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Abstract: This study used shortwave infrared (SWIR) technology to determine whether red pepper
powder was artificially adulterated with Allura Red and red pepper seeds. First, the ratio of red
pepper pericarp to seed was adjusted to 100:0 (P100), 75:25 (P75), 50:50 (P50), 25:75 (P25), or 0:100
(P0), and Allura Red was added to the red pepper pericarp/seed mixture at 0.05% (A), 0.1% (B),
and 0.15% (C). The results of principal component analysis (PCA) using the L, a, and b values; hue
angle; and chroma showed that the pure pericarp powder (P100) was not easily distinguished from
some adulterated samples (P50A-C, P75A-C, and P100B,C). Adulterated red pepper powder was
detected by applying machine learning techniques, including linear discriminant analysis (LDA),
linear support vector machine (LSVM), and k-nearest neighbor (KNN), based on spectra obtained
from SWIR (1,000–1,700 nm). Linear discriminant analysis determined adulteration with 100%
accuracy when the samples were divided into four categories (acceptable, adulterated by Allura Red,
adulterated by seeds, and adulterated by seeds and Allura Red). The application of SWIR technology
and machine learning detects adulteration with Allura Red and seeds in red pepper powder.

Keywords: shortwave infrared; red pepper; adulteration; classification; machine learning

1. Introduction

Red pepper (Capsicum annum) is extensively used as a spice in various cuisines and is
commonly consumed as a powder. The government prohibits the addition of any substance
to red pepper powder other than the red pepper seeds that it originally contains [1]. How-
ever, some individuals in the food supply chain intentionally add inexpensive materials,
such as bran and saw dust, into red pepper powder to maximize their profits [2,3].

This study focused on red pepper seeds and Allura Red colorant as adulterants. Red
pepper seeds are generally separated from red pepper to produce high-quality red pepper
powder. Some traders add seeds that were not part of the original red pepper to increase
the quantity of the product. Red colorants are added to mask the adulteration since the
addition of seeds can reduce the red color of the red pepper powder [4,5]. Allura Red is
a synthetic azo dye that is widely used in various food products and is also used in the
adulteration of red pepper powder. The detection of Allura Red is necessary for consumer
safety because it is absorbed into the gastrointestinal tract, enters the bloodstream, and
interacts with proteins during transport and metabolism to cause disease [6].

Several analytical techniques (including high-performance liquid chromatography,
capillary electrophoresis, and fluorescence spectroscopy) were used to determine the illegal
addition of adulterants. However, these conventional destructive methods require skilled
analysts and are time consuming since they require several procedures, such as sample
extraction, pretreatment, and data analysis [6,7]. Therefore, nondestructive techniques are
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increasingly being adopted for onsite detection in the food supply chain, owing to their
feasibility, cost effectiveness, and ease of operation [8].

Various imaging and spectroscopy techniques, such as RGB imaging and near-infrared
(NIR) spectroscopy, were applied to evaluate food quality and safety. RGB imaging pro-
vides spatial information, and NIR spectroscopy provides spectral and multi-constituent
information [9]. Meanwhile, hyperspectral imaging (HSI) employs a combination of conven-
tional imaging and spectroscopy and can extract spatial-, spectral-, and multi-constituent
information by detecting spectral changes in broadband light after interaction with a sam-
ple. Additionally, HSI shows sensitivity to minor components [9,10]. Therefore, HSI was
recently used to detect wheat bran, rice bran, corn flour, and rosin powder in Sichuan
peppers [11]. In addition, it was used to identify red pepper powder contaminated by
Sudan dye [5].

A hypercube gathers three-dimensional blocks of data consisting of two spatial di-
mensions and one spectral dimension by the HSI system [12]. It consists of relevant
and nonspecific background information; thus, extraction of useful information from
high-dimensional hyperspectral data is essential to apply HSI techniques to the food in-
dustry [13]. Machine learning is regarded as an efficient tool to analyze complex datasets
owing to its self-learning and adaptive capabilities and its strong fault tolerance [14]. There-
fore, HSI combined with machine learning is widely utilized for quality evaluation of
agricultural products [15], detection of specific adulterants [16], and quantification of food
components [17].

Nevertheless, no studies have focused on the simultaneous detection of Allura Red
and red pepper seeds in red pepper powder using HSI and machine learning. Therefore,
this study aimed to establish a machine learning classification model that can identify red
pepper powder contaminated with Allura Red and seed adulteration based on HSI spectra.

2. Materials and Methods
2.1. Materials

Red pepper pericarp powder (without seeds) and seeds were purchased from Red
Pepper Mill Cheong-ju Shop (Seoul, Republic of Korea) and Danong Food (Dangjin-si,
Republic of Korea). The ground samples were sieved through 20- and 50-mesh sieves. The
powder that passed through a 20-mesh sieve, but was trapped on a 50-mesh sieve (average
35 mesh) was used for the experiment. Allura Red (FD&C Red No 40 powder; Sensient
Colors LLC, St. Louis, MO, USA) was used as the coloring agent.

2.2. Sample Preparation

The pericarp and seed of red pepper were blended in different weight ratios (pericarp:
seed = 100:0, 75:25, 50:50, 25:75, and 0:100) for the samples adulterated without the dye.
The red pepper pericarp, seed, and mixture of red pepper pericarp/seed (5 g) were mixed
with 10 mL of aqueous Allura Red solution (0.025% w/v, 0.05% w/v, and 0.075% w/v) for
the dye-adulterated samples. The mixture was homogenized using a blender for 1 min and
dried at 60 ◦C for 24 h. The composition of each group is presented in Table 1. The prepared
sample (5 g) was placed in a petri dish (50 × 15 mm, SPL Life Sciences Co., Ltd., Pocheon-si,
Republic of Korea) and flattened with a presser before the experiments (approximately
0.5 cm sample height). In this way, 30 samples were prepared for each group. The samples
were weighed with an accuracy of within 1% deviation from the intended weight.
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Table 1. Appearance and composition of red pepper powder.

Group Appearance Pericarp (%) Seed (%) Allura Red (%)

P0
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P0: pure seeds; P25: pepper powder consisting of 25% pericarp and 75% seeds; P50: pepper powder consisting
of 50% pericarp and 50% seeds; P75: pepper powder consisting of 75% pericarp and 25% seeds; P100: pure
pericarp; A, B, and C: Allura Red concentrations of 0.05%, 0.1%, and 0.15%, respectively, in the pericarp, seeds,
and pericarp/seed mixture.

2.3. Color Measurement

The L*, a*, and b* values were obtained using a spectrophotometer (CM-700d; Konica
Minolta Optics Inc., Tokyo, Japan), and the measurements were repeated 10 times. The hue
angle and chroma were calculated as follows:

Hue angle = tan−1 b*
a*

Chroma =

√
(a*)2 + (b*)2

Tukey’s test (p < 0.05) was performed for statistical analysis using SPSS Statistics 20
(SPSS Inc., Chicago, IL, USA).

2.4. Determination of Capsaicin and Dihydrocapsaicin Content

The capsaicin and dihydrocapsaicin content were determined using the method of
Kim et al. [18], with some modifications. The sample (2 g) was mixed with 80 mL of 100%
ethanol and extracted at 85 ◦C for 3 h using a reflux extractor (FTCOD-6; Chang Shin
Science, Changwon, Republic of Korea). The extract was filtered through filter paper (No. 1,
Whatman Co., Maidstone, UK) and then adjusted to 100 mL in a 100 mL volumetric flask.
The solution was filtered using a 0.2 µm syringe filter (D2520; Echrome Science, Daegu,
Republic of Korea), and the filtrate was used for analysis.

The capsaicin and dihydrocapsaicin content were determined using an ultra-high-
performance liquid chromatography system, with a fluorescence detector (LaChromUltra
L-2000U Series; Hitachi High-Technologies Corp., Tokyo, Japan) consisting of LaChrom
Ultra C18 (2 µm, 2 mm I.D x 50 mm) (Ex = 280, Em = 325 nm). Chromatographic separation
was performed using isocratic elution, with a mobile phase consisting of 1% acetic acid
and acetonitrile (60:40 v/v). The flow rate, injection volume, acquisition time, and column
temperature were 0.6 mL/min, 2 µL, 6 min, and 25 ◦C, respectively. The experiments were
conducted in triplicate, and the results were expressed as mg/kg.

2.5. Data Collection

A hyperspectral system was custom designed and comprised a SWIR camera
(PA320F300TCL, OZRAY, Gwangmyeong, Republic of Korea), spectrograph (N17E, Specim,
Oulu, Finland), vision dome light (VTDL550*240, Vision Technology, Cheonan-si, Republic
of Korea) with six halogen lamps (150W power), and sample linear stage (FBL80E1400,
FUYU, Chengdu, China). An optical module (shortwave infrared (SWIR) camera, spectro-
graph, and vision dome light) of the SWIR system was fixed 460 mm above the sample,
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and SWIR spectral images (hypercube) were acquired by line-scan mode, while moving
constant velocity motion by 275 mm/s using a sample linear stage.

The SWIR spectral images were recorded from 900 to 1700 nm, and the reflectance
intensities of images was measured at averaged 3.45 nm intervals. The resolution of the
SWIR spectral image was 320 (w) × 256 pixels (l), and the spectral band had 256 channels.
However, the first 20 bands and the last 16 bands were deleted to remove noisy signals;
thus, 220 spectral bands were used for analysis.

The frame rate was 260 fps, and the exposure time was 3.8 ms/line during spectrum
acquisition. Thirty hypercube datasets were collected for each group. Region of interest
(ROI) spectral extraction was performed using the principal component analysis (PCA)-
based ROI function in Prediktera Breeze software (Prediktera AB, Umea, Sweden). The
mean spectra of each sample were used for data analysis.

2.6. Data Analysis for Classification

The 600 images were randomly divided into training (70%, 21 samples from each
group, 420 samples in total) for principal component analysis (PCA) using Evince software
(Prediktera AB, Umea, Sweden).

Machine learning classification was performed using the classification learner in
MATLAB R2022b software (MathWorks, Inc., Natick, MA, USA). The training of machine
learning implemented k-fold cross-validation to enhance the reliability of the result. The
k-fold cross-validation involved randomly dividing the entire dataset into k-subsets of
equal sizes. One of these k-subsets for each iteration served as the validation data, while
the remaining subsets were employed for training purposes [19]. A total of 420 samples
(70% of the dataset) was allocated for training, while the remaining 30% (180 samples) was
reserved as the test set. Additionally, a fivefold cross-validation was employed.

The feature selection algorithm (minimum redundancy maximal relevance (MRMR))
was performed in MATLAB R2022b software. The wavelength bands with high importance
scores were identified by MRMR, followed by construction of the optimal subset for each
machine learning classifier by wavelength selection. Three machine learning classifiers
were used: linear discriminant analysis (LDA), linear support vector machine (LSVM),
and k-nearest neighbor (KNN). True-positive (TP), true-negative (TN), false-positive (FP),
and false-negative (FN) rates were used to calculate the model performance indicators
(accuracy, recall, specificity, precision, and F1-score) with the following equations:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100

Recall =
TP

TP + FN
× 100

Precision =
TP

TP + FP
× 100

F1 − score = 2 × Recall × Precision
Recall + Precision

× 100

3. Results
3.1. Color Values of Red Pepper Powder in Relation to Different Pericarp and Seed Ratios and
Allura Red Concentrations

The color values of red pepper powder in relation to the pericarp/seed ratio and
Allura Red concentration are shown in Table 2. The L* values of samples containing only
seed (P0) and a pericarp/seed mixture (P25, P50, and P75) decreased with increasing Allura
Red concentrations, whereas those of pure pericarp powder (P100) increased after the
addition of Allura Red. The a* value increased with increasing Allura Red concentrations.
However, the magnitude of the increase in the a* value decreased as the pericarp ratio
increased. The addition of Allura Red increased the b* values of P75 and P100, the hue
angle of P100, and the chroma values of P25, P50, P75, and P100. However, the addition of
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Allura Red decreased the b* values of P0 and P25; the hue angles of P0, P25, and P50; and
the chroma of P0.

Table 2. Color values for different pericarp/seed ratios and Allura Red concentrations.

L* a* b* Hue Angle Chroma

P0 58.6 ± 0.7m 26.6 ± 1.1a 52.3 ± 1.5gh 63.1 ± 0.7n 58.7 ± 1.7de
P0A 43.2 ± 0.5k 31.1 ± 0.3b 34.1 ± 0.6a 47.7 ± 0.5c 46.2 ± 0.6a
P0B 41.1 ± 0.6j 38.9 ± 0.3h 34.9 ± 0.5a 41.8 ± 0.3a 52.3 ± 0.5c
P0C 37.3 ± 0.5gh 36.9 ± 0.6efg 34.1 ± 0.6a 42.7 ± 0.4a 50.2 ± 0.8b
P25 49.8 ± 1.0l 33.7 ± 0.8c 48.2 ± 1.3c 55.0 ± 1.0ij 58.8 ± 1.2de

P25A 41.0 ± 0.5j 37.1 ± 0.2fg 43.2 ± 1.1b 49.4 ± 0.7d 57.0 ± 0.9d
P25B 38.9 ± 0.5i 40.4 ± 0.2i 44.6 ± 0.6b 47.8 ± 0.4c 60.2 ± 0.5ef
P25C 37.7 ± 0.4h 41.9 ± 0.1j 43.3 ± 1.0b 46.0 ± 0.6b 60.2 ± 0.8ef
P50 43.5 ± 0.5k 36.2 ± 0.5de 49.1 ± 1.3cde 53.6 ± 0.8gh 61.0 ± 1.1f

P50A 38.5 ± 0.4i 37.1 ± 0.4fg 48.6 ± 1.1cd 52.7 ± 0.7fg 61.2 ± 0.9f
P50B 35.9 ± 0.5f 40.2 ± 0.5i 49.5 ± 1.9cde 50.9 ± 0.9e 63.8 ± 1.8g
P50C 33.4 ± 1.0d 41.4 ± 0.5j 50.5 ± 1.0ef 50.7 ± 0.5e 65.3 ± 1.0gh
P75 36.8 ± 0.6g 36.1 ± 0.5d 50.0 ± 1.3def 54.1 ± 0.6hi 61.6 ± 1.3f

P75A 34.1 ± 0.4e 37.6 ± 0.4g 55.8 ± 1.7i 56.0 ± 0.8kl 67.3 ± 1.5ij
P75B 33.2 ± 0.4cd 39.9 ± 0.5i 56.4 ± 0.7i 54.7 ± 0.3ij 69.1 ± 0.8j
P75C 32.5 ± 0.4bc 39.9 ± 0.4i 53.8 ± 1.0h 53.4 ± 0.3fgh 67.0 ± 1.0hi
P100 29.7 ± 0.6a 36.7 ± 1.1def 47.9 ± 2.4c 52.5 ± 0.6f 60.4 ± 2.5ef

P100A 32.9 ± 0.5cd 31.4 ± 0.4b 51.6 ± 1.4fg 58.7 ± 0.4m 60.4 ± 1.4ef
P100B 32.6 ± 0.7bcd 37.4 ± 0.5fg 55.8 ± 1.2i 56.2 ± 0.46l 67.2 ± 1.2hij
P100C 32.0 ± 0.7b 37.2 ± 0.5fg 53.6 ± 1.0h 55.2 ± 0.3jk 65.3 ± 1.1gh

Means in the same column with different letters are significantly different as per Tukey’s test (p < 0.05). P0:
pure seeds; P25: pepper powder consisting of 25% pericarp and 75% seeds; P50: pepper powder consisting
of 50% pericarp and 50% seeds; P75: pepper powder consisting of 75% pericarp and 25% seeds; P100: pure
pericarp; A, B, and C: Allura Red concentrations of 0.05%, 0.1%, and 0.15%, respectively, in the pericarp, seeds,
and pericarp/seed mixture.

PCA was performed using the L*, a*, b*, hue angle, and chroma values. Color is
considered the most crucial quality parameter of red pepper powder [20]. However, PCA
showed that it was difficult to distinguish some groups (P50A-C, P75, P75A-C, and P100B-
C) from P100 using color values as an indicator (Figure 1). This result highlights the
limitations of relying solely on color values for onsite detection to assess food quality
in the food supply chain. One significant challenge is the difficulty in distinguishing
adulterated products when the addition of colorants results in color values similar to those
of authentic products. From this perspective, HSI, especially SWIR-based HSI, is a useful
alternative to overcome the above limitations since it provides detailed information about
several compounds in food [21]. Therefore, this study used SWIR technology to identify
adulterated red pepper powder.
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P50: pepper powder consisting of 50% pericarp and 50% seeds; P75: pepper powder consisting of 
75% pericarp and 25% seeds; P100: pure pericarp; A, B, and C: Allura Red concentrations of 0.05%, 
0.1%, and 0.15%, respectively, in the pericarp, seeds, and pericarp/seed mixture. 

3.2. Hyperspectral Information and PCA Results in Relation to the Pericarp and Seed Ratio and 
the Presence of Allura Red 

The spectral data based on the pericarp/seed mixture ratio showed that the reflec-
tance in the 1500–1700 nm range decreased, but the reflectance in the 1000–1350 nm range 
increased as the pericarp percentage increased (Figure 2a). The spectral data of the peri-
carp/seed mixture without Allura Red (P0-100) were used for PCA. The score plot of the 
first two principal components (PCs) (explaining 99.3% of the variation) showed that the 
groups were well separated based on the peel/seed ratio (Figure 2b). Principal component 
loadings revealed the contributions of the wavelengths, and the valleys and peaks of the 
loading plot could be considered effective wavelengths [22]. The loading plot indicated 
that the wavelength at 1000–1165 nm and the pericarp ratio were positively correlated, 
while the wavelength at 1470–1690 nm and the pericarp ratio were negatively correlated 
(Figure 2c). 

The capsaicin and dihydrocapsaicin contents in the pericarp were over 20 times 
higher than those in the seeds (Table 3). Thus, the capsaicin content increased as the peri-
carp percentage increased. Capsaicin (C18H27NO3) is an inherent component of red pep-
pers, and many previous studies reported that capsaicin content affects the NIR spectra 
of red pepper powder [23,24]. The characteristic wavelengths of chili pepper capsaicin are 
1035 nm (the second overtone of N–H), 1150–1210 nm (the second overtone absorption of 
C–H stretching), 1300–1500 nm (the second combination regions of C–H stretching), and 
1530 nm (the first overtone of N–H) [25]. The second overtone region of C–H bonds (1120–
1200 nm) were assigned to the capsaicin and dihydrocapsaicin content since this region 
contained at least 18 C–H bonds [26]. 

The score plot explained 98.8% of the variation when PCA was performed using a 
spectral dataset that included pure pericarp (P100), pericarp adulterated with 0.15% Al-
lura Red (P100C), and Allura Red (R) (Figure 2e). R exhibits the highest reflectance over 
the entire wavelength range, followed by P100C and P100 (Figure 2d). The loading plot 
suggested that 1205 nm and 1559-1618 nm were the key wavelengths indicating the pres-
ence of Allura Red (Figure 2f). Kamil, Mohamed, and Shaheen [27] reported that Allura 
Red showed specific function groups, including NH stretching, C-N=N-C, stretching C=C 

Figure 1. Principal component analysis (PCA) score plot for different pericarp/seed ratios and Allura
Red concentrations. P0: pure seeds; P25: pepper powder consisting of 25% pericarp and 75% seeds;
P50: pepper powder consisting of 50% pericarp and 50% seeds; P75: pepper powder consisting of
75% pericarp and 25% seeds; P100: pure pericarp; A, B, and C: Allura Red concentrations of 0.05%,
0.1%, and 0.15%, respectively, in the pericarp, seeds, and pericarp/seed mixture.

3.2. Hyperspectral Information and PCA Results in Relation to the Pericarp and Seed Ratio and the
Presence of Allura Red

The spectral data based on the pericarp/seed mixture ratio showed that the reflectance
in the 1500–1700 nm range decreased, but the reflectance in the 1000–1350 nm range
increased as the pericarp percentage increased (Figure 2a). The spectral data of the peri-
carp/seed mixture without Allura Red (P0-100) were used for PCA. The score plot of the
first two principal components (PCs) (explaining 99.3% of the variation) showed that the
groups were well separated based on the peel/seed ratio (Figure 2b). Principal component
loadings revealed the contributions of the wavelengths, and the valleys and peaks of the
loading plot could be considered effective wavelengths [22]. The loading plot indicated
that the wavelength at 1000–1165 nm and the pericarp ratio were positively correlated,
while the wavelength at 1470–1690 nm and the pericarp ratio were negatively correlated
(Figure 2c).

The capsaicin and dihydrocapsaicin contents in the pericarp were over 20 times higher
than those in the seeds (Table 3). Thus, the capsaicin content increased as the pericarp
percentage increased. Capsaicin (C18H27NO3) is an inherent component of red peppers,
and many previous studies reported that capsaicin content affects the NIR spectra of
red pepper powder [23,24]. The characteristic wavelengths of chili pepper capsaicin are
1035 nm (the second overtone of N–H), 1150–1210 nm (the second overtone absorption
of C–H stretching), 1300–1500 nm (the second combination regions of C–H stretching),
and 1530 nm (the first overtone of N–H) [25]. The second overtone region of C–H bonds
(1120–1200 nm) were assigned to the capsaicin and dihydrocapsaicin content since this
region contained at least 18 C–H bonds [26].
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Table 3. Capsaicin content of pericarp and seed of red pepper. 

 Pericarp Seed 
Capsaicin (mg/kg) 47.6 ± 0.2 2.0 ± 0.1 
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Figure 2. Shortwave infrared (SWIR) spectra (a), principal component analysis score (b), and loading
plots (c) of red pepper powder with different pericarp and seed ratios (P0-P100) and SWIR spectra (d),
principal component analysis score (e), and loading plots (f) of red pepper powder with Allura Red.
P0: pure seeds; P25: pepper powder consisting of 25% pericarp and 75% seeds; P50: pepper powder
consisting of 50% pericarp and 50% seeds; P75: pepper powder consisting of 75% pericarp and 25%
seeds; P100: pure pericarp; P100C: pericarp adulterated with 0.15% Allura Red; R: Allura Red.

Table 3. Capsaicin content of pericarp and seed of red pepper.

Pericarp Seed

Capsaicin (mg/kg) 47.6 ± 0.2 2.0 ± 0.1
Dihydrocapsaicin (mg/kg) 32.0 ± 0.1 1.3 ± 0.1

The score plot explained 98.8% of the variation when PCA was performed using
a spectral dataset that included pure pericarp (P100), pericarp adulterated with 0.15%
Allura Red (P100C), and Allura Red (R) (Figure 2e). R exhibits the highest reflectance
over the entire wavelength range, followed by P100C and P100 (Figure 2d). The loading
plot suggested that 1205 nm and 1559-1618 nm were the key wavelengths indicating the
presence of Allura Red (Figure 2f). Kamil, Mohamed, and Shaheen [27] reported that
Allura Red showed specific function groups, including NH stretching, C-N=N-C, stretching
C=C aromatic, and CH2 bending. Therefore, the increase in the reflectance of red pepper
powder adulterated with Allura Red may have been caused by these functional groups of
Allura Red.

PC1 and PC2 explained 87.7% and 11.5% of the variation across the samples, respec-
tively, when all datasets were subjected to PCA. The cumulative variance contributions of
PC1 and PC2 were 99.3% (Figure 3a). P100, P75, and P50 were evidently separated from the
samples adulterated with Allura Red. However, the samples adulterated with Allura Red
overlapped with P25 and P0, and the adulterated samples could not be clearly separated
based on the Allura Red concentration.
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Figure 3. Principal component analysis score (a) and loading plots (b) of red pepper powder with
different pericarp/seed ratios and Allura Red concentrations. P0: pure seeds; P25: pepper powder
consisting of 25% pericarp and 75% seeds; P50: pepper powder consisting of 50% pericarp and 50%
seeds; P75: pepper powder consisting of 75% pericarp and 25% seeds; P100: pure pericarp; A, B, and
C: Allura Red concentrations in the pericarp, seeds, and pericarp/seed mixture at 0.05%, 0.1%, and
0.15%, respectively.

The classification of the pericarp/seed ratio in the Allura Red-contaminated sample
was determined by PC1, and wavelengths at 1153, 1206, and 1460 nm predominantly
influenced this discrimination. In contrast, the pericarp/seed ratio of pepper powder with-
out Allura Red was discriminated by PC2, and the dominant wavelengths in the loading
plot were 1103 nm and 1508-1622 nm, which is consistent with the loading plot results in
Figure 2c. Confining these spectral characteristics solely to Allura Red might be premature
considering the presence of numerous other red azo dyes. Nevertheless, the PCA results
suggest the possibility of SWIR to identify red azo dye and seed impurities in red pepper
powder. Therefore, a machine learning method was applied for effective classification.

3.3. Classification of Adulterated Red Pepper Powder by the Pericarp Ratio and Allura
Red Concentration

Three machine learning algorithms (LDA, LSVM, and KNN) were employed to train
the model for classifying red pepper powder adulterated with different pericarp ratios and
Allura Red concentrations (20 categories).

Prior to applying machine learning classification, the optimal wavelength was selected
by the minimum redundancy maximal relevance (MRMR) algorithm. MRMR aimed to
choose a feature subset that maximizes dependence and relevance, while minimizing
redundancy from the raw feature set [28].

Hyperspectral image data contain a vast number of spectral bands, resulting in an
overabundance of information. Wavelength selection is an important step for efficient
data processing considering the limitations of computer hardware. Moreover, wavelength
selection is beneficial to improve model performance by eliminating irrelevant variables [29].
The top five wavelengths with high importance scores from MRMR were 1371.6, 1663.2,
1072.8, 1514.8, and 1141.5 nm (Figure 4a). The accuracy of classification models was
compared based on the number of features to construct a suitable feature subset for each
classification model (Figure 4b). Accuracy was defined as the ratio of correctly predicted
samples to the total number of samples. The model accuracy increased as the number of
features increased. However, the model accuracy no longer increased when the number of
features crossed a certain threshold. The number of features was selected based on classifier
accuracy as a function of the number of features, ensuring that the model accuracy for
the feature model set deviated by less than 3% from the maximum accuracy. The selected
feature numbers were 35, 20, and 20 for LDA, LSVM, and KNN, respectively.
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The accuracy of the three algorithms was 76.9–100.0% in the training set and 80.6–98.9%
in the testing set (Table 4). Overall, the results did not substantially differ between the
training and testing sets. This indicated that the developed models were robust and did
not show overfitting. Among these models, LDA exhibited the highest accuracy, followed
by LSVM and KNN.

Table 4. Machine learning results for the classification of red pepper powder by different Allura Red
concentrations and pericarp/seed ratio (20-class classification).

Feature
Number Accuracy Recall Precision F1_Score

Linear discriminant analysis
(LDA) 35 Train 100.0 100.0 100.0 100.0

Test 98.9 97.8 98.0 97.8

Linear support vector machine
(LSVM) 20 Train 85.5 85.5 87.1 85.3

Test 85.6 85.6 86.4 85.2

K-nearest neighbors
(KNN) 20 Train 76.9 77.0 77.0 76.9

Test 80.6 80.6 81.0 80.0

In addition to accuracy, other evaluation indices, such as recall, precision, and F1_score,
were used to evaluate model performance. Recall represents the ratio of correctly predicted
positive samples to the total number of positive samples, whereas precision represents
the ratio of correctly predicted positive samples to the total number of positive samples
predicted. Meanwhile, the F1_score is a weighted average of precision and recall [30].
The test set accuracy in LDA was 98.9%, recall was 97.8%, precision was 98.0%, and the
F1-score was 97.8%. This indicated that LDA showed good performance in classifying
different pericarp and seed ratios (Table 4). There was some misclassification of the Allura
Red concentration at P75 and P100; however, LDA clearly determined the presence of
seeds and Allura Red (Figure 5). LDA is regarded as a robust classifier, with an accuracy
above 90% in studies on classification using HSI [13]. The superior performance of LDA in
comparison with other machine learning methods was observed in classification studies of
coffee bean contamination [31] and the infection of brown rice [32]. This is likely because
LDA maximizes the rate between class variance and the interior of the class variance in any
particular dataset to ensure the greatest separability [33].
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Figure 5. Confusion matrices of LDA in the training set for classification of red pepper powder by
Allura Red concentration and pericarp/seed ratio (P0, P0A-C (a), P25, P25A-C (b), P50, P50A-C (c),
P75, P75A-C (d), and P100, P100A-C (e), 20-class classification). P0: pure seeds; P25: pepper powder
consisting of 25% pericarp and 75% seeds; P50: pepper powder consisting of 50% pericarp and 50%
seeds; P75: pepper powder consisting of 75% pericarp and 25% seeds; P100: pure pericarp; A, B, and
C: Allura Red concentrations in the pericarp, seeds, and pericarp/seed mixture at 0.05%, 0.1%, and
0.15%, respectively.

3.4. Classification of Adulterated Red Pepper Powder by Adulterant Types

In onsite assessments, identification of the presence of an adulterant may be more
important than quantification of each adulterant. Therefore, the samples were divided into
four categories: acceptable (P100 and P75), adulterated with Allura Red (Ad-R; P100A-C
and P75A-C), adulterated with seeds (Ad-S; P0-50), and adulterated with seeds and Allura
Red (Ad-SR; P0A-C, P25A-C, P50A-C, and P75A-C). P75 was included in the acceptable
group, along with P100, since previous studies reported that the red pepper seed content in
dried red pepper powder varies from less than 10% to as much as 25%, depending on the
country of origin [34].

The first five wavelengths with a high importance score from MRMR were 1153.3,
1660.5, 1552.5, 1020.0, and 1375.6 nm (Figure 6a). The accuracy of LDA, LSVM, and KNN
was 79.8–100%, 85.5–99.5%, and 93.1–99.3%, respectively, as the number of features varied
from 3 to 220 spectral bands, (Figure 6b). The selected feature numbers for LDA, LSVM,
and KNN were 35, 20, and 35, respectively. The accuracies of the classification models in
the training and test sets were 99.0–100% and 94.4–100%, respectively (Table 5 and Figure 7).
The 4-category classification model showed better classification performance than the
20-category model. A previous study also reported improved accuracy of classification
models when the categories were appropriately adjusted [35]. LDA clearly classified
four categories (100% accuracy), whereas LSVM misclassified some of the Ad-S and Ad-
SR samples as acceptable, but its accuracy improved overall in comparison with the
20-category classification.
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Table 5. Machine learning results for classification of red pepper powder by adulterant types (4-class
classification).

Feature
Number Accuracy Recall Precision F1_Score

Linear discriminant analysis
(LDA) 35 Train 100.0 100.0 100.0 100.0

Test 100.0 100.0 100.0 100.0

Linear support vector machine
(LSVM) 20 Train 99.5 99.2 99.5 99.3

Test 99.4 99.1 99.7 99.4

K-nearest neighbors
(KNN) 35 Train 99.0 99.3 99.1 99.2

Test 99.4 99.1 99.7 99.4
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Figure 7. Confusion matrices of LDA (a), LSVM (b), and KNN (c) in the training set for classification of
red pepper powder by adulterant types (4-class classification). Acceptable (P100 and P75), adulterated
with Allura Red (Ad-R; P100A-C and P75A-C), adulterated with seeds (Ad-S; P0-50), and adulterated
with seeds and Allura Red (Ad-SR; P0A-C, P25A-C, P50A-C, and P75A-C).

KNN poorly performed when adulterated red pepper powder was classified by dif-
ferent pericarp ratios and Allura Red concentrations (20 categories) (Table 4). However,
the accuracy of KNN in the training set increased from 76.9% to 99.0% after adjusting the
number of categories to four. The classification ability of KNN is based on the determi-
nation of sample-type attributes using a defined set of K neighbors, without relying on a
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function generated during training. Therefore, KNN had good classification ability only
in the absence of overlap between classes [36]. Consequently, the improved accuracy of
the KNN model can be attributed to the reduced overlap between classes resulting from
category adjustment.

Phillips and Abdulla reported that when the amount of adulterant added to a product
is small, the spectrum does not change, leading to misclassification [37]. In this study, the
added concentration of Allura Red was small (0.05–0.15%), but SWIR and machine learning
were able to identify adulteration with high probability. We believe that the combination
of SWIR and machine learning technology is an effective tool for quality assurance of red
pepper powder, considering the cost and time-intensive nature of conventional analytical
methods used for detecting adulteration.

4. Conclusions

The color results obtained from the colorimeter (CIE L*, a*, and b* values; hue angle;
and chroma) cannot reliably indicate the presence of Allura Red and red pepper seeds
in red pepper powder. Therefore, this study developed a machine learning model based
on HSI to detect adulteration in red pepper powder. LDA showed the highest accuracy,
recall, precision, and F1_score after applying machine learning to a dataset of 20 groups
categorized by pericarp/seed ratio and Allura Red concentration. This indicated the
superiority of the LDA model for classifying adulterated red pepper powder. In addition,
LDA, LSVM, and KNN effectively discriminated among the accepted and contaminated
products when classifying the samples into four groups (acceptable, adulterated by Allura
Red, adulterated by seeds, and adulterated by seeds and Allura Red).

This study focused on the adulteration of red pepper powder with Allura Red and
red pepper seeds. It provided insights that SWIR combined with an appropriate machine
learning classification method is a reliable tool to detect specific adulterants. Moreover, an
effective quality-monitoring process for red pepper powder can be expected if the dataset
classification and machine learning classification methods are selected according to the
user’s specific purpose and the desired level of quality assessment. Furthermore, a greater
number of sample sizes and types will improve the robustness of the model data.
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