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Abstract: Goat milk whey protein products are a hard-to-source commodity. Whey protein concen-
trate was directly prepared from fresh goat milk. The effects of the heating temperature (69–78 ◦C),
time (15–30 min), and pH (7.5–7.9) on the physicochemical and functional properties of the goat milk
whey protein were investigated. The results showed that the particle size of the samples significantly
increased (p < 0.05) after heat treatment. The zeta potential of polymerized goat milk whey protein
(PGWP) was lower than that of native goat milk whey protein. The content of the free sulfhydryl
groups of PGWP decreased with increasing heating temperature and time, while an increase in
surface hydrophobicity and apparent viscosity of PGWP were observed after heat treatment. Fourier
Transform Infrared Spectroscopy analysis indicated that heat treatment and pH had considerable
impacts on the secondary structure of goat milk whey protein. Transmission electron microscope
images revealed that heat induced the formation of a large and uniform protein network. Addition-
ally, the changes in the physicochemical and structural properties contributed to the improvement
of the emulsifying and foaming properties of goat milk whey protein after heat treatment. The
results may provide a theoretical basis for the applications of polymerized goat milk whey protein in
related products.

Keywords: goat milk whey protein; heat treatment; polymerization; physicochemical property;
functional property

1. Introduction

Goat milk whey protein is a valuable component of goat milk, and has gained in-
creasing attention due to its unique nutritional and functional properties [1]. As a rich
source of essential amino acids and bioactive peptides, goat milk whey protein products
have been used in the food, pharmaceutical, and nutraceutical industries [2]. The use of
microfiltration (MF) and ultrafiltration (UF) techniques enables the extraction of native goat
milk whey proteins from raw goat milk [3], offering advantages such as energy efficiency,
mild processing conditions, and minimized environmental contaminants [4]. Extensive
research has shown that membrane separation technology yields goat milk whey protein
with superior nutritional and functional properties [5].

The functional properties of native whey protein are inherently limited by its compact
structure [6]. Heat treatment is widely employed in dairy processing as a common method
for improving protein functionality. Among these heat-induced modifications, thermal-
induced polymerization stands out as a process involving controlled heating [7,8], leading
to the formation of larger protein aggregates. This polymerization process significantly
impacts the physicochemical and functional properties of whey protein, including solubility,
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gelation, emulsification, and foaming properties [9]. Exploring the effects of the thermal-
induced polymerization of goat milk whey protein holds the potential to provide valuable
insights into its diverse applications and enhance its functionality in various food and
beverage formulations. Our previous research demonstrated the potential of polymerized
goat milk whey protein (PGWP) as an effective thickening agent, enhancing the viscosity
and minimizing syneresis in yogurt [10]. Furthermore, PGWP showed promise as an ideal
carrier material for delivering bioactive substances such as soy isoflavones [11], thereby
extending its utility in functional food applications. Additionally, the controlled thermal
denaturation of whey protein can serve as an efficient fat substitute and stabilizer in yogurt
formulations [12]. It is worth noting that Caner’s work revealed that whey protein isolate
coatings can act as a protective barrier, prolonging the shelf life of eggs [13].

While previous studies have predominantly focused on investigating the physicochem-
ical and functional properties of cow milk whey protein [14,15], data on the functionality
of goat milk whey protein are very limited. Considering the compositional and structural
differences between goat and cow milk whey proteins, it is necessary to investigate the
functional properties of goat milk whey proteins and their thermal-induced polymeriza-
tion behaviors.

The functional properties of goat milk whey protein are closely intertwined with
its physicochemical attributes and can be further enhanced through various modifica-
tions. Therefore, the objectives of this study were to investigate the physicochemical and
functional properties of thermal-induced polymerized goat milk whey protein.

2. Materials and Methods
2.1. Materials

Raw goat milk (≥8.15% nonfat solids, 3.86% protein, and 4.02% fat, w/v) was pur-
chased from a local farm (Feihe Dairy Industry Co. Ltd., Harbin, China).

2.2. Preparation of Goat Milk Whey Protein Concentrate

Raw goat milk was subjected to heat treatment at 55 ◦C and subsequently separated
into skimmed goat milk and cream using a separator (SA 10-T, Frautech SRL, Thiene, Italy).
The skimmed goat milk was then subjected to microfiltration (MF) at 50 ◦C, employing a
0.1 µm filter. The MF permeate was further processed through ultrafiltration (UF) using
a spiral-wound membrane with a 10 kDa molecular weight cut-off, resulting in a tenfold
concentration [10]. To reduce the salt content, the UF retentate underwent electrodialysis
(ED), successfully removing 85% of the salt. Finally, the concentrated goat milk whey
protein was freeze-dried using a freeze dryer (Alpha 1–2, Marin Christ Inc., Osterode,
Germany), yielding goat milk whey protein powder with the following composition:
80.99% protein, 18.67% lactose, and 0.34% ash (w/w).

2.3. Preparation of Polymerized Goat Milk Whey Protein (PGWP)

The goat milk whey protein powder was dissolved in deionized water with continuous
stirring for 2 h at room temperature, resulting in a 10% (w/v) whey protein solution. This
solution was then stored at 4 ◦C for 12 h to ensure complete hydration, and was then
subsequently brought back to room temperature before use [11]. Three variables were
studied. Variable (1) heating temperatures: 10% (w/v) whey protein solutions were adjusted
to pH 7.7 and heated in a water bath to temperatures ranging from 69 to 78 ◦C for a duration
of 20 min. Variable (2) heating times: the 10% (w/v) whey protein solutions were adjusted
to pH 7.7 and heated to 75 ◦C in a water bath for durations ranging from 15 to 30 min.
Variable (3) pH values: the 10% (w/v) whey protein solutions were adjusted to pH levels of
7.5, 7.7, and 7.9 using 1M sodium hydroxide and then heated to 75 ◦C for 25 min. Control
protein solution samples were prepared following the same procedures mentioned above
but without undergoing any heat treatment.



Foods 2023, 12, 3626 3 of 15

2.4. Particle Size and Zeta Potential Analysis

The particle size and zeta potential of the whey protein samples were carried out
using a Malvern Zetasizer Nano ZS90 (Malvern Instruments Ltd., Worcestershire, UK)
as described by Gélébarta et al. [16]. Sample solutions were diluted to 0.1% (w/v) with
deionized water and stored at 25 ◦C for 30 min to ensure equilibrium. The refractive
indexes for protein and water were 1.450 and 1.333, respectively. All measurements were
performed in triplicate.

2.5. Determination of the Free Sulfhydryl Group

The amount of the free sulfhydryl group in the whey protein samples was measured
as described by Ellman [17] with some modifications. Sample solutions were diluted
to 1% (w/v) using demineralized water. A sample of 0.5 mL was mixed with 5 mL of
urea buffer (8 M) and 20 µL of Ellman’s reagent. The mixtures were stored at room
temperature for 20 min, and the absorbance was measured at 412 nm using a UV-Vis
spectrophotometer (TU-1800, Beijing, China). The amount of the free sulfhydryl group was
calculated as follows:

µmol SH/g = (73.53 × A412 × D)/C (1)

where: A412 = absorbance value at 412 nm, D = dilution factor, C = protein concentration
(mg/mL), 73.53 is obtained from 106/(1.36 × 104), 1.36 × 104 = molar extinction coefficient.

2.6. Measurement of Surface Hydrophobicity

The surface hydrophobicity of the whey protein samples was determined using an
8-anilino-1-naphthalenesulfonic acid (ANS) probe following the method described by
Haskard et al. [18]. The samples were diluted to concentrations ranging from 0.0125 to
0.1 g/kg. Fluorescence intensity measurements were performed at excitation and emission
wavelengths of 365 nm and 484 nm, respectively, using a Spectrofluorometer (F-7000,
Hitachi Ltd., Tokyo, Japan). The slope of the linear regression of fluorescence intensity
versus protein concentrations was calculated and applied to the index of protein surface
hydrophobicity (H0).

2.7. Rheological Properties Measurement

The rheological properties of the whey protein samples were assessed using a rheome-
ter (Thermo Rheometer, San Jose, CA, USA) equipped with a 35-mm diameter plate at a
controlled temperature of 25 ◦C. The flow tests for the samples involved measuring shear
rates ranging from 0.1 to 1000 s−1. A time sweep test was conducted by maintaining a
shear rate at 200 s−1 for 2 min according to Havea et al. [19] with some modifications.

2.8. Fourier Transform Infrared (FT-IR) Spectroscopy

The FTIR spectra of the whey protein samples were analyzed using a Nicolet 6700 FTIR
spectrometer equipped with an attenuated total reflectance (ATR) ZnSe crystal (Thermo
Electron Scientific Instruments Corporation, San Jose, CA, USA). Freeze-dried samples
were ground into a fine powder. Measurements were recorded between 4000 and 400 cm−1,
and the spectra were obtained at an average of 32 scans at a resolution of 4 cm−1 [20]. The
spectral region ranging from 1600 to 1700 cm−1 was utilized to determine the secondary
structure of the protein employing Peak FIT software. Within this range, bands located be-
tween 1610 and 1637 cm−1 and 1680–1692 cm−1 were assigned to β-sheet structures, while
bands within the 1638–1648 cm−1 range were associated with random coil conformations.
Additionally, bands spanning from 1649–1660 cm−1 were indicative of α-helix structures,
and those in the 1660–1680 cm−1 range were attributed to β-turn structures. The area of
each band was determined using a Gaussian function [21].
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2.9. Transmission Electron Microscopy (TEM) Analysis

The microstructure of the whey protein samples was analyzed using a transmission
electron microscope (H-7650, Hitachi High-Technologies, Tokyo, Japan) following a method-
ology based on Krebs [22] with some modifications. Samples were diluted to an appropriate
concentration, and copper grids were placed in the diluted samples for 2 min and dyed
with phosphotungstic acid for 30 s. Finally, the copper grids were examined using the
transmission electron microscope.

2.10. Determination of the Emulsifying Properties of Goat Milk Whey Protein

The emulsifying activity index (EAI) and emulsifying stability index (ESI) of the whey
protein samples were measured according to the method of Pearce and Kinsella [23] with
some modifications. The 30 mL of protein solution (0.2%, w/v) was mixed with 10 mL of
soybean oil. The mixture was then subjected to homogenization at a speed of 10,000 rpm
for 1 min with a high-speed homogenizer (IKA, Labortechnik, Staufen, Germany).

A portion of 50 µL of the emulsion was pipetted from the bottom of the container at 0
and 10 min, respectively, and mixed with 5 mL 0.1% SDS. The absorbance of the emulsion
was measured at 500 nm, using 0.1% SDS as a blank.

EAI (m2/g) = (2 × 2.303 × A0 × N)/(10,000 × θ × L × C) (2)

ESI (min) = (A0 × 10)/(A0 - A10) (3)

where N is the dilution factor of protein, θ is the volume fraction of the oil phase in the
emulsion, L is the diameter of the colorimetric cup (cm), and A0, A10 are the absorbance of
the emulsion at 0 and 10 min, respectively.

2.11. Determination of the Foaming Properties of Goat Milk Whey Protein

The foaming capacity (FC) and foam stability (FS) of the whey protein samples were
determined using the method described by Ahmadi et al. [24] with some modifications.
A volume of 20 mL of protein solution (5%, w/v) was placed in a 100-mL measuring
cylinder and homogenized at 10,000 rpm for 2 min with a high-speed homogenizer (IKA,
Labortechnik, Staufen, Germany).

FC (%) = [(V0 - 20)/V0] × 100 (4)

FS (%) = [(V30 - 20)/(V0 - 20)] × 100 ( 5)

where V0 is the total volume directly after homogenization, V30 is the total volume after
30 min.

2.12. Statistical Analysis

Data were statistically analyzed and presented as mean ± standard deviations. An
analysis of variance (p < 0.05) and a Tukey’s test were carried out using SPSS 20 software
(SPSS Inc., Chicago, IL, USA). All figures were drawn by Origin 2020 (OriginLab Corp.,
Northampton, MA, USA).

3. Results and Discussion
3.1. Particle Size and Zeta Potential

The particle size and zeta potential of samples are shown in Figure 1. The particle
size significantly increased (p < 0.05) with increasing heating temperature from 69 to
78 ◦C (Figure 1A). This increase may be attributed to the cross-linking and aggregation
of denatured protein molecules following heat treatment. Croguennec et al. [25] reported
that heating the protein solution at temperatures above 60 ◦C resulted in the unfolding of
the protein secondary structure and exposed free sulfhydryl groups; both inter- and intra-
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molecular disulfide bonds may be formed from free sulfhydryl groups, which can promote
the formation of larger aggregates. A gel network was observed when heat treatment was
conducted at 78 ◦C after storage at 4 ◦C.
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The particle size was found to increase when the heating time ranged from 15 to
30 min (Figure 1B). This result aligns with the findings using cow whey protein by Nicolai
et al. [26], who observed an increase in the protein aggregate size with prolonged heating.
Figure 1C demonstrates that there were no significant changes (p > 0.05) in the particle size
of goat milk whey protein at different pH values. However, the particle size significantly
decreased (p < 0.05) with increasing pH values after heat treatment. The reduction in particle
size at higher pH values may be attributed to reduced protein attractive interactions as a
result of increased high surface charge. Schmitt et al. [27] reported that bovine milk whey
protein, heat-treated at 85 ◦C for 15 min, resulted in smaller-sized soluble aggregates with
increasing pH.

Figure 1D,E demonstrates that the heated samples exhibited significantly higher abso-
lute zeta potential values compared to native goat milk whey protein (control) (p < 0.05).
The observed increase in absolute zeta potential can be attributed to the exposure of buried
charged residues due to protein denaturation during heating [28]. However, variations in
heating temperature and time did not yield a significant effect on the zeta potential of the
PGWP samples (p > 0.05). This suggested that the changes in whey protein conformation
induced by temperature and time may not be substantial enough to result in significant
alterations in the zeta potential of the systems. Furthermore, after heat treatment, the zeta
potential values of all samples were approximately −30 mV, indicating the relative stability
of the heated samples [29].

In Figure 1F, the zeta potential of the goat milk whey protein was not significantly
influenced by different pH values (p > 0.05). However, the zeta potential of the heated
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samples decreased (p < 0.05) as the pH varied from 7.5 to 7.9. This decrease in the zeta
potential of the heated samples may be due to the increasing overall negative charge with
an increase in pH values [30].

3.2. Free Sulfhydryl Group Content

Figure 2 illustrates the free sulfhydryl group (-SH) contents of the native and heated
goat milk whey protein samples. The free sulfhydryl group contents decreased with
increasing heating temperature (69 to 78 ◦C) and heating time (15 to 30 min) (Figure 2A,B),
which resulted in the formation of disulfide bonds. The decrease in the free sulfhydryl
group contents upon heat treatment was attributed to the formation of intermolecular and
intramolecular disulfide bonds, resulting in a reduction in sulfhydryl group contents [31].
Regarded as a function of pH values, both the native and heated samples showed a decrease
in free sulfhydryl group content as the pH values increased from 7.5 to 7.9 (Figure 2C).
Mishyna et al. [32] showed that the total -SH groups decreased with increasing pH from 7
to 9 for whey protein isolates after heat treatment, which supports our results.
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3.3. Surface Hydrophobicity

The surface hydrophobicity of the heated samples increased with higher heating
temperatures ranging from 69 to 78 ◦C (Figure 3A). Additionally, the surface hydrophobicity
of the heated samples significantly increased (p < 0.05) with prolonged heating times from
15 to 30 min (Figure 3B). This increase in surface hydrophobicity can be attributed to the
altering of the conformation of the protein after heat treatment and the unfolding of the
protein structure, resulting in the exposure of more hydrophobic groups [33].

Figure 3C shows that both the unheated and heated samples exhibited an increase in
surface hydrophobicity as the pH values increased from 7.5 to 7.9 (p < 0.05), indicating that
different pH values altered the characteristics of hydrophobic sites in the protein. Ahmad
and Singh [34] suggested that an increase in pH values resulted in an elevation in surface
hydrophobicity, which may be due to variations in the protein surface charge.
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3.4. Apparent Viscosity

Figure 4 presents the apparent viscosity of the samples. The apparent viscosity of
the heated samples increased with higher heating temperatures ranging from 69 to 78 ◦C
(Figure 4A) and prolonged heating times from 15 to 30 min (Figure 4B), which is logical
and consistent with the observed changes in particle size (Figure 1A,B). The process of
heating leads to the disruption of various intramolecular bonds that stabilize the native
goat milk whey protein structure. Beyond a certain temperature, protein molecules unfold
and subsequently aggregate. These aggregates tend to be larger in size, exhibit greater
asymmetry in shape, and possess a larger effective volume fraction compared to the native
molecules, resulting in an increase in viscosity. However, it is essential to note that viscosity
is influenced by numerous molecular properties, including size, shape, and flexibility [35].
All of these factors may be attributed to the observed increase in viscosity. Similar findings
of increased apparent viscosity after heat treatment were reported by O’Loughlin et al. [36]
on cow’s milk whey protein. In Figure 4C, the apparent viscosity of the heated samples
decreased as the pH values increased from 7.5 to 7.9. This decrease can be attributed to the
strong electrostatic repulsion at higher pH values [37].

3.5. Fourier-Transform Infrared (FTIR) Spectroscopy

The FTIR spectra of the heated samples exhibited similarities to those of the unheated
samples (Figure 5). The amide I band, which falls within the spectral region between
1600 and 1700 cm−1, is sensitive to alterations in the secondary structure of proteins. It
represents the stretching vibrations of C=O bonds and is influenced by hydrogen bond-
ing interactions [38]. In the FTIR spectra of the unheated samples, a distinctive peak at
1633.96 cm−1 was prominently observed. Following heat treatment, significant blueshifts
were observed as the heating temperature and time increased. These alterations in heat
treatment conditions influenced the conformation of proteins by disrupting intramolecular
hydrogen bonds, leading to a shift of the spectral peaks towards higher wavenumbers [39].
In addition, after heat treatment at 75 ◦C for 25 min, the absorption peaks of goat milk
whey protein at pH 7.5, 7.7, and 7.9 were observed at 1635.41, 1637.34, and 1637.37 cm−1,
respectively.
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The secondary structures of goat milk whey protein encompass α-helix, β-sheet,
β-turn, and random coil structures. Heat treatment was found to decrease the content of
α-helix and increase the content of β-sheet in the goat milk whey protein compared to the
unheated samples (Figure 6). The decrease in the α-helix structure after heating can be
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attributed to the rupture or weakening of hydrogen bonds within the α-helix structure,
along with the formation of stronger intermolecular hydrogen bonds [38]. The increase in
the β-sheet structure can be attributed to the aggregation of denatured protein molecules
at higher temperatures [40]. Boye et al. [41] observed that heating promoted the unfolding
of interior β-LG, leading to a decrease in the α-helix structure and enhanced formation of
the intermolecular β-sheet structure.
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When the goat milk whey protein was subjected to heat treatment at 75 ◦C for 25 min
and adjusted to different pH values, the content of the α-helix structure decreased, while
the β-sheet content increased. These results indicated that heat treatment and pH variations
can induce changes in the secondary structures of goat milk whey protein [38].

3.6. Microstructure

The microstructure of the samples is shown in Figure 7. The native goat milk whey
protein (control) displayed an irregular shape with slight aggregation. With an increase
in heating time from 15 to 25 min, the particle size of the heated samples increased, and
a uniform protein network was observed. However, when the heating time exceeded
25 min, the protein’s spherical structure transformed into a chain structure, resulting in
the formation of a network of larger aggregates. Furthermore, increasing the heating
temperature from 69 to 75 ◦C resulted in the formation of larger and more uniform protein
particles. When the heat temperature increased to 78 ◦C, the particles agglomerated into
large clusters. This phenomenon can be attributed to the protein interactions at higher
temperatures, resulting in the agglomeration of protein particles [9]. As the pH values
increased from 7.5 to 7.9, while maintaining the heat treatment at 75 ◦C for 25 min, the
particle size of the aggregates significantly decreased. This trend of change was confirmed
by dynamic light scattering measurements.
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3.7. Emulsifying Activity Index (EAI) and Emulsion Stability Index (ESI)

The emulsifying activity index (EAI) reflects the protein’s ability to absorb at the
oil-water interface, while the emulsion stability index (ESI) indicates the protein’s ability to
remain at the oil-water interface after the emulsion is heated [31]. As shown in Figure 8,
the EAI values of the heated samples were significantly lower than those of the unheated
samples (p < 0.05). The decrease in EAI can be attributed to the formation of a thicker layer
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of proteins at the oil-water interface. Additionally, the EAI values significantly increased
(p < 0.05) with increasing heating temperatures from 69 to 75 ◦C, reaching a maximum of
75 ◦C (Figure 8A). This suggests that more protein molecules could move to the oil-water
interface, thereby enhancing the emulsifying ability.
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deviation of the means.

On the other hand, increasing the heating time from 15 to 30 min at 75 ◦C had a
negative impact on EAI values (Figure 8B). This can be attributed to the formation of large
protein aggregates during heat treatments, which are unable to efficiently absorb the fat
droplets [42]. Furthermore, a significant difference in EAI was observed between unheated
and heated samples with varying pH values from 7.5 to 7.9 (p < 0.05) (Figure 8C). This
difference may be due to the influence of different pH values on the surface charge of
protein molecules, thereby affecting protein denaturation and aggregation.

According to the data presented in Figure 8, the ESI of the heated samples was
significantly higher than that of the unheated samples (p < 0.05), with similar results also
observed in bovine milk whey proteins. Jiang et al. [31] reported an increase in the ESI of
bovine milk whey protein after heat treatment. The ESI values increased with higher heating
temperatures (from 69 to 78 ◦C) (Figure 8D) and longer durations of heating (from 15 to
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30 min) (Figure 8E). These results indicated that heat treatments can enhance the emulsion
stability of goat milk whey protein. Moreover, the ESI values of both unheated and heated
samples were significantly influenced by different pH values (p < 0.05) (Figure 8F).

3.8. Foaming Capacity (FC) and Foam Stability (FS)

The foaming capacity (FC) and foam stability (FS) data presented in Figure 9 demon-
strate that the heated samples had significantly higher FC and FS values compared to the
unheated samples (p < 0.05). The data indicated that heat treatments enhance the FC and
FS of the goat milk whey protein. Furthermore, as the heating temperatures increased from
69 to 75 ◦C and the heating times extended from 15 to 25 min, both FC and FS showed
significant increases (p < 0.05). The results suggested that the denaturation of protein
molecules during heat treatment exposed more hydrophobic groups, leading to enhanced
hydrophobic interactions and improved foam formation [43].
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However, at a heating temperature of 78 ◦C or a heating time of 30 min, FC and FS
decreased. This was attributed to the formation of aggregates reducing the availability
of proteins to stabilize the gas-liquid interface at higher temperatures or during longer
durations of heating [44]. Tosi et al. [45] discovered that heat treatment could enhance foam
stability. However, it is important to note that the temperature should not exceed 85 ◦C to
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prevent excessive denaturation, which can subsequently diminish the foaming properties
of whey. Additionally, different pH values had a significant impact on the FC and FS of the
samples, which may be related to the changes in protein ionization, and the adsorption at
the gas-liquid interface [46].

4. Conclusions

Goat milk whey protein concentrate was directly prepared from fresh milk using mem-
brane separation technology. Heating treatments had major impacts on physicochemical
properties, resulting in changes in the functional properties of the protein. The findings
of this study indicated that thermally-induced polymerized goat milk whey protein may
hold promise as a thickening agent and microencapsulating wall material in fermented
product formulations.
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