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Abstract: Sea cucumber peptides have been proven to exhibit a variety of biological activities.
Ulcerative colitis (UC) is a chronic disease characterized by diffuse inflammation of the mucosa of the
rectum and colon with increasing incidence and long duration, and is difficult to cure. The effect of
sea cucumber peptide on UC is currently unknown. In this study, 1.5% dextran sulfate sodium (DSS)
was added to the drinking water of mice to induce a UC model, and the daily doses of sea cucumber
peptide (SP) solution of 200 mg/kg·BW, 500 mg/kg·BW, and 1000 mg/kg·BW were given to UC mice
to detect the relieving effect of SP. The results showed that SP can reduce the disease activity index
(DAI) of UC mice induced by DSS and can alleviate colon shortening, intestinal tissue damage, and
the loss of intestinal tight junction proteins (Claudin-1, Occludin). SP decreased the spleen index,
pro-inflammatory factors (IL-1β, IL-6, TNF-α), and myeloperoxidase (MPO) levels in UC mice. SP can
alleviate the imbalance of gut microbiota in UC mice, increase the abundance of the Lachnospiraceae
NK4A136 group, Prevotellaceae UCG-001, and Ligilactobacillus, and reduce the abundance of Bacteroides
and the Eubacterium rum group, as well as alleviating the decrease in short-chain fatty acid (SCFA)
content in the feces of UC mice. Notably, SP inhibited miR-155 expression in the colon tissue of
UC mice and increased its target protein, suppressor of cytokine signaling 1 (SOCS1), which acts
as an inflammatory inhibitor. In summary, the ameliorative effect of SP on UC may be achieved
by improving the imbalance of gut microbiota and regulating the miR-155/SOCS1 axis. This study
provides a new idea for developing SP as a nutritional supplement to maintain intestinal health.

Keywords: sea cucumber peptide; ulcerative colitis; miR-155; SOCS1; gut microbiota

1. Introduction

Inflammatory bowel diseases (IBDs), including Crohn’s disease (CD) and ulcerative
colitis (UC) [1], have become a global disease in the 21st century, and their incidence
in developing countries is on the rise [2,3]. IBD has the highest prevalence in Europe
and North America, and UC has an incidence of 0.14–6.5 per 100,000 people in Asia [2].
UC is a chronic disease characterized by diffuse inflammation of the colonic and rectal
mucosa [4]. The cause of UC is unknown, and epidemiological data suggest that genetic and
environmental factors contribute to the risk of UC [5]. Patients with UC typically present
with bloody diarrhea; pus, mucus, or both; and abdominal cramps during defecation [6].
The etiology of UC is unknown and cannot be cured [5]. The drugs used to treat UC
include 5-aminosalicylic acid and corticosteroids, with serious side effects. When UC
has complications such as intestinal perforation, toxic megacolon, and rectal bleeding,
surgical treatment is required, but surgical treatment can lead to high stool frequency, fecal
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incontinence, and decreased fertility [6]. The common cause of death in UC patients is
colorectal cancer, and the other main causes are toxic megacolon, intestinal perforation, and
intestinal infarction [4]. Studies have shown that dietary interventions can help alleviate
UC, so new nutritional supplements can be developed to alleviate the condition.

Sea cucumber is a kind of marine invertebrate with high nutritional value and potential
health value, which is very popular in many countries in Asia [7]. The crude protein con-
tent of sea cucumber ranges from 40.7% to 63.3% [8]. Enzymatic hydrolysis and microbial
fermentation are used for the production of sea cucumber peptides [9]. Bioactive peptides
provide a variety of amino acids when absorbed through the intestine and are mild with no
side effects [9]. Sea cucumber peptides have been reported to have immunomodulatory,
hypoglycemic, hypertensive, memory-enhancing, antioxidant, and other biological activi-
ties [10–13]. Sea cucumber protein contains a variety of essential and non-essential amino
acids, so sea cucumber peptides may have various biological activities [9]. In addition,
hydrolytic peptides have also been shown to play a role in alleviating UC [14,15].

MicroRNAs (miRNAs) are RNA regulators of gene expression about 21 nucleotides in
length, which have the effect of preventing the synthesis of target proteins [16]. miR-155
has been shown to play an important role in body immunity [17]. As a potent inflammatory
inhibitor, suppressor of cytokine signaling 1 (SOCS1) can negatively regulate the JAK-
STAT signaling pathway [18]. Previous research has established that miR-155 regulates the
inflammatory phenotype of intestinal myofibroblasts by targeting SOCS1 in UC [19]. In
this study, we investigated the mechanism of SP on UC by detecting the changes in the
miR-155/SOCS1 axis.

Sea cucumber protein has been reported to relieve colitis in mice through anti-inflammatory
effects and the regulation of gut microbiota [20]. In this study, DSS was used to establish a
mouse model of UC to detect the ameliorative effect of SP on it. We investigated the effects
of SP on UC by detecting the changes in the disease activity index (DAI), colon injury,
immune organ index, immune factor level, short-chain fatty acid (SCFA) content, and gut
microbiota of mice in each group. At the same time, the levels of miR-155 and SOCS1
in UC mice were detected to explore the mechanism of SP on UC from the perspective
of non-coding RNA. Through the correlation analysis of gut microbiota and UC-related
indicators, the key intestinal microorganisms that alleviate UC by SP and the intestinal
microorganisms associated with the changes in miR-155 were found.

2. Materials and Methods
2.1. Preparation of Sea Cucumber Peptide

The sea cucumber peptide was provided by Baidefu Biotechnology Co., Ltd. (Tangshan,
Hebei, China), obtained through the enzymolysis of sea cucumber (Acaudina molpadioides). The
sea cucumbers were eviscerated and cleaned, mixed with water, and ground thoroughly
using a beater. The sea cucumbers were hydrolyzed at 40 ◦C by protease (papain: trypsin 2:1,
w/w, Novozymes, Bagsvaerd, Denmark) for 5 h. After hydrolysis, the mixture was heated
at 95 ◦C for 20 min to inactivate the enzyme and then centrifuged to obtain the supernatant.
After filtration, purification, and drying, the sea cucumber peptide was obtained.

2.2. Animals and Experimental Design

Male C57BL/6 mice were purchased from SiPeiFu Biotechnology Co., Ltd. (Beijing,
China). The mice were raised in a sterile environment with a temperature of 20–25 ◦C,
humidity of 45–55%, light for 12 h, and darkness for 12 h. All animal experiments in
this study followed the principles established by the Animal Ethics Committee of Tianjin
University of Science & Technology (approval number: TUST20210910).

Fifty healthy mice (18 ± 2 g) were divided into five groups: Normal group, DSS
group, SP low-dose group (SPL), SP medium-dose group (SPM), and SP high-dose group
(SPH). The experiment lasted for 7 weeks. Mice in the DSS and SP groups were given
1.5% DSS solution at 1, 3, 5, and 7 weeks, and sterile water at 2, 4, and 6 weeks. Normal
mice were given sterile water throughout the experimental cycle. The intragastric doses
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of the SP groups were 200 mg/kg·BW, 500 mg/kg·BW, and 1000 mg/kg·BW, respectively.
The Normal group and DSS group were given the same volume of sterile water every
day. During the experiment, the disease activity index (DAI) was recorded every 3 days
according to the previous method [14]. At the end of the experiment, the mice and spleens
were weighed. The spleen index was calculated according to the following equation: Spleen
index (mg/g) = spleen weight (mg)/mice weight (g). Colon contents were collected and
stored in a −80 ◦C refrigerator. Parts of the colon were respectively stored in a −80 ◦C
refrigerator and 4% paraformaldehyde solution to prepare for the next experiment.

2.3. ELISA Assay

The colonic tissue was homogenized and then the supernatant was taken by centrifuge
for ELISA detection. The levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis
factor-α (TNF-α), and myeloperoxidase (MPO) in colon homogenate were detected using an
ELISA kit from the Shanghai Enzyme-linked Biotechnology Co., Ltd. (Shanghai, China).

2.4. Determination of SCFA Concentration

The extraction and detection of short-chain fatty acids (SCFA) in UC mice feces was
conducted according to previous methods [21].

2.5. Histopathological Examination

Colon tissue preserved with 4% paraformaldehyde was embedded in paraffin, sec-
tioned, and stained with hematoxylin and eosin (H&E). Pathological scores were evaluated
according to the degree of tissue damage and inflammatory cell infiltration. Goblet cells
were detected by alixin blue (AB) and periodic acid Schiff (PAS) staining. The pathological
scores of colonic sections of the mice in each group were performed according to previous
methods [22,23].

2.6. RT-PCR

The total RNA was extracted from mouse colon tissues with TRIzol (Biosharp, Hefei,
China) reagent according to the instructions. The primers used in the experiment were
synthesized by GENEWIZ Biotechnology Co., Ltd. (Suzhou, Jiangsu, China), and their
sequences are shown in Table 1. Reverse transcription was performed using the first-strand
cDNA Synthesis Kit (TIANGEN, Beijing, China). PCR reagents were prepared according to
the instructions of the RT-PCR kit (TIANGEN, Beijing, China). Changes in the fluorescence
intensity during PCR were identified and quantified using a fluorescence quantitative PCR
instrument (CFX, Bio-Rad, Hercules, CA, USA).

Table 1. Primers used for RT-qPCR.

Gene Symbol Primer Primer Sequence (5′-3′)

miR-155
RT primer GTCGTATCCAGTGCGTGTCGTGGAG

TCGGCAATTACCCCTAT
Forward TGCGGTTAATGCTAATTGTGA
Reverse CAGTGCGTGTCGTGGAGT

U6
RT primer AAAATATGGAACGCTTCACGA
Forward
Reverse

CGCTTCGGCAGCACATATAC
AAAATATGGAACGCTTCACGA

2.7. Western Blot

The samples were prepared by grinding the colonic tissue of experimental mice with
high-efficiency RIPA lysate (Solarbio, Beijing, China) supplemented with protease inhibitors.
A total protein assay kit (Jiancheng, Nanjing, China) was used to determine the protein
content of the samples. The samples were separated by polyacrylamide gel electrophoresis
and transferred to a polyvinylidene difluoride membrane. The membrane was sealed
with 5% skim milk powder for 1 h at room temperature. After incubation, proteins on
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the membrane were detected with ECL chemiluminescence substrate (Biosharp, HeFei,
China) and blotted on a gel imaging system (LAS4000, GE, Boston, MA, USA). Primary
antibodies against Claudin-1 (Bioss, Woburn, MA, USA, bs-1428R, 1/1000), Occludin (Bioss,
bs-10011R, 1/1000), SOCS1 (Abcepta, San Diego, CA, USA, AP8790A, 1/1000), β-actin
(Proteintech, Rosemont, IL, USA 20536-1-AP, 1/2000) and secondary antibody (Proteintech,
SA00001-2, 1/5000) were used for Western blot analysis. The intensity of the protein bands
was analyzed using image analysis software (Image J 1.53a, Bethesda, MD, USA).

2.8. High-Throughput Sequencing of Gut Microbiota

In this study, sequencing was used to analyze the differences in the intestinal micro-
biota in each group of mice. Fecal microbial genomes were extracted from the mouse colon
contents, and the DNA purity and concentration were determined. The V3–V4 hypervari-
able region (primer: 341F: CCTAYGGGRBGCASCAG, 806R: GGACTACNNGGGTATC-
TAAT) of 16S rRNA was amplified using diluted genomic DNA as a template. The PCR
products were detected by electrophoresis on agarose gel, and the target bands were re-
covered by gluing. A Thermo Scientific GeneJET Glue recovery Kit was used to purify the
product. Qualified libraries were sequenced using NovaSeq 6000 (Beijing, China).

2.9. Statistical Analysis

All experiments were statistically analyzed using GraphPad Prism 7 (San Diego, CA,
USA) and SPSS19 (Armonk, NY, USA). One-way ANOVA calculations showed statistically
significant differences. The results are expressed as mean ± standard deviation. p < 0.05
was considered as a statistically significant difference.

3. Results
3.1. SP Alleviated DSS-Induced UC

DSS-induced UC in mice is characterized by weight loss, bloody diarrhea, ulceration,
epithelial cell loss, and neutrophil infiltration, similar to the symptoms of human UC. Based
on this, the DSS-induced UC model was used to explore the ameliorative effect of SP on UC.
The experimental flow chart is shown in Figure 1A. The DAI score was used to evaluate the
protective effect of SP on DSS-induced UC. In the DSS group, DAI increased significantly
on day 21 and symptoms worsened significantly on day 33. On day 33, the DAI score in
the SPM and SPH groups were significantly lower than that in the DSS group (p < 0.05).
On day 48, the DAI scores of the SP groups were significantly lower than that of the DSS
group (p < 0.05), indicating that SP can alleviate the symptoms of UC (Figure 1B).

3.2. SP Alleviated DSS-Induced Colon Tissue Injury

The colon length of the mice was measured. Representative images of the colons in
each group are shown in Figure 2A. The shortening of the colon is an important index to
evaluate the severity of UC. In Figure 2B, we can see that the colon length in the SPL and
SPM groups is significantly higher than that in the DSS group (p < 0.05). Next, we observed
the degree of colonic tissue injury and the number of goblet cells by staining the colonic
tissue sections of the mice. Goblet cells are involved in mucosal defense and the repair
of intestinal epithelial cells, thereby helping to maintain intestinal barrier integrity. In the
normal group, the colon tissue was in good condition, the intestinal epithelium and crypts
were arranged in a complete and orderly manner, a large number of goblet cells were seen,
and there was no inflammatory infiltration. However, in the DSS group, a large number of
intestinal epithelial cells were necrotic, mucosal, and submucosal in terms of inflammatory
infiltration, the goblet cells were significantly reduced, crypt injury was severe, and the
pathological score was higher. Compared with the DSS group, the number of goblet cells in
the SP groups were higher (Figure 2C). Compared with the DSS group, colonic injury was
significantly reduced in the SP groups, and the pathological scores were significantly lower
than that in the DSS group (p < 0.05) (Figure 2C,D). To sum up, SP can effectively alleviate
colon injury caused by DSS.
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Tight junction proteins help maintain intestinal barrier integrity, thereby contributing
to gut health. The contents of Claudin-1 and Occludin were determined (Figure 3A–C).
Compared with DSS group, Claudin-1 content in the SPL group was significantly higher
(p < 0.05), and the Occludin content in the SPM group was significantly higher (p < 0.05).
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3.3. Anti-Inflammatory Effects of SP

The spleen is an important immune organ, and when the body is stimulated, immune
cells such as dendritic cells, T cells, and B cells proliferate in the spleen, resulting in
splenomegaly [24]. Therefore, the spleen index was used to evaluate the inflammatory
status of UC mice. Figure 4A showed that the spleen index in the SPL and SPM groups
was significantly lower than that in the DSS group (p < 0.05). In addition, myeloperoxidase
(MPO) and three representative proinflammatory factors were measured. The contents
of colonic homogenate MPO, IL-1β, IL-6, and TNF-α in the DSS group were significantly
higher than those in the normal group (p < 0.05). Compared with the DSS group, the MPO
level in the SP groups, IL-1β level in the SP groups, IL-6 level in the SPL group, and TNF-α
level in the SP groups were significantly decreased (p < 0.05) (Figure 4B–E). These results
indicate that SP has anti-inflammatory effect.

RT-qPCR was used to detect the expression level of miR-155 in the colon tissues of
mice. The results showed that the content of miR-155 in the SPM group was significantly
lower than that in the DSS group (p < 0.05) (Figure 4F). In addition, the expression levels
of SOCS1 protein in colon tissues were detected using Western blot. Compared with the
DSS group, the SOCS1 protein content was significantly higher in the SPM group (p < 0.05)
(Figure 4G,H).

3.4. Effect of SP on the Content of SCFA in Mouse Feces

Butyric acid and other SCFAs are the fermentation products of intestinal microorgan-
isms, which have an influence on body health. The content of SCFAs in mouse feces was
determined by gas chromatography (Figure 5A–C). Compared with the DSS group, the
contents of butyric acid in the SPL group were significantly higher (p < 0.05).

3.5. SP Regulates the Gut Microbiota

Standardized 16SrDNA sequencing was performed on the colon contents to analyze
the differences in the gut microbiota in each group. Considering that the SPL and SPM
groups had better alleviating effects on UC, we selected the Normal group, DSS group,
and the above two groups for gut microbiota sequencing analysis. To evaluate the effect
of SP on intestinal microbial diversity, α diversity analysis was used. In Figure 6A,B, the
Shannon and Simpson indices show that the intestinal microbial diversity of mice in the
DSS group was reduced compared with normal mice, and SP intervention can reverse this
trend. In addition, principal coordinate analysis (PCoA) showed that the DSS group was
significantly different from the normal group, and SP alleviated the intestinal microbiota
imbalance caused by DSS (Figure 6C). As shown in Figure 6D, Bacteroidetes and Firmicutes
were the main phyla in the gut microbiota of the mice in each group. Compared with the
normal group, the Bacteroidetes increased and Firmicutes decreased in the DSS group, and
this trend was alleviated in the SPL group. Proteobacteria increased significantly in DSS
group, and SP intervention reversed the increase. The cluster heat map can directly show
the relatively abundant microflora in the gut of each group of mice (Figure 7A). Odoribacter
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and Lachnospiraceae NK4A136 group had high relative abundance in the intestines of normal
group mice. The relative abundance of Clostridium sensu stricto 1, Akkermansia, Bacteroides,
and Dubosiella was higher in the intestines of the DSS group mice. The relative abundance
of Ligilactobacillus, Prevotellaceae NK3B31 group, Anaerostipes, Alistipes, Prevotellaceae UCG-
001, Intestinimonas, and Bifidobacterium was higher in the intestinal tract of SPL group
mice. The dominant microflora in the SPM group were Lachnoclostridium, Alloprevotella,
and Helicobacter. The differences in the intestinal microflora at genus level among the
groups are shown in Figure 7B. Compared with the DSS group, the relative abundances
of Bacteroides and the Eubacterium ruminantium group decreased, while the abundances of
the Lachnospiraceae NK4A136 group, Prevotellaceae UCG-001, and Ligilactobacillus increased.
LEfSe (LDA Effect Size) analysis also confirmed the changes in gut microbiota among
the groups (Figure 8A,B). The predominant gut microbiota of the normal mice was the
Lachnospiraceae NK4A136 group. In the DSS group, the relative abundance of Bacteroidaceae,
Erysipelotrichaceae, and Proteobacteria were relatively high. The abundance of Prevotellaceae
in the SPL group and Alloprevotella in the SPM group were higher.
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3.6. Correlation between the Gut Microbiota and UC

Spearman correlation analysis was performed between the relative abundance of gut
microbiota affected by SP and UC parameters to identify the key intestinal microbiota that
may alleviate UC after SP intervention (Figure 9). Bacteroides, Eubacterium ruminantium
group, Dubosiella, Bifidobacterium, Akkermansia, Clostridium sensu stricto 1, Escherichia. Shigella,
Eubacterium fissicatena group, and Turicibacter were positively correlated with UC severity,
while Lachnospiraceae NK4A136 group and Muribaculum were negatively correlated.
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4. Discussion

The incidence rate of UC in the world is on the rise, which seriously affects the health
and quality of life of patients. Sea cucumber peptides have been reported to exhibit a variety
of biological activities. Egg white peptides have been reported to alleviate DSS-induced
UC in mice by inhibiting pro-inflammatory cytokines and regulating intestinal microbiota
imbalances [15]. Matsutake-derived peptides may also alleviate DSS-induced UC by
alleviating intestinal damage and inhibiting the NF-κB pathway [14]. Bioactive peptides
regulate intestinal homeostasis, including the mucosal immune response, inflammatory
response, and intestinal microbiota [25]. In this study, a DSS-induced UC model was
used to investigate the effect of SP on UC in mice. The results showed that after the
oral administration of SP in UC mice, the symptoms of bloody stool, diarrhea, colon
shortening, intestinal wall integrity reduction, and inflammatory cell infiltration were
relieved. Therefore, SP is expected to be a nutritional supplement that can alleviate UC.

The intervention of SP significantly reduced the intestinal tissue damage and increased
the number of goblet cells in UC mice. Goblet cells contribute to the mucosal defense and
repair of intestinal epithelial cells, and mucus proteins synthesized by goblet cells are the
main components of the intestinal mucus layer, whose function is to protect epithelial
cells [26]. Intestinal barrier dysfunction is a major feature of UC [27]. Intestinal epithelial
barrier dysfunction can widely activate the mucosal immune response and accelerate the
occurrence and severity of UC [28]. Epithelial cells play a key role as a barrier against
external factors, and tight junction proteins are essential for maintaining the integrity of
the epithelial barrier [29,30]. SP can effectively alleviate tight junction protein loss and
help maintain the intestinal epithelial barrier. In short, SP ameliorates UC by alleviating
intestinal injury.

The spleen index, the contents of MPO, and three proinflammatory factors of UC mice
were decreased by SP intervention, suggesting that SP has an anti-inflammatory effect. The
spleen index is usually used to evaluate the body’s immune level, and when the spleen
index is too high, it indicates an inflammatory reaction. Cytokines are directly involved
in the pathogenesis of UC and are closely related to the severity of UC. IL-1β, IL-6, and
TNF-α are all proinflammatory factors, which are closely related to the pathogenesis of UC.
The infiltration of neutrophils and macrophages in colon tissue is related to the severity of
inflammation. Myeloperoxidase (MPO) can be used as an indicator of neutrophil infiltration
to evaluate the severity of disease [31]. These results indicate that SP has anti-inflammatory
effects and can alleviate UC in mice.

The miR-155/SOCS1 axis is involved in the anti-inflammatory effect of SP on UC mice.
miR-155 is a miRNA in the immune system, and the high expression of miR-155 contributes
to the occurrence of chronic inflammation, autoimmunity diseases, and cancer [32]. miR-155
affects the severity of UC by regulating immune-related proteins or immune cells [33,34].
Studies have shown that the regulation of miR-155 in colitis may be related to the regulation
of TH17 [35]. miR-155 has been reported to promote colitis-associated intestinal fibrosis,
targeting the HBP1/Wnt/β-catenin signaling pathway [33]. Excessive or dysregulation
of cytokine signaling can lead to a variety of diseases. SOCS1 plays an important role in
regulating the immune system. Previous studies have reported that SOCS1 negatively
regulates the JAK-STAT pathway by inhibiting the activity of JAK tyrosine kinase [18].
SOCS1 has a negative regulatory effect on T cells and cytokines [36]. Previous studies have
confirmed that miR-155 is abnormally expressed in UC patients and regulates inflammation
by targeting SOCS1 protein [19]. Consistent with previous studies, the decrease in the
inflammatory state in the SP groups of mice was accompanied by the decrease in miR-155
and the increase in SOCS1. The regulation of SP on the miR-155/SCOS1 axis suggests that
SP exerts anti-inflammatory effects on UC in mice through non-coding gene targets.

SCFAs mainly include acetic acid, propionic acid, and butyric acid, which are the
products of intestinal microbial fermentation. Studies have shown that lactic acid bacteria
can regulate the gut microbial community and reduce the abundance of harmful bacteria by
synthesizing SCFAs [37]. Previous studies have shown that the supplementation of SCFA
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helps to improve diseases such as hyperglycemia and obesity [38–40]. Similarly, in our
experiment, SP also showed the effect of increasing the content of SCFA. The change in the
SCFA content was related to the abundance of some microorganisms in the gut microbiome,
indicating that SP changed the gut microbiome of UC mice.

Gut microbiota imbalance is considered to be one of the causes of UC. Extensive data
show that the gut microbiota of DSS-induced UC mice is dysregulated. The increase in
Proteobacteria is a sign of intestinal microbiota imbalance [41]. In this study, Proteobacteria
increased in the DSS group and decreased after SP intervention. Studies have shown
that Bacteroides is associated with the development of UC and inversely correlated with
SCFA content [42]. Lachnospiraceae hydrolyze starch and other sugars to produce butyric
acid and other SCFAs [43]. Therefore, the increase in the SCFA content in the SP groups
may be related to the changes in the abundance of the above intestinal microorganisms.
Previous studies have shown that the abundance of Prevotellaceae in the intestinal tract
of UC mice is decreased [44], and it is negatively correlated with pro-inflammatory cy-
tokines [15]. Therefore, SP has anti-inflammatory effects by increasing the abundance
of Prevotellaceae. Consistent with previous results, SP alleviates UC by regulating the
abundance of Erysipelotrichaceae [45], Escherichia Shigella [42], Eubacterium ruminantium
group [46], Clostridium sensu stricto 1 [47], and Turicibacter [48]. SP intervention changed
the gut microbiota structure and the relative abundance of specific microbiota in the UC
mice, decreased the abundance of harmful microorganisms, and increased the abundance
of SCFA-producing microbiota. Therefore, SP can improve UC in mice by regulating the
gut microbiota.

In this study, we demonstrated that SP intervention significantly improved DSS-
induced UC. The addition of SP resulted in significant changes in the overall structure of
gut microbiota and specific intestinal bacteria, which were significantly correlated with
the expression of UC-related symptoms, inflammatory factors, SCFAs, and tight junction
proteins.

5. Conclusions

Our study shows that SP can effectively improve DSS-induced UC in mice. SP can
reduce the DAI index and intestinal injury in UC mice, reduce inflammation levels by
reducing the spleen index, pro-inflammatory factor level, and the regulation of the miR-
155/SOCS1 axis, alleviate gut microbiota imbalance by changing the gut microbiota struc-
ture and abundance of specific flora in UC mice, and alleviate SCFA reduction. The changes
in the microflora abundance in the gut of UC mice were closely correlated with the DAI
index, colon pathological score, tight junction protein content, pro-inflammatory cytokine
content, and the miR-155/SOCS1 axis and other UC indicators. In summary, SP mainly
alleviates UC in mice by reducing inflammation levels and alleviating gut microbiota
imbalance. The beneficial effect of SP on DSS-induced UC suggests that SP is a functional
food worthy of development.
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