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Abstract: In this study, the antioxidant properties of intact cells (IC), cell-free supernatant (CFS), and
cell-free extracts (CFE) and whole genome sequencing of Bifidobacterium bifidum E3 (B. bifidum E3),
as well as the structural characteristics and antioxidant properties of EPS-1, EPS-2, and EPS-3, were
evaluated. The results revealed that intact cells (IC), cell-free supernatant (CFS), and cell-free extracts
(CFE) had potent DPPH (1,1-Diphenyl-2-picrylhydrazyl radical), hydroxyl, and superoxide anion
radical scavenging capacities, among which CFS was the best. At the genetic level, we identified a
strong carbohydrate metabolism capacity, an EPS synthesis gene cluster, and five sugar nucleotides
in B. bifidum E3. Therefore, we extracted cEPS from B. bifidum E3 and purified it to obtain EPS-1,
EPS-2, and EPS-3. EPS-1, EPS-2, and EPS-3 were heteropolysaccharides with an average molecular
weight of 4.15 × 104 Da, 3.67 × 104 Da, and 5.89 × 104 Da, respectively. The EPS-1 and EPS-2
are mainly comprised of mannose and glucose, and the EPS-3 is mainly comprised of rhamnose,
mannose, and glucose. The typical characteristic absorption peaks of polysaccharides were shown in
Fourier transform infrared spectroscopy (FT-IR spectroscopy). The microstructural study showed a
rough surface structure for EPS-1, EPS-2, and EPS-3. Furthermore, EPS-1, EPS-2, and EPS-3 exhibited
potent DPPH, hydroxyl, and superoxide anion radical scavenging capacities. Correlation analysis
identified that antioxidant capacities may be influenced by various factors, especially molecular
weight, chemical compositions, and monosaccharide compositions. In summary, the EPS that was
produced by B. bifidum E3 may provide insights into health-promoting benefits in humans.

Keywords: Bifidobacterium bifidum; genome; exopolysaccharide; antioxidant

1. Introduction

As Gram-positive bacteria, Bifidobacterium are an important member of the human
gastrointestinal tract (GIT) microbiota and are part of the predominant gut microbiota
of breastfed infants [1]. Some Bifidobacterium are safe, making their use as probiotics
in pharmaceuticals and dairy products more common [2]. The purpose of studying the
genomics of probiotics is to deeply understand the diversity and evolution of probiotics and
try to uncover their molecular basis for health promotion [3]. Bifidobacterium are considered
commensal microbes of the mammalian gut; many genes exist in their genomes, and these
genes were predicted to encode enzymes [4]. In the perspective of genomics, genes involved
in cEPS biosynthesis are usually clustered within specific genetic loci (commonly referred
to as eps clusters) within members of the Bifidobacterium genus. Comparative genome
analyses of different bifidobacterial species showed all analyzed taxa had at least one EPS
locus, besides some B. bifidum strains [5].

Exopolysaccharides (EPS) are extracellular polymers that are commonly found in
plants, animals, microorganisms, and other organisms. The EPS produced by lactic acid
bacteria (LAB) has attracted widespread attention from people. As metabolites of probiotics,
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EPS can affect the flavor and texture of fermented products and the probiotic function [6].
It is reported that LAB-produced EPS have immune-enhancing, antioxidant, anti-cancer,
anti-inflammatory, cholesterol-lowering, and antiviral effects [7]. The functional properties
of polysaccharides (biological capacity and physicochemical properties) are closely linked
with their structural characteristics (molecular weight (Mw), monosaccharide composition,
glycosidic bonds, functional groups, and substituents, et al.) and complexity [8]. The
relationship between EPS structure and its functional properties is currently not very clear.
Therefore, it is crucial to characterize the chemical structures of LAB-EPS before exploring
its functional properties.

Oxidative stress is caused by an imbalance between the production of oxidants and
antioxidant defenses. Oxidative stress caused by excessive oxidation will accelerate aging,
trigger inflammation, and reduce autoimmunity, thereby resulting in oxidative damage [9].
Exopolysaccharides that are isolated from lactic acid bacteria, such as Lactiplantibacillus
plantarum (KX041), have antioxidant properties [10]. Inturri et al. [11] reported the chemical
constituents of EPS produced by Bifidobacterium longum W11 and characterized its potential
beneficial effects preliminarily, especially the antioxidant properties. Functional foods
have attracted increasing attention, especially with the addition of probiotics to dairy
products [12]. A study has shown that milk fermented with Lactiplantibacillus plantarum
ATCC8014 has in vitro antioxidant properties with 14.7–48.9% DPPH capacity [13]. There-
fore, it is very important to discover natural antioxidants that have no adverse impacts on
human health.

The purpose of this study was to investigate the physical properties of EPS-1, EPS-2,
and EPS-3 by ultraviolet-visible (UV-vis) spectrophotometry, FT-IR spectroscopy, congo red,
and field emission scanning electron microscopy (FE-SEM). Meanwhile, the antioxidant
capacities of IC, CFE, CFS, cEPS, EPS-1, EPS-2, and EPS-3 were also investigated. This
study may help us further our understanding of the potential applications of functional
foods and investigate the relationship between their structure and biological capacity.

2. Materials and Methods
2.1. Culture of Strain

B. bifidum E3 used in the current study was provided by Northeast Agricultural
University (Harbin, China) and inoculated (3% v/v) into the MRS broth (Hopebio Com-
pany, Qingdao, China, HB0384-5) supplemented with 2% v/v L-cysteine hydrochloride
(Biotopped Technology Co., Ltd., Beijing, China) at 37 ◦C for 24 h under the anaerobic
condition. The strain was subcultured twice and then centrifuged (5000× g) for 10 min.
The experimental supernatant was CFS. The precipitates from centrifugation were washed
with PBS buffer three times, and B. bifidum E3 was resuspended with PBS (pH 7.4) buffer to
achieve a final concentration of 1 × 109 CFU/mL. The precipitates of the strains were the
IC of the experiment. CFE was extracted by ultrasonic crushing of the IC. The treatment
was performed under ultrasonic conditions at a power of 800 W for 3 s, stopped for 5 s,
and continued for 15 min. All experimental samples were directly used for follow-up
experiments.

2.2. Whole Genome Sequencing

The library was built from the DNA extracted from B. bifidum E3 and sequenced on
the Illumina and PacBio RS II platforms. The Unicycler software was used to integrate
and assemble data (https://github.com/rrwick/Unicycler (accessed on 20 October 2022))
and obtain the assembly results. The assembly results were aligned with known sequences
in the NCBI to obtain the final assembled sequence. The genome circle map was drawn
by CGView Server (http://cgview.ca/ (accessed on 22 October 2022)). KAAS (https:
//www.genome.jp/tools/kaas/ (accessed on 22 October 2022)) and WebMGA (http://
weizhong-lab.ucsd.edu/webMGA/ (accessed on 22 October 2022)) websites were used
to compare with the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cluster of
Orthologous Groups (COG) of proteins to obtain the corresponding functional annotation

https://github.com/rrwick/Unicycler
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information. The genome sequence was submitted to the National Center for Biotechnology
Information (NCBI, Bethesda, MD, USA) database, and the NCBI prokaryotic genome
annotation pipeline was used to annotate the whole genome (http://www.ncbi.nlm.nih.
gov/books/NBK174280/ (accessed on 22 October 2022)).

2.3. Isolation and Purification of cEPS

The cold ethanol precipitation was used for EPS extraction [14]. Briefly, the CFS of B.
bifidum E3 was inactivated in boiling water (100 ◦C) for 10 min and then cooled to room
temperature. Proteins were precipitated by adding 80% (w/v) trichloroacetic acid (TCA) to
the fermentation supernatant to achieve a final concentration of 4% (w/v). Furthermore,
the above solution was incubated overnight at 4 ◦C and centrifuged at 5000× g for 20 min
to obtain the supernatant. The supernatant was rotary evaporated and mixed with triple
volumes of absolute ethanol to obtain the precipitate. Afterwards, the precipitate was
dissolved in an appropriate amount of deionized water and dialyzed (8–14 kDa) at 4 ◦C for
48 h, followed by freeze-drying. Subsequently, the cEPS were purified by DEAE-Cellulose
52 eluting with deionized water and 0.1 and 0.3 mol/L NaCl at a flow rate of 1 mL/min,
sequentially. Moreover, sephadex G-100 columns were used to elute NaCl (0.1 mol/L) at a
flow rate of 0.5 mL/min to obtain EPS-1, EPS-2, and EPS-3.

2.4. Chemical Composition, Monosaccharide Composition, and Molecular Weight

The contents of neutral sugar, protein, uronic acid, and sulfate of EPS-1, EPS-2, and
EPS-3 were determined according to the methods of phenol-sulfuric acid colorimetric [15],
coomassie brilliant blue [16], sulfate-carbazole [17], and barium chloride-gelatin [18], with
glucose, bovine serum albumin, galacturonic acid, and potassium sulfate as standards,
respectively.

EPS-1, EPS-2, and EPS-3 were obtained according to Annadurai et al.’s method. [19].
The aqueous layer was filtered through 0.45-micrometer membranes. The quantitative
analysis of monosaccharide composition was completed by the HPLC system (Agilent
Technologies, Boeblingen, Germany). Acetonitrile and phosphate buffer (0.1 M, pH 6.7)
were used as mobile phases (81:19) with a flow rate of 1.0 mL/min and an injection volume
of 20 µL at a column temperature of 25 ◦C, and the detection wavelength was 245 nm. The
monosaccharides of EPS-1, EPS-2, and EPS-3 were determined by measuring their retention
time compared to standard sugars. Following that, the molar ratios of monosaccharide
components were calculated.

Mw of EPS-1, EPS-2, and EPS-3 were determined by HPGPC according to the method
of Mao et al. [20] with minor modifications. EPS-1, EPS-2, and EPS-3 (5 mg/mL) were
centrifuged at 12,000 rpm for 10 min, and the supernatant was filtered through a 0.22 µm
microporous membrane. The detection was performed with a RI-10A differential detector
(Shimadzu, Kyoto, Japan), in which the column temperature was 40 ◦C, the injection
volume was 20 µL, and the flow rate was 0.6 mL/min. Dextran MW standards from
1–670 kDa were used for the MW calibration.

2.5. Ultraviolet-Visible (UV-Vis) Spectrophotometry and Fourier-Transform Infrared
(FT-IR) Spectroscopy

A UV-2600 spectrophotometer (Unico, Shanghai, China) was used to measure the
absorption of EPS-1, EPS-2, and EPS-3 (1 mg/mL) from 190 to 500 nm. EPS-1, EPS-2, and
EPS-3 (1 mg) were added with potassium bromide (KBr, 100 mg), then they were pressed
into 1 millimeter-thick pellets for measurement. Moreover, an FT-IR spectrometer (Bruker
Vetex70, Karlsruhe, Germany) was used to scan in the range of 4000–400 cm−1 [21].

2.6. Congo Red Test

The triple-helix structures of EPS-1, EPS-2, and EPS-3 were examined as follows: EPS-1,
EPS-2, and EPS-3 (1 mg/mL) were dissolved in a NaOH solution (0.2 M) containing congo
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red (40 µM). To observe the changes in maximum absorption wavelength, we scanned the
reaction solution in the spectral range of 190–800 nm [22].

2.7. Field Emission Scanning Electron Microscopes (FE-SEM)

A field emission scanning electron microscope (FE-SEM) (Hitachi S-4800, Hitachi,
Tokyo, Japan) was used to analyze the apparent morphology of EPS-1, EPS-2, and EPS-3.
In short, EPS-1, EPS-2, and EPS-3 were connected to an aluminum rod for gold sputtering
and then observed at an accelerating voltage of 5 kV [23].

2.8. DPPH Radical Scavenging Assay

One milliliter of samples (IC, CFE, CFS, cEPS, EPS-1, EPS-2, and EPS-3) were added
to 1 mL of DPPH (0.2 mmol/L), respectively. The mixture reacted in the dark at 37 ◦C
for 30 min. After that, the supernatant was centrifuged at 5000× g for 10 min, and the
absorbance was measured at 517 nm. The following is the calculation formula for radical
scavenging [24]:

DPPH radical scavenging (%) = (1 − Sample OD517 − Blank OD517
Control OD517

) × 100

In the formula, DPPH solution dissolved in anhydrous ethanol was added to the blank
group, while PBS was used to replace the sample in the control group, and other reaction
conditions were the same.

2.9. Hydroxyl Radical Scavenging Assay

The hydroxyl radical scavenging test kit (No. A018-1-1; Nanjing Jiancheng Bioengi-
neering Institute, Nanjing, China) was used to determine the hydroxyl radical scavenging
capacity of samples (IC, CFE, CFS, cEPS, EPS-1, EPS-2, and EPS-3). The following is the
calculation formula for radical scavenging:

Hydroxyl radical scavenging capacity (%) =
Control OD550 − Sample OD550
Control OD550 − Blank OD550

× 100

2.10. Superoxide Anion Radical Scavenging Assay

The reaction solution contained 2.8 mL of Tris-HCl (0.05 mol/L, pH 8.2), 0.1 mL of
pyrogallol (0.05 mol/L), and 0.1 mL of IC, CFE, CFS, cEPS, EPS-1, EPS-2, and EPS-3 at room
temperature to avoid light reactions for 4 min. Furthermore, 1 mL of hydrochloric acid
(8 mol/L) terminated the reaction, and the absorbance of the final solution was measured
at 320 nm [10]. The following is the calculation formula for radical scavenging:

Superoxide anion radical scavenging capacity (%) = (1 − Sample OD320
Blank OD320

) × 100

Deionized water was used instead of samples in the blank group.

2.11. Statistical Analysis

All data were exhibited as mean ± standard deviation (n = 3) and analyzed by one-way
analysis of variance (ANOVA) using SPSS 18.0 software (SPSS Inc., Chicago, IL, USA).
Graphs were drawn with GraphPad Prism 8.0.2 (GraphPad Software, La Jolla, CA, USA). In
all results, p < 0.05 was considered to be a significant difference, and p > 0.05 was considered
not to be a significant difference.

3. Results and Discussion
3.1. Antioxidant Capacity of IC, CFE, and CFS

The antioxidant capacities of IC, CFE, and CFS were demonstrated in Figure 1. The
scavenging capacities of IC, CFE, and CFS for DPPH radical, hydroxyl radical, and superox-
ide anion radical ranged from 18.33% to 98.07%. CFS had the highest scavenging capacities
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with 83.08% ± 2.02%, 95.68% ± 1.60%, and 48.20% ± 0.55% for DPPH radical, hydroxyl
radical, and superoxide anion radical, which were significantly higher than IC and CFE
(p < 0.05). The scavenging capacities of DPPH radical, hydroxyl radical, and superoxide
anion radical of IC were 37.07% ± 0.78%, 77.63% ± 0.74%, and 28.72% ± 1.11%. Mean-
while, the three scavenging capacities of IC were significantly higher than those of CFE
(p < 0.05). Ma et al. [25] found that CFS of Bifidobacterium infantis YLGB-1496 scavenged
41.18%, 102.38%, and 24.88% of DPPH radical, hydroxyl radical, and superoxide anion
radical, respectively. The scavenging capacity of B. bifidum E3 was higher than that of
Bifidobacterium infantis YLGB-1496 for DPPH radical and superoxide anion radical. Zhao
et al. [26] found that Bifidobacterium longum subspecies exhibited free radical scavenging
ability, especially CFS, which showed higher antioxidant capacity than IC and CFE, which
was consistent with our study. The capacity of CFS to scavenge radicals may be related to
the metabolites. Exopolysaccharide is one of the metabolites in CFS. Therefore, we focused
on analyzing the basic genomic information of B. bifidum E3, especially in the genes of its
sugar transport system and the cluster of exopolysaccharides.
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Figure 1. Antioxidant capacities of IC, CFE, and CFS. Values with different superscript letters (a, b,
and c) significantly differed at p < 0.05 in the same group.

3.2. Analysis of the Genome
3.2.1. Genome Composition

The genome of B. bifidum E3 had no plasmids and only consisted of a circular chromo-
some (2,245,491 bp) with a G + C content of 62.75%. The genome predicted 1878 genes with
a total length of 1,945,738 bp, and the total length of the coding regions was 86.65% of the
whole genome. Among them, the average length of coding genes was 1036 bp. In addition,
1818 CDSs were predicted in the genome. There were 53 tRNAs, 1 tmRNA, and 6 rRNA
(16 s and 23 s) gene operons without sRNA (Figure 2A).

3.2.2. Analysis of COG and KEGG

The result of COG annotation is shown in Figure 2B. There were 1422 genes that could
be assigned to COG families, comprising 23 functional categories. There were 1, 46, 21, 149,
63, 126, 65, 48, 163, 97, 85, 86, 7, 62, 57, 12, 111, 60, 68, 14, 47, 2, and 32 genes annotated
to categories A to X, respectively. Among them, a large number of genes were annotated
in four categories: translation, ribosomal structure, and biogenesis (11.46%), amino acid
transport and metabolism (10.48%), carbohydrate transport and metabolism (8.86%), and
general function prediction only (7.81%).

The classification of genes that code for proteins in the KEGG pathway in the genome of
B. bifidum E3 was obtained through KAAS annotation (Figure 2C). A total of 1122 genes were
identified, assigned to 116 KEGG pathways, and divided into five categories. The pathways
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with the most annotated genes were global and overview maps (30.75%), carbohydrate
metabolism (10.52%), and amino acid metabolism (10.34%). Secondly, more genes were
involved in transcription (7.31%) and the metabolism of cofactors and vitamins (5.70%).
Therefore, it was important to understand the relevance of carbohydrate metabolism to
function. Next, we investigated the synthesis of exopolysaccharides from a genomic
perspective as well as their relationship with in vitro antioxidant capacities.
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Figure 2. Circular genome map of B. bifidum E3 (A) COG functional classification of the B. bifidum
E3 genome (B) KEGG pathway classification of the E3 genome (C) From the outer circle to the inner
circle, the first circle and the second circle represent genes on the positive and negative strands,
including CDS, tRNA, rRNA, and other genes; the third circle represents GC content; the fourth circle
represents GC skew; where green means GC > 0, and purple means GC < 0, the junction of green and
purple is the start point and end point of replication, respectively.

3.3. Sugar Transport System

In general, carbohydrates are transported in three ways: phosphotransferase systems
(PTS), sugar penetration, and ABC-type sugar transfer systems. The PTS system is the
main transport method and consists of histidine phosphate carrier protein (HPr), enzyme
I (EI), and sugar-specific enzyme II (EII). The analysis of the sugar transport system of B.
bifidum E3 is shown in Table 1. In the genome, genes E3_01768 and E3_01767 encode HPr
and EI. B. bifidum E3 had 4 EIIs related to the PTS system. They were EIIB of transport
sugar (E3_01751), EIIA of glucose (E3_00280), EIIABC of N-acetylglucosamine (E3_00281),
and EIIABC of fructose (E3_01538). One gene (E3_01046) encoded the permease of the
ABC-type sugar transport system, and three genes (E3_01045, E3_01047, and E3_01393)
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encoded multiple sugar transport system permease proteins in the genome of B. bifidum
E3. In addition, the galactose permease encoded by gene E3_01493 could transport lactose,
the fructose permease encoded by gene E3_01538 could transport fructose, and the lactose
permease encoded by gene E3_01046 could transport lactose. The above analysis showed
that B. bifidum E3 could transport lactose, fructose, glucose, N-acetylglucosamine, and
galactose, which formed the substrate for the synthesis of sugar nucleotides and activated
precursors for EPS synthesis.

Table 1. Sugar transport system of B. bifidum E3.

Specificity Locus_Tag Product

Glucose E3_00280 PTS system glucose-specific EIIA component

N-acetylglucosamine E3_00281 PTS N-acetylglucosamine transporter subunit
IIABC

Galactose E3_01493 Galactose permease

Fructose E3_01538 PTS system, fructose/glucose-specific IIABC

Fucose E3_00598 Fucose permease

Lactose
E3_01046 Lactose permease

Lactose transport system permease protein LacFE3_01493

Sugar

E3_01045 multiple-sugar transport system permease
protein

E3_01046 ABC-type sugar transport system, permease
component

E3_01047, E3_01393 multiple-sugar transport system
substrate-binding protein

E3_01751 PTS sugar transporter subunit IIB

3.4. Synthesis of Sugar Nucleotides and Gene Cluster

The synthesis process of EPS is divided into two stages: the synthesis of precur-
sor sugar nucleotides and EPS gene clusters. As shown in Figure 3A, lactose could be
hydrolyzed into glucose and galactose by beta-galactosidase (E3_00203). Galactose was
transformed into glucose-1-phosphate through galactokinase (E3_00446) and UDP-glucose-
hexose-1-phosphate uridylyltransferase (E3_00445). Glucose was transported into the cell
by the transport system, and glucose-6-phosphate was formed by the action of glucoki-
nase (E3_00603). Partial glucose 6-phosphate was transformed into glucose 1-phosphate
by phosphoglucomutase (E3_01543) and formed UDP-glucose through UDP glucose py-
rophosphorylase (E3_00967). UDP-galactose and UDP-glucose could be converted into each
other in the presence of UDP-galactose-4-epimerase (E3_0047). Glucose-1-phosphate could
also be catalyzed by dTDP-glucose 4,6-dehydratase (E3_00046), dTDP-4-dehydrorhamnose
3,5-epimerase (E3_00071), and dTDP-4-dehydrorhamnose reductase (E3_00749) to syn-
thesize dTDP-L-rhamnose. The PTS system transported fructose into the cytoplasm,
and then fructose-1-phosphate was converted to fructose-6-phosphate by glucosamine-6-
phosphate deaminase (E3_00604). Fructose-6-phosphate was transformed into UDP-N-
acetyl-α-D-glucosamine through phosphoglucosamine mutase (E3_00477), glucosamine-
1-phosphate N-acetyltransferase (E3_01113), and UDP-N-acetylglucosamine pyrophos-
phorylase (E3_01113). Meanwhile, fructose-6-phosphate was converted to GDP-mannose
under mannose-6-phosphate isomerase (E3_00393), phosphomannomutase (E3_00477), and
mannose-1-phosphate guanylyltransferase (E3_00879). These nucleotide sugars might be
assembled into the repeating units of EPS.

Most EPS-producing microorganisms have genes encoding for the synthesis of EPS
clustered in their genomes or large plasmids. As shown in Figure 3B, B. bifidum E3 had one
EPS synthesis gene cluster consisting of 20 genes. The cluster of EPS genes was related
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to the encoding of transposase (E3_00050, E3_00052, and E3_00054-57), rhamnose precur-
sors (E3_00046 and E3_00071), ABC transporters (E3_00065 and E3_00066), acyltransferase
(E3_00060), UDP-galactopyranose mutase (E3_00068), and glycosyl transferase (E3_00049,
E3_00061, and E3_00067). Glycosyl transferase plays a crucial role in determining the
monosaccharide composition of EPS [27]. Transposase facilitates the stabilization of ex-
opolysaccharide gene clusters, which indicates the possibility of horizontal gene transfer
between B. bifidum E3 and other strains. The effect of these genes on the chemical structures
and functions of B. bifidum E3 EPS remains to be determined. Meanwhile, we also found a
large number of hypothetical proteins in the gene cluster. Furthermore, we investigated the
physical properties and antioxidant capacities of the exopolysaccharide of B. bifidum E3.
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3.5. Antioxidant Capacity of cEPS

The antioxidant properties of cEPS from the B. bifidum E3 metabolite are shown in
Figure 4. It was found that the scavenging capacities of DPPH radical, hydroxyl radical,
and superoxide anions of cEPS significantly increased with increasing cEPS concentration,
respectively. The antioxidant property of cEPS (4 mg/mL) was the highest compared
to the concentration of 0.5–2 mg/mL. The scavenging abilities of DPPH and superoxide
anions radicals of cEPS (4 mg/mL) were significantly different at concentrations of 0.5
and 1 mg/mL (p < 0.05). Similarly, the scavenging ability of hydroxyl radicals at each
cEPS concentration was significantly different (p < 0.05). cEPS may have strong radical
scavenging capacities due to its antioxidant components, such as protein and trace elements.
Li et al. [28] found the antioxidant properties of cEPS from Lactococcus lactis subsp. lactis
IMAU11823 were higher than their purified fractions, and cEPS had excellent antioxidant
properties, which was consistent with our study. As a result, cEPS might be beneficial to
the reduction of oxidative stress caused by substances, such as radicals and reactive oxygen
species, with the potential to be a natural antioxidant.
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3.6. Yield, Chemical Compositions, Monosaccharide Compositions, and Molecular Weight

The basic components of EPS-1, EPS-2, and EPS-3 are presented in Table 2. The cEPS
yield of B. bifidum E3 was 429.78 mg/L. A study indicated that the greatest EPS yield of
Bifidobacterium bifidum WBIN03 was 241.20 mg/L in MRSc medium [29]. Therefore, B.
bifidum E3 produced a much higher level of cEPS compared with Bifidobacterium bifidum
WBIN03. Three components were obtained by purifying cEPS, and the purification rates of
EPS-1, EPS-2, and EPS-3 were 29.33%, 23.00%, and 10.67%, respectively. The final yields of
Lactobacillus rhamnosus ZFM231 were 18.65% (EPS-1), 22.52.0% (EPS-2), 16.75% (EPS-3), and
17.58% (EPS-4), respectively [30]. The EPS-1 and EPS-2 yields of B. bifidum E3 were higher
than those of Lactobacillus rhamnosus ZFM231, while the yield of EPS-3 was lower than that
of Lactobacillus rhamnosus ZFM231. The neutral sugar constituted a major proportion in
EPS-1, EPS-2, and EPS-3: 90.53 ± 0.52%, 89.16 ± 1.34%, and 72.47 ± 2.81%, respectively. In
contrast, the protein content of EPS-1, EPS-2, and EPS-3 was low. The uronic acid contents
of EPS-1, EPS-2, and EPS-3 were significantly different from each other (p < 0.05), and
EPS-3 had the highest content of 0.94 ± 0.07. The sulfate contents of EPS-2 and EPS-3 were
not significantly different (p > 0.05), but they were significantly different (p < 0.05) when
compared with EPS-1. The EPS produced by L. helveticus MB2-1 contained 5.24% and 0.47%
of uronic acid and sulfate, respectively [31]. The uronic acid contents of EPS-1, EPS-2, and
EPS-3 obtained in our experiment were lower than in situ EPS produced by L. helveticus
MB2-1, but the sulfate contents of them were higher than L. helveticus MB2-1.

Table 2. Chemical compositions, monosaccharide compositions, and molecular weights of EPS-1,
EPS-2, and EPS-3.

Sample EPS-1 EPS-2 EPS-3

Yield (%) 29.33% 23.00% 10.67%
Neutral sugar (%) 90.53 ± 0.52 a 89.16 ± 1.34 a 72.47 ± 2.81 b

Protein (%) 0.25 ± 0.09 b 1.04 ± 0.10 b 2.61 ± 0.63 a

Uronic acid (%) 0.24 ± 0.08 c 0.49 ± 0.06 b 0.94 ± 0.07 a

Sulphate (%) 1.65 ± 0.31 b 2.26 ± 0.34 a 2.33 ± 0.11 a

Molecular weight
(Da) 4.15 × 104 3.67 × 104 5.89 × 104

Molar ratio Man: Glu = 1:5.04 Rha: Man: Glu = 0.32:
1: 1.56

Rha: Man: GlcN: Gal:
glu: GluA = 1.10: 1:
0.82: 1.05: 1.39: 0.68

a–c Different letters in the same line indicated significant differences (p < 0.05).
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The monosaccharide composition of EPS-1, EPS-2, and EPS-3 produced by B. bifidum
E3 was investigated by HPLC. The analysis results for the monosaccharide composition
are shown in Table 2. EPS-1 was mainly comprised of mannose and glucose, and its molar
ratio was approximately 1:5.04. EPS-2 was mainly comprised of rhamnose, mannose, and
glucose; its molar ratio was approximately 0.32:1:1.56. EPS-1 produced by Lactococcus lactis
subsp. lactis IMAU11823 was composed of glucose and mannose with a molar ratio of
7.01:1.00, whereas EPS-2 was composed of mannose, glucose, and rhamnose with a molar
ratio of 7.45:1.00:2.34 [28]. The monosaccharide composition was consistent with our study.
ESP-3 was mainly comprised of rhamnose, mannose, glucosamine, galactose, glucose, and
glucuronic acid; its molar ratio was approximately 1.10:1:0.82:1.05:1.39 and 0.68, suggesting
that it could be an acidic polysaccharide. There are few reports on the monosaccharide
composition of bacterial polysaccharides. However, it was found in a study that EPS364
(charged exopolysaccharide of novel deep-sea bacteria) was composed of mannose, glu-
cosamine, glucose, galactosamine, and arabinose in a molar ratio of 5:9:3.4:0.5:0 [32]. Studies
indicated that polysaccharides containing mannose in the composition of monosaccharides
had the potential function of lowering blood sugar and inhibiting the growth of tumors [33].
The above results showed that the species of strains might affect the monosaccharide
composition and proportion of EPS.

It has been reported that the molecular weight range of EPS in lactic acid bacteria
is 104–106 Da [34]. The molecular weights of EPS-1, EPS-2, and EPS-3 in this experiment
were 4.15 × 104 Da, 3.6 × 104 Da, and 5.89 × 104 Da, respectively. Molecular weight is an
essential property of EPS that may affect probiotics. High-molecular-weight EPS is stronger
than low-molecular-weight EPS in improving the texture of fermented milks and their
anti-tumor activity [35]. Furthermore, the differences between Mws of different EPSs may
be related to their specific functions.

3.7. UV-Vis Spectrophotometry and FT-IR Spectroscopy

To verify whether EPS-1, EPS-2, and EPS-3 contain nucleic acids and proteins, the three
components were scanned by the UV-vis spectrum in the wavelength range of 190–500 nm.
The results showed that there was only one absorption peak around 200 nm. The three
components had no absorption peaks at 260 nm and 280 nm wavelengths (Figure 5A).
Therefore, there were no nucleic acids and very little protein in the three components.

FT-IR spectroscopy is a useful analytical method for studying biopolymers’ structures
and functional groups. The FTIR spectra of EPS-1, EPS-2, and EPS-3 are shown in Figure 5B.
EPS-1, EPS-2, and EPS-3 had characteristic absorption peaks of typical polysaccharides,
such as 3396.85 cm−1, 3377.78 cm−1, and 3365.99 cm−1, which were associated with the car-
bohydrate hydroxyl groups. Many hydroxyl groups are shown at peaks of 3200–3600 cm−1.
The peaks at 2928.75 cm−1, 2929.59 cm−1, 2926.71 cm−1, and 1654.26 cm−1, 1666.73 cm−1,
and 1654.76 cm−1 in the three components were due to the stretching vibration of C-H
and C = O groups in the sugar ring [36]. The absorbance in the 1700-1550 cm−1 region
may be due to the presence of uronic acid. The peak at 1370.01 cm−1 and 1332.34 cm−1

in EPS-1 and EPS-2 might be attributable to the stretching vibration of -CH3 [37]. Some
weak stretching peaks at 1242.81 cm−1, 1239.25 cm−1 in EPS-2 and EPS-3, and the sharp
peaks at 1027.06 cm−1, 1027.93 cm−1, and 1076.99 cm−1 in EPS-1, EPS-2, and EPS-3 sug-
gested the existence of carboxylic acids and C-O stretching vibrations of ester groups [38].
Ayyash et al. indicated that the wave number region 1250-1000 cm−1 is attributed to the
existence of carbohydrates, and peaks in this region belong to C-O-C and C-O-H glycosidic
bands [39]. Additionally, the peak at 830.04 cm−1 in EPS-2 might indicate the presence
of a mannose ring, which is consistent with monosaccharide composition. Weak peaks
observed at 679.84 cm−1 and 608.70 cm−1 in EPS-2 and EPS-3 demonstrated the variation
of the C-H bend group at 700–600 cm−1. The weak peaks at 579.16 cm−1 and 575.73 cm−1

might result from sulfate groups, which were in accordance with the result of Di et al. [40]
These results indicated that the FT-IR spectroscopy of EPS-1, EPS-2, and EPS-3 had the
main characteristics of polysaccharides.
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3.8. Field Emission Scanning Electron Microscope

FE-SEM is a helpful tool for studying the surface and three-dimensional morphologies
of biological macromolecules and helps to understand the physical properties of polysac-
charides. The apparent morphology and physicochemical properties of polysaccharides
were observed by FE-SEM and shown in Figure 5C-E. The additional details of the EPS
microstructure can be seen after the microscopic images at 10,000× magnification, showing
a rough and lumpy surface. A dense and porous sponge structure composed of irregularly
shaped particles was observed in EPS-1, giving the polysaccharide water retention capacity.
The MSR101 strain had a similar structure to that of EPS-1 [41]. EPS-2 had many uniform
flake and rod-shaped structures, revealing a compact structure with a rough surface. The
microscopic morphology of EPS-3 showed a block-like structure with an uneven surface. It
was similar to the appearance of the exopolysaccharide produced by Tibetan kefir grains
during the fermentation of milk [42]. The differences in morphology between EPS-1, EPS-2,
and EPS-3 might be related to the composition and structure of monosaccharides.
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3.9. Colorimetric Determination of Triple Helix Structures

In the weak alkaline solution, polysaccharides with tripartite helix structures will
form complexes with congo red. The complexation is related to a bathochromic shift in
the maximum absorption wavelength of the congo red spectrum. The results showed that
EPS-1 and EPS-2 have no notable bathochromic shift, indicating the absence of a triple helix
arrangement (Figure 5F). Polysaccharides extracted from L. mesenteroides DRP105 showed
the same conformation [43]. However, the maximum absorption wavelength difference
between EPS-3 + congo red and congo red was 9 nm. It indicated that EPS-3 might have
a triple helix structure. It was consistent with our study that exopolysaccharide (cEPS)
produced by Lactobacillus helveticus MB2-1 exhibited a significant bathochromic shift of
approximately 20 nm in the λmax [22]. Triple helices in polysaccharides might be associated
with biological capacity.

3.10. Antioxidant Capacity of EPS-1, EPS-2, and EPS-3

The antioxidant capacities of EPS-1, EPS-2, and EPS-3 showed dose-dependent re-
sponses with increasing concentration, and EPS-3 exhibited the greatest capabilities in scav-
enging radicals (Figure 6A–C). The scavenging capacities of DPPH radicals in EPS-2 and
EPS-3 were significantly increased from 2.8% to 53.64% at a concentration of 0.5–4 mg/mL
(p < 0.05). However, there were no significant differences at concentrations of 1–4 mg/mL of
EPS-1 (p > 0.05). The scavenging DPPH radical abilities of ST-EPS1, ST-EPS2, and ST-EPS3,
which are produced by Streptococcus thermophilus CGMCC 7.179, were 47.11%, 70.18%, and
41.79% at 10 mg/mL, respectively [44]. EPS-3 (4 mg/mL) of B. bifidum E3 was higher than
ST-EPS1 and ST-EPS3 on the scavenging capacity of DPPH radicals. DPPH radicals are
considered stable radicals that maintain their stability by accepting electrons or hydrogen
groups, which means that EPS-1, EPS-2, and EPS-3 might be good electron or hydrogen
acceptors.

Foods 2023, 12, x FOR PEER REVIEW 13 of 17 
 

 

 
(A) (B) (C) 

Figure 6. Scavenging capacities of EPS-1, EPS-2, and EPS-3 on DPPH radicals (A), hydroxyl radicals 
(B), and superoxide anion radicals (C). Values with different superscript letters (a, b, c and d) signif-
icantly differed at p < 0.05 in the same group. 

The scavenging capacities of hydroxyl radicals in EPS-1, EPS-2, and EPS-3 were sig-
nificantly increased at concentrations of 0.5–2 mg/mL (p < 0.05). The hydroxyl radical scav-
enging capacities were 22.95 ± 0.26%, 22.62 ± 1.93%, and 31.15 ± 1.60% for EPS-1, EPS-2, 
and EPS-3 at 4.0 mg/mL. Xu et al. found the acidic polysaccharide of Bifidobacterium ani-
mals RH had better hydroxyl radical scavenging ability than neutral polysaccharide [45]. 
In this experiment, the hydroxyl radical scavenging capacities of neutral polysaccharides 
(EPS-1 and EPS-2) were lower than those of acidic polysaccharides (EPS-3), which was 
consistent with the previous report. The above studies could suggest that EPS-1, EPS-2, 
and EPS-3 might help to mitigate cellular oxidative damage caused by hydroxyl radicals 
and alleviate the degree of chronic disease in humans. 

EPS-1, EPS-2, and EPS-3 showed significant differences between the concentrations 
of 0.5 and 4 mg/mL and achieved the maximum superoxide anions radical scavenging 
capacities (14.50 ± 1.24%, 14.71 ± 1.7%, and 14.89 ± 0.88%) when the concentration was 4 
mg/mL, respectively. The scavenging of superoxide anion radicals by EPS was directly 
correlated with the concentration. However, three components showed little difference in 
scavenging at the same concentrations. Liu et al. found that the acidic polysaccharide of 
the purified fraction of Saccharomyces cerevisiae Y3 had significant radical scavenging abil-
ities, with a scavenging rate of 18.80% [46], which was similar to the superoxide anion 
scavenging rate of EPS-3 (15.42 ± 0.77%). The above research showed that EPS had a su-
perior capacity to scavenge superoxide anion radicals. Therefore, EPS is important for 
mitigating oxidative stress and oxidative damage. 

3.11. Correlation Analysis  
The Spearman correlation analysis was used to demonstrate the correlations between 

the chemical composition, molecular weight, and antioxidant capacities of EPSs (Figure 
7). There was a negative correlation between the neutral sugar content and antioxidant 
capacities. In contrast, uronic acid and sulfate contents showed a positive correlation with 
DPPH, hydroxyl, and superoxide anion radical scavenging capacities; the correlation co-
efficients were 1.00, 0.92, 1.00, and 0.86, 0.56, and 0.78, respectively. Meanwhile, we found 
a similar positive relationship between molecular weight and antioxidant capacity. It has 
been suggested that the strong antioxidant capacities of polysaccharides from cyclina 
sinensis (CSPS) may be due to their high content of uronic acid, protein, and sulfate [47]. 
Wang et al. showed that exopolysaccharides with higher sulfate content have higher anti-
oxidant activity [48]. These results were the same as the results of this experiment. In ad-
dition, the antioxidant capacities are also closely related to the molecular weight. Exopol-
ysaccharides with a higher molecular weight have larger organic groups than polysaccha-
rides with a lower molecular weight, which contribute to increased antioxidant activity 
[49]. However, other studies have found that low-molecular-weight EPS can also have 
high antioxidant capacity [50]. Therefore, the effect of molecular weight on antioxidant 

Figure 6. Scavenging capacities of EPS-1, EPS-2, and EPS-3 on DPPH radicals (A), hydroxyl radicals
(B), and superoxide anion radicals (C). Values with different superscript letters (a, b, c and d)
significantly differed at p < 0.05 in the same group.

The scavenging capacities of hydroxyl radicals in EPS-1, EPS-2, and EPS-3 were
significantly increased at concentrations of 0.5–2 mg/mL (p < 0.05). The hydroxyl radical
scavenging capacities were 22.95 ± 0.26%, 22.62 ± 1.93%, and 31.15 ± 1.60% for EPS-1,
EPS-2, and EPS-3 at 4.0 mg/mL. Xu et al. found the acidic polysaccharide of Bifidobacterium
animals RH had better hydroxyl radical scavenging ability than neutral polysaccharide [45].
In this experiment, the hydroxyl radical scavenging capacities of neutral polysaccharides
(EPS-1 and EPS-2) were lower than those of acidic polysaccharides (EPS-3), which was
consistent with the previous report. The above studies could suggest that EPS-1, EPS-2,
and EPS-3 might help to mitigate cellular oxidative damage caused by hydroxyl radicals
and alleviate the degree of chronic disease in humans.

EPS-1, EPS-2, and EPS-3 showed significant differences between the concentrations
of 0.5 and 4 mg/mL and achieved the maximum superoxide anions radical scavenging
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capacities (14.50 ± 1.24%, 14.71 ± 1.7%, and 14.89 ± 0.88%) when the concentration was
4 mg/mL, respectively. The scavenging of superoxide anion radicals by EPS was directly
correlated with the concentration. However, three components showed little difference
in scavenging at the same concentrations. Liu et al. found that the acidic polysaccharide
of the purified fraction of Saccharomyces cerevisiae Y3 had significant radical scavenging
abilities, with a scavenging rate of 18.80% [46], which was similar to the superoxide anion
scavenging rate of EPS-3 (15.42 ± 0.77%). The above research showed that EPS had a
superior capacity to scavenge superoxide anion radicals. Therefore, EPS is important for
mitigating oxidative stress and oxidative damage.

3.11. Correlation Analysis

The Spearman correlation analysis was used to demonstrate the correlations between
the chemical composition, molecular weight, and antioxidant capacities of EPSs (Figure 7).
There was a negative correlation between the neutral sugar content and antioxidant capaci-
ties. In contrast, uronic acid and sulfate contents showed a positive correlation with DPPH,
hydroxyl, and superoxide anion radical scavenging capacities; the correlation coefficients
were 1.00, 0.92, 1.00, and 0.86, 0.56, and 0.78, respectively. Meanwhile, we found a simi-
lar positive relationship between molecular weight and antioxidant capacity. It has been
suggested that the strong antioxidant capacities of polysaccharides from cyclina sinensis
(CSPS) may be due to their high content of uronic acid, protein, and sulfate [47]. Wang
et al. showed that exopolysaccharides with higher sulfate content have higher antioxidant
activity [48]. These results were the same as the results of this experiment. In addition, the
antioxidant capacities are also closely related to the molecular weight. Exopolysaccharides
with a higher molecular weight have larger organic groups than polysaccharides with a
lower molecular weight, which contribute to increased antioxidant activity [49]. However,
other studies have found that low-molecular-weight EPS can also have high antioxidant
capacity [50]. Therefore, the effect of molecular weight on antioxidant properties was
complex. The monosaccharide composition of EPS also affects its antioxidant capacity.
We explored the correlation between them using multiple linear regression analysis and
showed it in the following formula:

DPPH radical scavenging capacity (%) = 3.696 + 0.786 Xmannose + 3.182 Xglucuronic acid

Hydroxyl radical scavenging capacity (%) = 22.319 + 0.018 Xmannose + 0.758 Xglucuronic acid

Superoxide anion radical scavenging capacity (%) = 14.279 + 0.014 Xmannose + 0.081 Xglucuronic acid
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The results showed that the increase in DPPH, hydroxyl, and superoxide anion raical
scavenging capacities was related to the increase in mannose and glucuronic acid. The
positive coefficients in front of Xglucuronic acid were higher than Xmannose, indicating that
the presence of glucuronic acid has stronger radical scavenging capacities than mannose.
A high molar ratio of mannose in exopolysaccharides extracted from inonotus obliquus
enhanced antioxidant capacities [51]. The presence of uronic acid groups could increase the
negative charge of polysaccharides on the one hand and effectively scavenge free radicals
by activating hydrogen atoms on the other [52]. Thus, it appeared that the antioxidant
capacities were attributed to several factors.

4. Conclusions

In the present study, it was found that IC, CFE, and CFS of B. bifidum E3 had potent
antioxidant capacities, among which CFS had the highest antioxidant capacity. Meanwhile,
B. bifidum E3 showed superior performance in carbohydrate metabolism and exopolysaccha-
ride production in genome analysis. Thus, cEPS of B. bifidum E3 were extracted and purified
to explore its structural characteristics and antioxidant capacities. All EPSs were HePSs
(primarily containing glucose, mannose, rhamnose, et al.). FTIR exhibited the existence of
carboxyl and hydroxyl groups in all EPSs. At the same time, EPS-1, EPS-2, and EPS-3 have
different free radical scavenging capacities, which are mainly related to their composition
and structure. Therefore, EPS could be utilized as a promising natural antioxidant for
application in functional foods. EPSs derived from B. bifidum E3 may provide a paradigm
for future study of the structural and functional characteristics of EPS in antioxidants using
genomics methods.
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