase may be divided into four steps (Figure 2). The first step is sowing which
is conducted during the rainy season from June to July in Ivory Coast or July to August in
Senegal [4]. Secondly, the vegetative development including the stem, branches, and leaves
growth, begins. Simultaneously, petals grow, unfurl and fruits develop, highlighting the
beginning of the third step of calyx development. During this period, petals close until their
abscission, which marks the ripening of fruits and calyxes, and the beginning of the last
step which is harvesting. The tender and fleshy red calyxes are collected 2 or 3 weeks after
flowering by cutting them at their base [4]. Calyxes harvesting occurs between November
and January in Senegal and Ivory Coast but it depends on the rainy season. Calyxes are
then shelled, generally sun-dried, packaged, and stored.

2.2. Chemical Composition

The composition and physicochemical properties of Hibiscus sabdariffa calyxes vary
according to varieties, origin, and culture method. Fresh calyxes are sources of water,
proteins, fibers, and carbohydrates [4]. Studies reported that fresh calyxes roughly contain
80 to 90 g/100 g water content [4,21], 0.9–17.9 g/100 g protein, 0.1–3.9 g/100 g lipid,
2.3–12 g/100 g fiber, 3.3–12.3 g/100 g carbohydrates with 40% of glucose [4,16]. In addition,
hibiscus calyxes are a source of mineral elements (K, Ca, Mg, Fe, Mn, Zn) and organic
acids (malic, citric, stearic, tartaric, ascorbic, succinic, oxalic acids) [4]. Succinic and oxalic
acids represent together 76% of all organic acids [4,16,22–25]. The average ascorbic acid
content is about 72 mg/100 g [4] which is higher than orange juice ranging from 49 to
54 mg/100 g [26,27] and 2.5 and 3 times higher compared to that of blackcurrant and grapes
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respectively [12,28]. This wide range of acids imparts Hibiscus sabdariffa calyxes an acidic
pH < 3 [4,17,29] and favors the dissolution of hibiscus minerals [30,31]. The red color of
hibiscus calyxes is due to the presence of the anthocyanin molecules that are made up of
two parts: a carbohydrate part linked to an aglycone base called anthocyanidin which
has two aromatic cycles A and B, and an oxygen-containing heterocycle (Figure 3). The
anthocyanin content (150–1500 mg/100 g) [4,16] can be about three times higher than that
of black grapes (50–300 mg/100 g) [32]. Two major anthocyanins (Figure 3) have been
identified, delphinidin-3-sambubioside or delphinidin-3-xylosylglucoside and cyanidin-3-
sambubioside or cyanidin-3-xylosylglucoside, respectively 71 and 29% of all anthocyanins
and two minor, delphinidin-3-glucoside and cyanidin-3-glucoside [4,5,12,25,33]. In addition
to its red color, the strong antioxidant activity of anthocyanin increases the interest in
exploiting these molecules. Indeed, anthocyanins are the main molecules responsible for
the antioxidant activity of the hibiscus calyxes [34]. Moreover, Hibiscus sabdariffa calyxes
contain phenolic compounds including protocatechuic acid and catechin a type of natural
phenol presenting antioxidant properties [12,16].
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According to the calyx composition, particularly the high anthocyanin content, an-
tioxidant activity, and sour-fruity taste makes the Hibiscus sabdariffa calyx a very coveted
plant part in several fields of activity such as cosmetics, pharmacy, medicine, and in the
food industry.

2.3. Food and Medicinal Uses

In medicine as well as in the cosmetic or food industries, hibiscus calyxes are processed
to obtain hibiscus products or to extract molecules of interest such as anthocyanin (Figure 4).
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Figure 4. Composition of Hibiscus sabdariffa calyxes, their food and medicinal uses.

Hibiscus sabdariffa calyxes are used in the food industry mainly to produce hot or
fresh drinks, fermented beverages, and wines. Cocktails, syrups, and fruit salad are
also made with hibiscus calyx juice. Hibiscus calyxes or powders are added as natural
coloring agents to have red coloration in cooked foods, pastry foods, puddings and cakes,
chocolate [8,16,18,34]. The United States of America and the European Union classify
anthocyanin as a food colorant under the category of fruit (21 CFR 73.250) or vegetable
(21 CFR 73.260) and as a natural coloring agent under classification number E163 [35].
In addition, delicious jelly and jam, ice cream of hibiscus calyx are manufactured and
appreciated all over the world [4].

Hibiscus sabdariffa calyx is also known as a medicinal herb due to its composition
and special features. Indeed, Hibiscus sabdariffa calyxes are used for their diuretic, febrifu-
gal, anthelminthic, antimicrobial, antidiabetic, hypotensive, anti-inflammatory, hepato-
protective, and hypocholesterolemic activities and to stimulate the intestinal peristal-
sis [16,19,33,36–43]. Moreover, anthocyanin molecules can reduce the risks of coronary
heart disease due to their antioxidant properties [4,5,33,37].

2.4. Interest in Stabilizing Hibiscus sabdariffa Calyx

The previous parts underlined the fact that the main interest in exploiting hibiscus
calyxes lies in their composition and particularly in their richness in anthocyanin, which is
responsible for their red color and antioxidant activity. The product appearance including
its color is the first criterion of choice for the customer or consumer, followed by the
nutritional quality, more specifically the richness in antioxidants and their health-promoting
power [8]. Conscious of the impact of their food on their health, consumers are becoming
more demanding, and rightly so. Consumers are also increasingly concerned about the
impact of their consumption on the environment (the non-overexploitation of land, the
biodiversity) but also about the fair remuneration of farmers and producers. To meet
the requirements of this market, but also to avoid food waste, it is necessary to set up
stabilization processes that will make it possible to:

• Alleviate the problem of the seasonality of hibiscus;
• Make the product available throughout the year;
• Ensure a long shelf life;
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• Facilitate transport from a producing region to an importing region;
• Make the product accessible;
• Facilitate handling and use of the product;
• Facilitate the extraction of compounds of interest such as anthocyanin.

3. Stabilizing Processes and Impact on Products

The nutritional value, organoleptic qualities, and medicinal benefits attributed to
Hibiscus sabdariffa calyxes and other plants or vegetables make them interesting and useful
products. Numerous processing methods have been investigated and set up to develop
stabilized products including drying, extraction, evaporation, and powdering.

3.1. Drying

Drying is a way to remove partially or completely water from a material. In this
way, many perishable plants, fruits, and vegetables such as Hibiscus sabdariffa calyxes are
dried, to reduce water content for better preservation, also to overcome the seasonality
issues. The reduction of water content is a good way to extend the shelf life, to achieve
lightweight and low volume for easy handling and transport. The desire for safer products
leads to studying and appreciating different drying technologies from old to advanced
methods depending on the product properties, and the available resources (financial,
devices, renewable energy, etc.).

The elimination of water during drying is the result of the simultaneous heat and mass
(water) transfer between the product and its drying environment [44]. Heat is transferred
from the drying environment to the product in different ways (Figure 5) depending on the
drying type, comprising convection, radiation, conduction, microwave, radio-frequency,
and Joule (ohmic) heating [44,45]. The supplied heat allows increasing the material temper-
ature, inducing a water phase change from water to vapor (due to latent heat at constant
temperature) and activating molecular movement. Water is transferred in the opposite
direction from the interior to the material surface by capillary flow (liquid) and/or diffusion
(liquid or vapor) and diffuses from the surface to the drying medium (vapor) [44]. The
most common drying treatments of Hibiscus sabdariffa in addition to solar drying are hot air
drying and dehumidified air-drying all resumed in Table 1.
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Table 1. Drying methods of Hibiscus sabdariffa calyxes, their selected parameters, and their efficiency.

Hibiscus Calyx Drying
Method Parameter Efficiency

Sun-drying [4,12]
Sun-drying using a heat pump

[12,46]

• Variable temperature
• Non-constant air velocity
• 4 to 8 days of drying
• Temperature 40.16 ± 7.24 ◦C
• Relative humidity 37.56 ± 15.06%
• Up to 2 days of drying

• Roughly 90% of the reduced water content
• Drying rate from 0.036 to 0.042 g H2O

(g DM)−1·min−1

• Water content of 13.05% (DM)
• Final aw = 0.51
• Final aw = 0.51

Oven-drying [12,46]

• Temperature 40, 45 ◦C
• Relative humidity 31%
• One day of drying
• Temperature 55, 65 ◦C
• From 3 to 4 h drying
• Temperature 80 ◦C/8 h

• Drying rate of 0.10 g H2O (g DM)−1·min−1

• Water content of 15.5% (DM)
• Final aw = 0.52
• Water content of 12.5% (DM)
• Water content of 8% (DM)

Dehumidified-air-drying [12]
• Room temperature
• Minimum relative humidity 20%
• About 20 h of drying

• Drying rate of 0.212 g H2O (g DM)−1·min−1

• Water content of 16.22% (DM)
• Final aw = 0.54

3.1.1. Sun-Drying

The solar drying process consists of heating the product by radiation, and convection
using the sunrays and the air as a heat-carrying fluid to induce the evaporation of material
water. To a lesser extent, heat is transferred by conduction through the support drying.
Therefore this drying process depends on extrinsic factors such as the weather conditions
(sun position, duration of sunshine, temperature, humidity, rain, and air velocity) (Table 2)
and intrinsic factors of the product such as the specific surface area, chemical composition,
and physical structure (porosity, density, size and shape) [12,47]. Solar energy is a funda-
mental energy for tropical and sub-tropical regions since it is accessible, renewable, and
free of charge.

Table 2. Implementation of the main processing methods of Hibiscus sabdariffa.

Drying of Solids Drying of Liquid Solid Transformation

Sun-drying

• Accessible
• Free
• Renewable
• Weather dependent
• High labor cost
• Large drying area

Oven-drying

• Easy to handle
• Controlled conditions
• Relatively low investment
• Energy and labor-intensive drying system
• Longer drying time than spray-drying

Spray-drying

• Cheaper than freezing
• Controlled parameters
• Controlled powder particle size
• Short time of drying
• Low efficiency due to caking

Freeze-drying

• Longer drying time
• High energy consumption
• High capital cost

Grinding

• Simple processing
• Continuous or discontinuous

processing
• Ease of applicability of the product
• Temperature to be controlled

Extraction

• Simple processing
• Separation of active ingredients or

biomolecules of interest

3.1.2. Hot Air Drying

This process is commonly used in industries because of the facility to handle, the low
investment, and the cost (Table 2) compared to improved technologies [48]. Hot air drying
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is carried out in an oven with convection heating, where warm air is used to remove water
from products. Contrary to sun-drying, the water content of the dried products is less
variable due to a controlled and confined environment that is independent of weather [12].
High drying temperatures lead to higher drying rates and water content loss.

3.1.3. Dehumidified-Air-Drying

This process is an advanced technology that consists of drying by keeping the dryer
at low temperature and humidity. The principle is to extract the excess humid air ex-
changed with the moist product, which is placed inside the drying chamber. Dehumidified
air-drying is not dependent on weather factors and can maintain the optimum drying con-
ditions [12,49]. This continuous drying process solves the problem of rehydration overnight
upon solar drying. Tham et al. [12] showed that dehumidified-air-drying allows obtaining
the highest drying rate of Hibiscus sabdariffa flowers compared to oven-drying, solar with
intermittent heat pump drying, and solar drying. Indeed to remove moisture on the solid
surface, a greater drying force is created by reducing the air’s relative humidity. The drying
time is then shortened in comparison with solar drying and solar with intermittent heat
pump drying respectively.

3.1.4. Microwave Drying

Microwave drying applies fast changing electromagnetic field that implies the re-
peated rotation of water molecules resulting in heat production from the inner part of
food. Therefore, this method induces the sudden water migration and evaporation [50,51].
Compared to several conventional drying methods (e.g., solar drying, hot air drying), this
method is based on a short drying time, high drying rate and quality retention [52]. Upon
microwave drying, the product could require to be constantly in rotation because of the
non-uniform heating.

3.1.5. Infrared Drying

This technique relies on electromagnetic radiation, which depends on the temperature
source [51,53]. The heating energy is directly transferred from the source to the product.
This could be the principal reason for its efficiency since the heat loss could be reduced,
and the product heating is uniform contrary to microwave drying [51,54]. The drying rate
is higher than the conventional methods such as hot-air-drying, and solar-drying. This
drying rate is even improved when the treatments are associated. For example, infrared
and microwave drying or hot drying reduced the drying time by up to 76% compared to
pure hot air drying [55]. Drying time reduction is also reported by combining infrared
radiation with a heat pump, freeze drying, and intermittent microwave drying [51].

3.1.6. Impact of Drying Processes

Physical modifications may occur during drying, such as pore formation, shrinkage,
and color change. Porosity is due to the intercellular voids (spaces) which appear upon the
drying treatment. The water removal from the intercellular region leads to the loosening of
intercellular bonds and the progressive separation of cells from each other and the removed
water is substituted by air [56,57]. The material porosity is linked to drying conditions and
the material characteristics (Figure 6) [56]. Highly porous structures are observed when
increasing the drying temperature, sample size, and decreasing the drying time [58]. Fast
drying causes a more rapid water removal from the material surface than the interior so
that internal stresses are induced resulting in tougher and porous material [56,59].
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The porosity could be an appreciated parameter, as this microstructural characteristic
is required to improve sensory quality [56] and rehydration properties of final products [10].

Shrinkage is determinant in the definition of bulk density. The more the products
shrink, the lower the volume, and the higher the bulk density. Similar to other plants,
the epidermis of hibiscus calyxes are formed of cells made up of lamella, wall (primary
and secondary), and plasma membrane. The cells of the epidermis of hibiscus calyxes are
particularly well-organized, tightly packed, and thick-walled [13]. The cell wall, plasma,
and the vacuolar membrane are broken down under the effect of drying temperature.
Progressively the calyxes fold, and become deformed, leading to shrinkage [13]. Indeed,
the cell liquid exerts a pressure called turgor pressure on the cell membrane keeping the cell
in a state of elastic stress, which ensures the stability of the material shape, texture, firmness,
and crispness. During drying, the turgor pressure is lost and causes the collapse of herb
or plant products [56,60,61]. The final structure of the dried calyxes therefore depends
on the type of drying applied. For example, freeze-drying is a process that requires a
freezing step during which the water included in the calyxes is converted into ice and then
sublimated. During such a process, it was observed that the structure was preserved, and
the surface was smooth such as fresh calyxes. In contrast, the structure of sun-dried calyxes
was the most deformed and shrunk. The temperature and the drying duration may be
the reasons [13], but also the material thickness, and the drying rate. Higher drying rate,
temperature, and air velocity induce more structure deformation [60].

The color change is one of the prevailing physical effects resulting from drying. On
the one hand, the physical deformation (collapse and porosity) submitted by the material
during drying could change the optical properties such as the scattering, reflection, trans-
mission, and absorption of visible light. This, therefore, modifies the color parameters [56].

On the other hand, dried products can undergo color change due to the pigment
concentration induced by removing water. The color modification is also depending on the
drying treatment applied (Table 3). Upon drying, the colorimetric parameters (lightness
(L*), redness (a*), yellowness (b*), and total color change (∆E) comprising L*, a*, b*) of
calyxes could change. Temperature is the wider parameter influencing the coloration. For
instance, solar drying that requires higher temperature and drying time induced higher total
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color change (7.28 ± 2.67) than oven-drying (6.57 ± 2.02) and solar with intermittent heat
pump drying (6.47 ± 2.78) [12]. Based on lightness, microwaved apricots showed better
preservation (20.1–24.4% reduction) unlike the oven-dried apricots (30–34% reduction) at
60 and 70 ◦C [62] probably due to their longer drying time (Table 2). Dissimilarly, Baysal
et al. (2003) [63] reported good coloration results for carrot and garlic microwave or hot
air drying instead of infrared drying. The radiation and temperature required for infrared
drying probably lead to color loss. The color change could also be justified by the non-
enzymatic browning reaction, leading to more reddish and yellowish hibiscus calyxes [12].
In addition, a high level of oxygen can stimulate the browning reaction which induces an
increase in saturation (the chroma value) [12,64], and a decrease in lightness [62].

Table 3. Hibiscus sabdariffa—based product properties according to the transformation process.

Drying of Solids Drying of Liquid Solid Transformation

Sun-drying

• High water content
• Biochemical reaction
• Possible microbial contaminations
• Loss of biomolecules

Oven-drying

• Browning reaction
• Not suitable for thermal-sensitive

products
• Loss of biomolecules

Spray-drying

• Homogenous particle size
• Stickiness
• Caking during drying and storage
• Loss of biomolecules
• Better solubility

Freeze-drying

• More hygroscopic products than
spray-dried products

• Preservation of initial structure and
color

• Limited nutrient losses
• Good rehydration capacity due to the

formation of porous structure in the
product

Grinding

• Better biomolecules extraction
• Increase in the specific surface area
• Maillard reaction risk
• Risks of biomolecule losses
• A mix of soluble and insoluble parts

of the product

Extraction

• Risks of thermal degradation
• Risks of formation of compounds

harmful to the quality of the extract
• Instability of biomolecules in the

extracts during storage

Moreover, the oxidized components could react with antioxidant molecules such as
anthocyanin, giving rise to colorless or brown products [64]. This could consequently
amplify the material discoloration due to pigment losses. The color modification is also
due to the degradation of chemical compounds upon drying.

This biomolecule loss therefore depends on the drying method, the drying conditions
(temperature, air velocity, drying time), and the intrinsic material properties [48,65–67].
Indeed, molecules that contribute to material pigmentation and are responsible for the
antioxidant activity for example phenolics (protocatechuic, catechin acids), and anthocyanin
compounds in hibiscus calyxes, chlorophyll, and carotene are differently heat sensitive
(Figure 7 and Table 3).

These molecules became less stable during heat treatment, leading to their decompo-
sition therefore to their losses [12,29,68]. For example, reductions by 15.3% and 36.9% of
hibiscus phenol and anthocyanin contents during solar drying treatment [29] (Table 3) were
observed.

Bioactive components (e.g., phenol molecules and anthocyanins) are also subjected to
degradations when increasing the drying temperature [12,54,66]. When hibiscus calyxes
were oven-dried at 60, 80, 100, and 120 ◦C until the water content was below 8%, Nguyen
and Chuyen [46] observed an important decrease in phenol content. Nevertheless, the
phenol content at 80 ◦C was the highest highlighting the beneficial effect of the short time
required at this temperature. Comparing the drying temperature of 80 ◦C to 60 ◦C, the
latter was coupled with a long drying time leading to longer exposure to high temperature,
light, and oxygen, which resulted in greater degradation of phenol molecules. This choice
of temperature depends on the interested biomolecule to study. According to the results
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of Sánchez-Feria et al. [29], a good preservation of anthocyanin molecules was observed
at 50 ◦C and 70 ◦C. At 60 ◦C, an anthocyanin loss was observed. When considering
simultaneously the preservation of phenol molecules, anthocyanins, and organic acids,
they suggested 70 ◦C as the best temperature.

Accordingly, hibiscus anthocyanins subjected to heat and increasing temperature
undergo thermal degradation. One of the wider consequences is the formation of a phenolic
acid arising from the B-ring and an aldehyde resulting from the A-ring (Figure 8) [5,69,70].
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These observations highlight the thermal sensitivity of biomolecules and show the
need for soft drying [12,48,67,71] such as dehumidified-air-drying, and to make compro-
mises between drying time and temperature. The efficiency of water transfer also depends
on air vapor saturation, and its lowering will favor faster drying.

The biomolecule loss tendency during drying was also supported by Albanese et al.
(2013) [62]. Against all expectations, microwave-drying, despite its lower drying time
presented a lower β-carotene retention (60%) compared to oven-drying (80%). Inversely,
for better preservation of phenols and flavonoids in hibiscus leaves and their antioxidant
activity, microwave drying was often preferred to vacuum drying and oven drying [72].
These results are in concordance with the studies of Jin et al. (2018) [55], who showed better
phenol and flavonoid contents during infrared drying, followed by hot air drying and mi-
crowave drying. This tendency evidenced the interest in considering the material, optimal
power condition, targeted biomolecule sensitivity for each process, and the oxidation risks.
Studies reported better ways to preserve biomolecules and therefore the nutritional quality
by the drying process combination method. Working on sour cherries, Jin et al. (2018) [71]
showed better nutritional quality by associating vacuum drying with microwave-drying
at 480 W, then at 120 W. Other combinations such as microwave-drying and oven-drying,
freeze-drying, infrared-drying, shade drying permitted to reduce the microwave treatment
damage [51,73].

In addition, molecule losses could occur during fermentation of the organic acids by
the natural microflora (Figure 7). This fermentation reaction is favored by the long-time
of drying (and relatively low temperature) and can be observed during solar drying of
plant material such as hibiscus calyxes. Inversely in hot air drying, an inactivation of
the microflora was observed for temperatures ≥ 50 ◦C for hibiscus for example. This
temperature coupled with short exposure time (6 to 8 h for hibiscus calyxes), favors better
retention of organic acids [29].
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As mentioned above, the optimal drying conditions and parameters are found in the
function of the work target. From this fact, one or several biomolecules are selected to be
preserved during the process. Nevertheless, in the example of biomolecule-rich material,
more than one bioactive molecule is often necessary to be protected, to ensure the best
antioxidant activity of the final product.
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3.2. Powder Production

Powder production improves the functionalities of plants, herbs, spices, vegetables,
and fruits such as hibiscus calyxes by increasing the bioavailability of components, as well
as antioxidant activity [3,59,74,75]. This process facilitates the handling and storage by
reducing the product volume.

3.2.1. Liquid Conversion into Solid Material
Spray-Drying

Spray-drying is the transformation of a concentrated liquid into a dried particulate
form by spraying the feed into a hot drying gas. Spray drying involves entrainment. When
a wet product is placed in a sufficiently hot and dry gas, a temperature and partial water
pressure gradient spontaneously occurs leading to a heat transfer (from the air to the
product), a reverse water transfer occurs due to the difference in partial water pressure
between the air and the surface of the product. The gas serves as both a heat transfer fluid
and a carrier gas for the elimination of water vapor [74].

Spray drying is the most applied process to obtain powders and encapsulates pigments
as anthocyanin [21,75,76]. Indeed, it is a good preservation method of biomolecules as
well as electrostatic spray drying and nano spray drying [77–79]. In addition, Hibiscus
sabdariffa extracts are spray-dried to have instant powders. To achieve this processing, it
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is worth noting that spray-drying necessarily comes after an extraction step and ideally,
after a concentration step as well, because it reduces the energy consumption, therefore,
the energy cost of spray-drying [80].

Physical impacts. Spray-drying requires high inlet temperatures to remove water
from materials in a short time (Table 2). These temperatures may be higher than the glass
transition temperature impairing the powders, particularly those composed of amorphous
particles and sugar-rich materials.

Temperature rise may lead to stickiness, responsible for powder caking, and pow-
der adhesion to the dryer surface (Table 3). Indeed, the increase in temperature could
induce the passage of amorphous particles into sticky particles (from a glassy to a rub-
bery state) when the glass transition temperature (Tg) is reached and/or exceeded [81,82].
For spray dried hibiscus, Langrish and Chiou [83] found a Tg ranging from 50 ◦C (wa-
ter content = 10.74 g/100 g) to 73 ◦C (water content = 8.30 g/100 g). In addition, some
materials may reach their melting point causing adhesion to the dryer surface [83]. This
phenomenon is common to products rich in carbohydrates or lipids, leads to a loss of
powder, and results in lower yield [81,82].

Chemical impacts. Components such as anthocyanin molecules, and ascorbic acid
are not as stable and could be altered. Eroğlu et al. [81] assessed a loss of 36.9% and 49.2%
anthocyanin and ascorbic acid compared to raw materials, in instant hibiscus blended
rosehip powders. In addition, some reactions may occur and result in the formation
of new products during spray drying [81]. Analyzing Hibiscus sabdariffa calyx powders,
Gonzalez-Palomares et al. [21] and Ramírez-Rodrigues et al. [19] detected furfural molecule
which is a product of the non-enzymatic reaction, furanic linalool oxide, cis-linalool oxide,
eugenol molecules. The formation of these molecules and the loss of initial molecules
means that some degradations of initial products and Maillard reaction occur during
the process due to the temperature and the presence of oxygen [21,84]. Increasing the
temperature is correlated to the increase of these compounds and the loss or degradation
of the initial molecules including anthocyanin, and acid ascorbic. The direct consequence is
a reduction in the antioxidant activity [81,85]. Carrier agents such as maltodextrin, Arabic
gum, pectin, carboxymethyl cellulose, and whey protein may be added to the extracts before
spray-drying to encapsulate biomolecules and avoid their loss [81,84,86,87]. However,
the concentration of the carrier agent could affect the bioavailability of compounds of
interest. For example, Eroğlu et al. [81] highlighted for hibiscus blended rosehip powder, a
reduction in ascorbic acid contents with the increase in maltodextrin although the product
yield increased.

Freeze-Drying

Freeze-drying is another drying method where the material is frozen and then water
is removed by sublimation. It differs from the spray drying process that removes the water
content from the product by entrainment. Small parts of the material are rapidly frozen to
produce ice crystals, then the surrounding pressure is lowered (below 610 Pa), and the ice
sublimates when heat is slowly applied to the frozen material [88]. In liquid foods that do
not have a cellular structure, slow freezing is used to form a network of large ice crystals.
Channels formed by the sublimed ice allow the vapor to escape more quickly than in solid
foods [88]. Freeze-drying requires low temperatures, it is successful for most foods and
recommended for heat-sensitive products [88,89]. However, it is an onerous drying method
up to five times more expensive than conventional drying (Table 2), due to the necessity of
previously freezing the sample, followed by ice sublimation at low pressures [84,88]. This
method is typically employed for high-added-value products.

Physical impacts. The freeze-dried hibiscus extracts studied by Duangmal et al. [35]
became flakes, with a better-preserved and appealing red color for consumers (Table 3).
They observed a total color change (∆E) of only 1.9 ± 0.1 and explained this modification by
the degradation of anthocyanin (about 5%) which was correlated to lightness and chroma.
Chroma value has been proven to be a good indicator of anthocyanin content due to the
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strong correlation to this molecule content [35,90]. The color change of freeze-dried hibiscus
powder is delayed when using carrier agents such as maltodextrin [35].

Chemical impacts. The great capacity of freeze-drying to preserve the product quality
such as biomolecules, smell, and the flavor was reported by several authors including
Fellows [88], Duangmal et al. [35], and Gong et al. [67]. Freeze-drying was applied to
produce cabbage powder, showing a higher vitamin C, about 1.7 times greater than hot air
drying processing [67]. In addition, Duangmal et al. [35] studying freeze-drying of hibiscus
extract (water—95% ethanol as solvent) under 0.05 hPa vacuum for 15 h, assessed a high
anthocyanin retention with 95.08 ± 5.18%. Water activity plays a non-neglected role in
the stability of anthocyanin [35,91,92]. Duangmal et al. [35] obtained the highest hibiscus
anthocyanin stability at the lowest water activity (aw = 0.115) for the freeze-dried extract
with maltodextrin (3 g/100 mL). This is explained by the reduction of the reactant mobility
due to the addition of maltodextrin which might impact the product hygroscopicity [35]. In
agreement with this study, Thakur and Arya [92] reported a loss of blue grape anthocyanins
with high water activity. Freeze drying remains preferable to microwave drying followed by
vacuum drying because of its best biomolecule preservation and antioxidant activity [72].

Furthermore, after freeze-drying, special attention must be paid to the biomolecule
degradation during storage. To overcome this issue several studies investigated the addi-
tion of stabilizers in extracts and evaluated their effect on the freeze-dried product during
storage. In the case of Hibiscus sabdariffa for example, the effect of some stabilizers including
maltodextrin, trehalose, pullulan, and whey protein isolate on the anthocyanin stability
was studied [35,84,93]. The addition of maltodextrin and trehalose favored the stability of
hibiscus anthocyanin during storage at 30 ◦C for 105 days expressed in terms of half-life
(the time needed for 50% degradation of anthocyanins) [35]. Duangmal et al. [35] recorded
a half-life (t1/2) of 92, 97, 247 days for freeze-dried hibiscus extract, freeze-dried hibiscus
extract with trehalose (3 g/100 mL), and maltodextrin (3 g/100 mL). The increase (from
2 to 3 g/mL) in trehalose concentration induced a higher loss in anthocyanin content in
contrast to maltodextrin which provided better stability of anthocyanin during storage [35].
Indeed, in any medium (liquid or not), maltodextrins bind to molecules in contrast to
copigmentation which occurs in aqueous conditions [94]. Dextrins react with the flavylium
cation derivatives in the extract giving complexation products that prevent the anthocyanin
transformation in other less stable forms [95].

3.2.2. Size Reduction by Dry Grinding

The dry grinding process consists of splitting a product into small pieces after ap-
plying mechanical stress using a special device. During grinding, material overcomes
deformations leading to breakage. The first deformation may be elastic, in which case the
material can be restored to its original shape [96]. With the rise of the applied stress, the
material may reach its yield strength. Exceeding this limit, the deformation is termed plastic
deformation meaning that the material cannot regain its initial shape. The plastic deforma-
tion continues with additional applied stress and reaches the breaking point, therefore the
material breaks [96]. Several authors, Chamayou and Fages [96] and Hulin [97] reported
that a broken material using low energy and without the elastic deformation step is called
brittle material. Chamayou and Fages [96] named malleable materials, products broken
after high deformations, mainly plastic deformations. The intermediate class between
brittle and malleable is semi-brittle materials.

Moreover, the grinding mode influences the fracture of materials and varies with the
grinder. The different fragmentation modes are compression, cutting, shearing, attrition,
and impact crushing (Figure 9).

Materials with high water content, fibers, and/or sugar content such as Hibiscus
sabdariffa calyxes are difficult to grind unlike products rich in minerals, fat, and proteins,
and therefore need high energy to be ground [98–100].
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Figure 9. Solid fragmentation modes applied to hibiscus calyxes. The powder particle size depends
on the intrinsic parameters of products as physicochemical composition and the structure of materials.
It depends also on the extrinsic parameters including the device, the system used to break, and the
conditions of grinding such as temperature, relative humidity, and grinding speed.

Dry grinding should be preceded by drying for products with high water content to
enhance the grinding process and obtain finer powder [101]. During the grinding process,
the energy used to grind may be converted into thermal energy, increasing the temperature
of the mill, which in turn heats the ground product. This temperature rise may cause
degradation of the molecules retained in the matrix and modify the functional properties
according to the material’s thermal sensitivity. In that sense, other grinding methods have
been developed to maintain the temperature or to avoid heating during the fragmentation.
Some cold grinding methods implemented, allow to maintain the process at the optimum
temperatures, including cryogenic grinding, grinding with water cooling, and grinding
with liquid nitrogen cooling [48,102–104]. In addition, the risk of browning may be reduced
by applying vacuum grinding [105].

It can be seen that authors mainly applied the ambient grinding of Hibiscus sabdariffa
calyxes as a prerequisite, powders are then used to facilitate further processes such as
anthocyanin or phenol extraction, rehydration, or encapsulation [11,106–108]. Indeed, a
reduction in the size of calyxes from 2 cm to 150-85 µm resulted in a considerable reduction
in extraction time from several hours to less than 10 min or even 30 s for finer particles with
an increase in yields [4,10].

Physical impacts. The increment of temperature during the grinding may impair
the powder color by leading to changes in redness, yellowness, and lightness (coloration
parameters) [102,104]. Grinding-induced powders obtained at room temperature can be
heterogeneous, with different populations unlike the homogeneous powders obtained by
grinding at low temperature [11,48,102,104]. A homogeneous population of large parti-
cles is more conducive to good flowability than a heterogeneous population because the
fine particles fit into the interparticle porosities preventing their flowability [109]. Singh
et al. [104] studying ball milling of king chilli at ambient temperatures of 30 ± 2 ◦C and low
temperature—90 ± 3 ◦C, observed 27.56% finer powder at low temperatures compared to
ambient grinding. Indeed, at cryogenic temperature particles were more breakable (below
the glass transition temperature) allowing to have smaller milling-induced particles [104].
This rise of particle fineness when dropping the temperature is also highlighted by Ghodki



Foods 2023, 12, 2984 16 of 24

and Goswami [102] who have worked on hammer milling of black pepper. Fine particles
may be more regular, spherical, and smoother [11,104]. However, this observation is not
general, as high roughness and low sphericity can be observed by lowering the tempera-
ture [102]. The fine, rough, irregular-shaped particle can lead to a decrease in interparticle
distance and an increase in the number of interparticle contact points, which enhances
powder cohesion and impairs the powder flowability [102,104,109–111].

Chemical Impacts. The decrease in temperature applied to avoid heating during
grinding is not without effect, this may lead to an increase in the powder water content.
The ambient air steam met the powder’s cold surface and led to water condensation
increasing water content and water activity of powders [102]. Water activity increased also
when the particle size was reduced as observed by Cid-Ortega and Guerrero-Beltran [107]
and Deli et al. [11] on B. senegalensis and H. sabdariffa powders obtained by grinding and
sieving. Indeed, the reduction in small particle size leads to an increase in the surface area
of particles [11,102,104] leading to more exchange with the surrounding air and increased
interactions with air humidity, enhancing water absorption, therefore increasing water
activity [112].

Furthermore, nutrients and bioactive molecules are more available in fine particles
(Table 3) but may be exposed to the environment [11,102,104]. The chemical properties
of ground vegetables including hibiscus calyxes vary according to the particle size [11].
Minerals, proteins, and lipids content in Hibiscus sabdariffa calyx sieved powders were more
important in small particle powders than in large particle powders. This observation is in
agreement with studies on Hypericum perforatum and Achillea millefolium powders, where
small particle powders were the richest in minerals [99]. However, the inverse results can
be observed for phytochemical compounds. Deli et al. [11] reported also that the smaller
the particles, the higher the loss in phytochemicals. This can be explained by the great
specific surface area of fine particles, which enhance more exchange with the surrounding
environment, leading to phytochemical loss. Nevertheless, this trend depends on the
biological material structure and the sensitivity of the bioactive molecules, since in the same
study Deli et al. [11] found higher phenols and flavonoid contents in the finest powder of
Boscia senegalesis, unlike the finest Hibiscus sabdariffa powder which contained the lowest
quantity of flavonoid and the greatest phenol content. Moreover, these differences may be
explained by the sensitivity of phytochemicals to temperature during the grinding process.
Studies highlight in addition, the phytochemicals degradation due to the heat during the
grinding process [113].

3.3. Powder Reconstitution and Biomolecule Extraction

The utilization of powders often requires to put them in an aqueous solution [114–116].
The reconstitutability of powders could be an indicator of production process yield and
product quality [116,117].

The reconstitution allowing the extraction of soluble molecules is essential to their
use. Indeed, bioactive molecules are extracted from materials to be analyzed, identified,
and used as functional compounds in other products, as well as medicines. In this sense,
this operation could be used to produce beverages from fresh or dried plants, vegetables,
or fruits. Powder reconstitution occurs in different stages: wetting, sinking/swelling,
dispersion, and solubilization [114].

The first step is the wetting. It is the phenomenon during which the liquid gradually
replaces the gas phase at the particle surface after that the liquid was put into contact with
the particle surface [116,118,119]. Sinking is the phenomenon during which water diffuses
into the particle, increasing its density, which enables the particle to overcome the surface
tension at the particle-liquid interface [120–122]. Simultaneously, the liquid penetrates the
particles and results in an increase in particle size; it is the swelling step. Swelling is also
marked by a local increase in liquid viscosity around the particle which would indicate
a softening of particle surfaces [121,123–126]. The third step is the dispersion, which is
marked by a division of parent particles (agglomerated or not) into several daughter parti-
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cles [116] when the interparticle forces (liquid and solid bridges, hydrogen or intraparticle
bonds, van der Waals interactions) are broken [121,127]. The final solubilization step corre-
sponds to the disappearance of particle granular structure after the complete solubilization
of powder [121,128]. To the best of our knowledge, M’be et al. [10] proposed for the first
time a reconstitution mechanism of grinding-induced hibiscus powder. They identified
3 steps after the eventual wetting: swelling, dispersion comprising a first rapid stage
of particle dissociation, followed by fragmentation, and finally the quasi-instantaneous
molecular solubilization.

3.3.1. Impact of Powder Physicochemical Properties on Reconstitution

Powders have typical characteristics lying in the transformation process and the
material properties, which impact their reconstitutability.

The reconstitution properties depend on particle size, shape, density, surface, and
structure, and the chemical composition. Authors showed that large, regular, surface-
smooth, and less viscous particles due to their smaller contact angles (θ, angle between
liquid and solid surfaces) are more wettable [11,119,129–132]. However, the first two
steps (wetting and swelling) could be delayed for hydrophobic particles [121,130] since
the particle affinity to water is essential. For example, date powder wettability ranges
from 13–27 s [133], and that of commercial milk powders generally ranges from 24 s for
skim milk powders to 120 s for whole milk powders [119,130]. The short wetting time of
date powders is due to their richness in carbohydrates that are hydrophilic molecules able
to enhance wetting in contrast to hydrophobicity caused by lipids located at the particle
surface of whole milk powder. Inversely to wetting, smaller particles, due to their high
specific surface area, resulting in longer swelling duration as reported by M’be et al. and
Fournaise et al. [10,121].

The water uptake upon swelling depends on the particle structure. As demonstrated,
porous particles favor the penetration of water inside the particle by capillarity leading
to rapid swelling [10,132,134]. In this sense, large and porous particles, and fine particles
may yield similar swelling kinetics, hence the importance of powder structure and size.
The swelling step depends on the particle’s chemical composition as well as the dispersion
and solubilization steps. Indeed, powders rich in polymers such as low molecular weight
proteins, carbohydrates (hydrophilic molecules), swell, and solubilize rapidly unlike pow-
ders rich in lipids [118,119,128,135,136]. In contrast, even fiber-rich powders due to their
high absorption capacity present good swelling capacity, their solubilization could be
slowed down to the same rate as for powders rich in insoluble components or crystalline
structures. In the latter case, the tight structure of molecules hinders water absorption
through the particles [10,101,128,130]. In addition, fine particles due to their great specific
surface area accelerate dispersion and solubilization [10,11,121]. The improvement of these
two latter steps could be possible in the presence of agglomerate and porous particles.
Indeed, absorbed water by capillarity could induce a rapid dispersion.

However, particles having high water activity and water content could limit the
reconstitution by clogging pores where water could penetrate [132,134]. This factor relies
on the glass transition: above the powder glass transition temperature, powders are in
a rubbery state, therefore viscous layers limit the water absorption [132,134], hence the
necessity to master the drying and powdering steps.

3.3.2. Impact of Extrinsic Parameters on Reconstitution and Link with Extraction

Reconstitutability also depends on extrinsic factors such as solvent nature, pow-
der/solvent ratio, solvent temperature, and stirring conditions. Under high stirring speed
and relatively high temperature, the reconstitution rate is improved, by enhancing the sink-
ing and dispersion steps [128,134,137]. The improved reconstitution rate is on one side due
to the increase in shear forces induced by stirring. Moreover, the impact of temperature is
explained by a change in particle structure and composition that facilitates the penetration
of solvent. In line with these authors [18], Nguyen and Chuyen [46] showed that the rise
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of the water content (e.g., from 8 mL to 10 mL for 1 g dried calyxes) improved the phenol
solubilization but higher water content decreased the biomolecule concentration. Indeed,
higher water content cannot increase proportionally the diffusion rate because the solute
amount is limited.

It is worth noting that there is a cumulative effect of every reconstitution step on
the global reconstitution time and the soluble molecules extraction. Consequently, the
extraction yield is directly correlated to the efficiency of the global reconstitution process.
As argued by Dupas et al. [132] and Neves et al. [138], wetting is an important driver of the
reconstitution since a very long wetting time delays all the reconstitution steps resulting in
longer biomolecule extraction. This issue could be overcome at an industrial scale by adding
the powder to the liquid media under stirring. Although the swelling could be perceived
as the less important step, Mo et al. [139] studying coffee extraction, showed that this step
could slow down the extraction. Indeed, it specifically slows down the water diffusion
inside the particles and the flow rate. This consequently reduces the biomolecule extraction.
About dispersion, M’be et al. [10] evidenced the link between this step and the extraction
yield. Their studies on the reconstitution of hibiscus powder reported the improvement
of the anthocyanin extraction with the dispersion step. In fact, during the dispersion, the
increase of the particle-specific surface area, and the particle/solvent interface improved the
anthocyanin release. The last step, the particular or molecular solubilization has a greater
influence on extraction. Indeed, a high particle and molecular solubilization rate improved
the extraction rate [10,140]. Otherwise, the soluble biomolecules could stay trapped in the
insoluble matrix as highlighted by M’be et al. [10]. They hypothesized a potential retention
of anthocyanins in fibers included in the ground-produced powder.

The molecule extraction is linked to the success of the reconstitution steps and, there-
fore, to all physicochemical parameters but also the extrinsic conditions.

The couple temperature/time has an important role in the extraction process. High ex-
traction temperature or long time induces high soluble extraction but also causes instability
of food [4,18,81] thus reducing antioxidant activity. Nguyen and Chuyen [46] recommended
90 ◦C instead of 80 ◦C and 100 ◦C, while Chumsri et al. [18] found 50 ◦C/30 min as optimal
parameters. These latter authors focused on phenolic and anthocyanin compounds, while
Nguyen and Chuyen [46] worked on the soluble phenolic compounds. By lowering the
powder particle size to 11–85 µm, M’be et al. [10] evidenced that the couple tempera-
ture/time of the reconstitution media could be reduced to 50 ◦C/30 s or 20 ◦C/5 min.
The advantage of performing the extraction at 20 ◦C rather than 50 ◦C is the improve-
ment of antioxidant activity by the reduction of the risk of degradation of heat-sensitive
biomolecules [10].

4. Conclusions

Hibiscus calyxes are edible vegetables with attractive natural colorings and have
demonstrated health and medicinal benefits. The challenge for the food industry is to be
able to respond adequately to consumer demands, reduce food waste, allow availability
over a long time, and make the product accessible to all interested parties throughout the
world. To this end, several unitary operations have been investigated and successful results
have been obtained. Drying is very useful to overcome the problem of seasonality, facilitates
transport and thus allows worldwide access to this tropical plant. Complementary methods
to drying, such as powder production, have further facilitated the use of hibiscus calyxes by
increasing the product-specific surface area. This improves the availability of anthocyanins
and polyphenols, the antioxidant activity that is the key indicator of the hibiscus calyx
health benefits. However, the main barrier to the application of these processes is the
thermo-sensitivity of the anthocyanins, which depends on the parameters of the different
processes. In practice, optimums are sought to limit the loss of anthocyanins and polyphe-
nols from hibiscus calyxes and the antioxidant activity reduction. Freeze-drying, although
expensive is the least harmful drying method for biomolecules followed by microwave
drying. Microwave combined vacuum drying or oven drying could be an alternative to
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this expensive method, even if the antioxidant activity could be lower than freeze drying.
The optimal drying coupled with grinding, cryogenic grinding being the best option, could
be not only a method to alleviate this waste issue upon the calyx reconstitution, but also
improve the biomolecules accessibility, reconstitutability, and extraction. The main obstacle
remains the solubility of the grinding-induced powder. Knowing the biomolecule loss
risks during the different operations, it is necessary to evaluate the anthocyanin extraction
yield and the antioxidant activity to set up an adequate processing method. Furthermore,
new extraction, drying, and powdering technologies are still to be tested to optimize the
hibiscus calyx transformation. These includes microwave extraction, desiccant drying,
alternation of drying, grinding, and other advanced technologies.
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