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Abstract: The microbial community in donkey milk and its impact on the nutritional value of donkey
milk are still unclear. We evaluated the effects of different lactation stages on the composition
and function of donkey milk microbiota. The milk samples were collected at 1, 30, 60, 90, 120,
150, and 180 days post-delivery. The result showed that the microbial composition and functions
in donkey milk were significantly affected by different lactation stages. The dominant bacterial
phyla in donkey milk are Proteobacteria (60%) and Firmicutes (22%). Ralstonia (39%), Pseudomonas
(4%), and Acinetobacter (2%) were the predominant bacterial genera detected in all milk samples.
In the mature milk, the abundance of lactic acid bacteria Streptococcus (7%) was higher. Chloroplast
(5%) and Rothia (3%) were more plentiful in milk samples from middle and later lactation stages
(90–180 d). Furthermore, the pathogens Escherichia-Shigella and Staphylococcus and thermoduric
bacteria Corynebacterium, Arthrobacter, and Microbacterium were also detected. Donkey milk is rich
in beneficial bacteria and also poses a potential health risk. The above findings have improved
our understanding of the composition and function changes of donkey milk microbiota, which is
beneficial for the rational utilization of donkey milk.
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1. Introduction

Donkey milk (DM) is rich in lactose and low in fat, which is closer to human milk than
dairy milk [1]. Some research has indicated that DM is an ideal substitute for infants with
milk protein allergy and is also ideal nutrition for growing children, convalescent patients,
and the elderly [2–4]. In recent years, DM has gradually been considered and recognized
by consumers. In 2019, the output of DM in China was about 270,000 tons, with an output
value of nearly CNY 1 billion [5].

DM has lots of important bioactivities, such as immune stimulation, anti-inflammatory
activity, antioxidant activity, and antibacterial and anti-virus effects. Some research showed
that DM has anti-inflammatory and immune-stimulating effects and is effective in the
treatment of diseases such as diabetes, tuberculosis, and cancer [6–8]. Proteomic analysis
of DM showed that lysozyme, lactoferrin, immunoglobulin, and other whey proteins had
antibacterial activity [3]. Due to the high concentration of antibacterial factors such as
lysozyme and lactoferrin, the microbial population in DM is relatively low [4].

There are many studies on the nutritional characteristics of DM, but there is limited
research on the microbial community in DM. In a study by Colavita et al. (2016), they
found both the microbial contamination and somatic cell count in DM were reasonably
low. However, there are also pathogens in DM, such as Escherichia coli O157 and Salmonella
spp. [9]. In a study by Soto Del Rio et al. (2016), microorganisms that may have important
probiotic activity were also found in DM [10]. Derdak et al. (2021) isolated and identified
beneficial bacteria in DM and evaluated their antibacterial activity against pathogenic
bacteria such as Staphylococcus aureus [11]. Furthermore, the microbial composition in DM
is complex, and its distribution between and within farms is variable [10,12,13].
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Polymerase chain reaction (PCR) technology is widely used for food bacteria detec-
tion. Niamah (2012) detected Listeria monocytogenes in milk with the PCR method [14].
Another study used multiple polymerase chain reaction (mPCR) to simultaneously detect
several pathogens in milk [15]. With the development of DNA sequencing technology,
high-throughput sequerncing (HTS) technology has been developed and widely used for
bacterial detection in milk [12,13].

There are few studies on the changes in microbiota in DM over time. The lactation
stage may alter the composition of the microbiota in DM, thereby affecting its functional
properties. Thus, in order to evaluate the microbial quality of DM and explore and utilize
beneficial bacteria in DM, the DM microbial diversity and community throughout lactation
to 180 days were investigated with the HTS method in this study.

2. Materials and Methods
2.1. Collection and Preparation of DM

Milk samples were collected from 35 healthy Dezhou donkeys, with 5 per lactation
stage: 1 d (group A), 30 d (group B), 60 d (group C), 90 d (group D), 120 d (group E),
150 d (group F), and 180 d (group G) after foaling. The donkeys were housed at a farm
in Liaocheng City, Shandong Province, China. The donkeys were raised in a semi-closed
house. All donkeys were offered water and the same diet of grass hay as desired sup-
plemented with 2 kg concentrate/head/day. The concentrate consisted of corn, soybean
meal, expanded soybeans, bran, mineral additives, vitamin additives, and amino acid
additives. The milk samples were collected during morning mechanical milking, frozen
quickly with liquid nitrogen and stored at −80 ◦C. The animal experiment of this study
was approved by the Animal Care and Use Committee of Liaocheng University (Shandong,
China) (2023022706).

2.2. Sequencing
2.2.1. DNA Extraction

CTAB method was used in total genome DNA extraction. Briefly, we added 200 µL
of milk sample to 1000 µL of CTAB lysate containing lysozyme, performed a 65 ◦C water
bath, and then centrifuged the mixture at 12,000 rpm for 10 min. Further, we added an
equal volume of phenol, chloroform, and isoamyl alcohol (25:24:1) to the supernatant
and centrifuged it at 12,000 rpm for 10 min. After that, we added an equal volume of
chloroform and isoamyl alcohol (24:1) to the supernatant and centrifuged it at 12,000 rpm
for 10 min. Then, we added 3/4 volume of isopropanol to the supernatant to precipitate
DNA, centrifuged it at 12,000 rpm for 10 min, and washed the DNA twice with 75% ethanol.
Finally, we added sterile water to dissolve the DNA sample. To detect DNA purity, 1%
agarose gel electrophoresis was used (100 volts, 40 min). The DNA contents were measured
by ultraviolet spectrophotometry. Then, we diluted the DNA with sterile water to 1 ng/µL.

2.2.2. Amplification of 16S rRNA and Detection of PCR Products [16]

Specific primers (515F: 5′-CCTAYGGGRBGCASCAG-3′; 806R: 5′-GGACTACNNGGG
TATCTAAT-3′) (Sangon Biotech, Shanghai, China) and barcodes were used to amplify
the 16S rRNA gene in V3–V4 regions. We performed the PCR reaction on a Bio-rad T100
gradient PCR instrument (Bio-rad, Hercules, CA, USA). The PCR reaction mixture included
Phusion® High-Fidelity PCR Master Mix (New England Biolabs, Ipswich, MA, USA)
(15 µL), primer (0.2 µM), and DNA (10 ng). The cycling conditions were as follows: 98 ◦C
for 1 min, then cycling 30 times at 98 ◦C (10 s), 50 ◦C (30 s), 72 ◦C (30 s), and, finally, 72 ◦C
for 5 min. We mixed an equal volume of 1X loading buffer (containing SYB green) to the
PCR products and used 2% agarose gel electrophoresis to detect DNA (80 volts, 40 min).
We mixed the PCR products in equal proportion and then used the Qiagen Gel Extraction
Kit (Qiagen, Hilden, Germany) to purify the mixed PCR products.
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2.2.3. Library Preparation and Sequencing

Sequencing libraries were generated with the NEBNext® Ultra™ IIDNA Library Prep
Kit (cat. no. E7645) according to the manufacturer’s recommendations. The Qubit@ 2.0
Fluorometer (Thermo Scientific, Waltham, MA, USA) and Agilent Bioanalyzer 2100 system
were used to evaluate the library quality. Finally, the library was sequenced on the Illumina
NovaSeq platform, and a paired-end reading of 250 bp was generated.

2.3. Data Analysis
2.3.1. Paired-End Reads Merged and Quality Control

Paired-end readings were assigned to samples based on their unique barcodes and
truncated by cutting off the barcodes and primer sequences. Paired-end reads were
merged using FLASH (version 1.2.11, http://ccb.jhu.edu/software/FLASH/ (accessed
on 7 December 2022)) [17], and the splicing sequences were called Raw Tags. Then, we
used Fastp (version 0.20.0) software to filter the quality of the Raw Tags to obtain high-
quality Clean Tags. We integrated Clean Tags into the reference database (Silva database
https://www.arb-silva.de/ (accessed on 7 December 2022)) to detect chimeric sequences
using Vsearch (version 2.15.0) and removed them to obtain the Effective Tags [18].

2.3.2. ASVs Denoise and Species Annotation

For the previously obtained Effective Tags, we used the DADA2 or deblur module of
QIIME2 software (version QIIME2-202006) for denoising to obtain the initial ASVs (Am-
plicon Sequence Variants) (default: DADA2) and then filter out ASVs with an abundance
of less than 5 [19]. Species annotation was conducted using QIIME2 software with the
Silva database as the annotation database. In order to study the phylogenetic relationships
of each ASV and the differences in dominant species among different groups, multiple
sequence alignments were conducted using QIIME2 software. We normalized the absolute
abundance of ASVs using the sequence number standard corresponding to the sample with
the lowest sequence. Subsequent analyses of alpha diversity and beta diversity were all
performed based on output normalization data.

2.3.3. Alpha Diversity

In order to analyze the diversity, richness, and uniformity of the communities in the
sample, alpha diversity was calculated from 7 indices (Observed_otus, Chao1, Shannon,
Simpson, Dominance, Good’s coverage, and Pielou_e) in QIIME2 [20].

2.3.4. Beta Diversity

To evaluate the complexity of community composition and compare the differences
between groups, the weighted and unweighted UniFrac distances in QIIME2 were used to
calculate beta diversity [21–23].

Cluster analysis was conducted using principal component analysis (PCA), which
was used to reduce the dimensionality of the original variables using the ade4 package and
ggplot2 package in R software (version 3.5.3).

Principal coordinate analysis (PCoA) was used to obtain the principal coordinates
and visual differences of samples in complex multi-dimensional data. We converted the
matrix of weighted or unweighted uniform distances among previously obtained samples
into a new set of orthogonal axes where the maximum variation factor was represented
by the first principal coordinate, the second maximum variation factor was represented
by the second principal coordinate, and so on. We used the QIIME2 package to display
three-dimensional PCoA results, while we used the ade4 package and ggplot2 package in
R software (version 2.15.3) to display two-dimensional PCoA results.

In order to study the significance of community structure differences between groups,
the adonis and anosim functions in QIIME2 software were used for analysis. To identify
significantly different species at each taxonomic level (phylum, class, order, family, genus,
species), MetaStat and t-test analyses were conducted using R software (version 3.5.3).

http://ccb.jhu.edu/software/FLASH/
https://www.arb-silva.de/
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LEfSe software (version 1.0) was used to perform LEfSe analysis (LDA score threshold: 4)
to identify biomarkers.

In addition, in order to study the functions of communities in the sample and identify
the different functions of communities in different groups, PICRUSt2 software (version
2.1.2-b) was used for functional annotation analysis.

2.3.5. Statistical Analysis

The t-test was used for community structure and functions of communities analysis.
p < 0.05 was defined as a significant difference.

3. Results and Discussion
3.1. Diversity of Microbiota in DM from Different Lactation Stages

The relative abundance of bacterial phyla in 35 different DM samples is shown in
Figure 1. The relatively abundant bacteria in DM are mainly Proteobacteria (60%), Firmicutes
(22%), Bacteroidota (7%), Actinobacteriota (5%), Cyanobacteria (3%), and Deinococcota (2%). The
bacterial alpha diversity in DM is showed in Figure 2. The observed OTUs and Shannon
index were significantly different between the milk from different lactation stages (Figure 1).
Both observed OTUs (Wilcoxon; p: B-A = 0.0297, C-A = 0.1646, D-A = 0.0051, E-A = 0.1175,
F-A = 4 × 10−4, G-A = 0.0022) and Shannon index (Wilcoxon; p: B-A = 0.014, C-A = 0.1953,
D-A = 0.0102, E-A = 0.1083, F-A = 0.0398, G-A = 0.0191) indicated that the microbiota
richness and diversity were greater in milk samples of groups B, D, F, and G than in the
colostrum (group A) (Figure 2).
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Figure 1. Relative frequency of bacterial phyla in donkey milk. Milk samples were collected from
Dezhou donkeys at 7 different lactation stages: 1 d (A), 30 d (B), 60 d (C), 90 d (D), 120 d (E), 150 d (F),
and 180 d (G) after foaling.
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Figure 2. The bacterial alpha diversity ((A): observed OTUs; (B): Shannon index) in donkey milk.
Milk samples were collected from Dezhou donkeys at 7 different lactation stages: 1 d (A), 30 d (B),
60 d (C), 90 d (D), 120 d (E), 150 d (F), and 180 d (G) after foaling. The microbiota richness and
diversity were significantly higher in milk samples of groups B, D, F, and G (mature milk) than in
the colostrum (group A) (Figure 2). Wilcoxon test was used for data statistical analysis. The median
values are represented by the horizontal bars within the boxes. The “*” indicated that 0.01 < p < 0.05;
The “**” indicated that 0.001 < p < 0.01. The “***” indicated that p < 0.001. The black dots in the figure
indicated outliers.

The principal coordinate analysis (PCoA) representation of the beta diversity analysis
was used to compare bacterial communities in milk samples of different lactation stages.
Moderate clustering of samples based on different lactation stages in the PCoA diagram is
shown in Figure 3. Based on the t-test, there were significant differences in microbial beta
diversity between any two groups (A, B, C, D, E, F, and G) of DM, except for groups C and
E, E and G, F and G.
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Figure 3. The microbial beta diversity of donkey milk of different lactation stages. The beta diversity
was represented using the principal coordinate analysis (PCoA). Milk samples were collected from
Dezhou donkeys at 7 different lactation stages: 1 d (A), 30 d (B), 60 d (C), 90 d (D), 120 d (E), 150 d (F),
and 180 d (G) after foaling. The microbiota of each donkey milk sample is represented by a point
on the PCoA diagram. The samples clustered together have the most similar microbiota. The first
coordinate explains 12.26%, and the second coordinate explains 9.07% of variation between mature
milk (groups B, C, D, E, F, G) and colostrum (group A) samples.
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3.2. Microbes Numbers in DM of Different Lactation Stages

The Venn diagrams were created using the data of the most prevalent OTUs, which
showed the microbe numbers and differences of each milk sample at different lactation
stages (Figure 4). The number of OTUs shared by group A and groups B, C, D, E, F, and G
was 314, 343, 363, 257, 365, and 261, respectively, representing 11.5%, 14.8%, 12.8%, 10.0%,
11.8%, and 7.9% of all the OTUs.
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Figure 4. Venn diagrams created using the data of the bacterial OTUs (operational taxonomic units)
in donkey milk of different lactation stages. Milk samples were collected from Dezhou donkeys at
7 different lactation stages: 1 d (A), 30 d (B), 60 d (C), 90 d (D), 120 d (E), 150 d (F), and 180 d (G)
after foaling.

3.3. Microbiota Composition in DM of Different Lactation Stage

The microbiota compositions and the bacteria relative abundance of DM samples from
different lactation stages were analyzed. The relative abundances of the bacterial genera
(top 35) in DM of seven lactation stages are shown in Figure 5. The relative abundances
of phyla and genera (top 10) are shown in Figure 6. The Proteobacteria and Firmicutes
had high levels in the DM. The Ralstonia (39%), Pseudomonas (4%), and Acinetobacter (2%)
were the predominant bacterial genera detected in all milk samples. Streptococcus (7%)
was more abundant in the mature milk (B, C, D, E, F, G). Rothia (3%) and Chloroplast (5%)
were more abundant in milk samples from the middle and later lactation stages (D, E,
F, G). Furthermore, the other predominant bacterial genera detected in group A were
Escherichia-Shigella (10%), Salinicoccus (9%), Staphylococcus (8%), and Corynebacterium (4%).

The microbial composition and community structure of DM samples of different
lactation stages were analyzed for significant differences with LEfSe (linear discriminant
analysis effect size). When the log linear discriminant analysis (LDA) score > 4.0 and p < 0.05
(Kruskal–Wallis test and Wilcoxon test), the difference was significant. The results showed
that there were significant microbiota taxonomic differences among the DM from the seven
lactation stages (A, B, C, D, E, F, G) (6, 2, 13, 6, 10, 8, 5 phylotypes) (p < 0.05) (Figure 7). In
colostrum (group A), Escherichia-Shigella and Staphylococcus were the dominant bacterial
genera, while, in milk group C, Truepere, Fermentimonas, and Veillonella were dominant, in
milk group D, Pseudomonas was dominant, in milk group E, Streptococcus, Rothia, and Vibrio
were dominant, and, in milk group F, Chloroplast and Gemella were dominant.
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stages. Milk samples were collected from Dezhou donkeys at 7 different lactation stages: 1 d (A),
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with relatively high values, while blue (0–(−2)) indicates genera with lower values. Significant
differences in the composition of microbiota at the genus level were detected in donkey milk of
different lactation stages.
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Figure 6. The relative abundances of bacterial phyla (A) and genera (B) (top 10). Milk samples were
collected from Dezhou donkeys at 7 different lactation stages: 1 d (A), 30 d (B), 60 d (C), 90 d (D),
120 d (E), 150 d (F), and 180 d (G) after foaling.
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histograms of linear discriminant analysis scores of 16S gene sequences with a cut off value of LDA 
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3.4. Functional Differences of Microbiome in DM of Different Lactation Stages 
The metabolic functions of microbiota in DM were predicted by the PICRUSt2 pro-

gram (Phylogenetic Investigation of Communities by Reconstruction of Unobserved 
States) according to the bacterial 16S rRNA sequencing data. The molecular function was 
characterized by analyzing the KEGG Orthology (KO, https://www.ge-
nome.jp/kegg/ko.html (accessed on 7 December 2022)) database. The relative abundance 
of the top 35 metabolic functions in DM from different lactation stages is shown in Figure 
8. DM microbiota functions were significantly different in DM of different lactation stages. 
The significantly different metabolic functions between mature DM (B, C, D, E, F, G) and 
colostrum (A) are shown in Table 1.

Figure 7. Donkey milk microbiota taxonomic differences at different lactation stages analyzed using
LEfSe (linear discriminant analysis effect size). Milk samples were collected from Dezhou donkeys
at 7 different lactation stages: 1 d (A), 30 d (B), 60 d (C), 90 d (D), 120 d (E), 150 d (F), and 180 d (G)
after foaling. Picture (A) is the cladogram of the differential milk microbial taxa. Picture (B) is the
histograms of linear discriminant analysis scores of 16S gene sequences with a cut off value of LDA
(linear discriminant analysis) score > 4 (log10).

3.4. Functional Differences of Microbiome in DM of Different Lactation Stages

The metabolic functions of microbiota in DM were predicted by the PICRUSt2 pro-
gram (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States)
according to the bacterial 16S rRNA sequencing data. The molecular function was charac-
terized by analyzing the KEGG Orthology (KO, https://www.genome.jp/kegg/ko.html
(accessed on 7 December 2022)) database. The relative abundance of the top 35 metabolic
functions in DM from different lactation stages is shown in Figure 8. DM microbiota
functions were significantly different in DM of different lactation stages. The significantly
different metabolic functions between mature DM (B, C, D, E, F, G) and colostrum (A) are
shown in Table 1.

https://www.genome.jp/kegg/ko.html
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Figure 8. The relative abundance of the top 35 microbiota metabolic functions in donkey milk of
different lactation stages. Milk samples were collected from Dezhou donkeys at 7 different lactation
stages: 1 d (A), 30 d (B), 60 d (C), 90 d (D), 120 d (E), 150 d (F), and 180 d (G) after foaling. Red
indicates functions with relatively high values (0–2), while blue represents a relatively low value
(0–(−2)).

Table 1. The significantly different metabolic functions between colostrum (A) and mature donkey
milk (B, C, D, E, F, G) (t-test, p < 0.05).

KO_Hierarchy KEGG_Description p Value

A vs. B

K02004 putative ABC transport system permease protein 0.02
K02529 LacI family transcriptional regulator 0.021
K02495 oxygen-independent coproporphyrinogen III oxidase (EC:1.3.98.3) 0.038
K02342 DNA polymerase III subunit epsilon (EC:2.7.7.7) 0.030

A vs. C

K02003 putative ABC transport system ATP-binding protein 0.026
K02004 putative ABC transport system permease protein 0.014
K02529 LacI family transcriptional regulator 0.028
K15634 probable phosphoglycerate mutase (EC:5.4.2.12) 0.012
K02342 DNA polymerase III subunit epsilon (EC:2.7.7.7) 0.025
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Table 1. Cont.

KO_Hierarchy KEGG_Description p Value

A vs. D

K02003 putative ABC transport system ATP-binding protein 0.015
K02004 putative ABC transport system permease protein 0.006
K02529 LacI family transcriptional regulator 0.004
K15634 probable phosphoglycerate mutase (EC:5.4.2.12) 0.011
K02342 DNA polymerase III subunit epsilon (EC:2.7.7.7) 0.036

A vs. E

K02003 putative ABC transport system ATP-binding protein 0.009
K02004 putative ABC transport system permease protein 0.007
K02030 polar amino acid transport system substrate-binding protein 0.040
K03574 8-oxo-dGTP diphosphatase (EC:3.6.1.55) 0.029
K15634 probable phosphoglycerate mutase (EC:5.4.2.12) 0.015
K01462 peptide deformylase (EC:3.5.1.88) 0.019
K03100 signal peptidase I (EC:3.4.21.89) 0.013
K02040 phosphate transport system substrate-binding protein 0.023
K02342 dnaQ; DNA polymerase III subunit epsilon (EC:2.7.7.7) 0.039
K07052 uncharacterized protein 0.005

A vs. F

K02004 putative ABC transport system permease protein 0.009
K03657 DNA helicase II / ATP-dependent DNA helicase PcrA (EC:3.6.4.12) 0.037
K15634 probable phosphoglycerate mutase (EC:5.4.2.12) 0.038
K04487 cysteine desulfurase (EC:2.8.1.7) 0.005
K01462 peptide deformylase (EC:3.5.1.88) 0.029
K03100 signal peptidase I (EC:3.4.21.89) 0.013

A vs. G

K02004 putative ABC transport system permease protein 0.045
K03704 cold shock protein (beta-ribbon, CspA family) 0.014
K15634 probable phosphoglycerate mutase (EC:5.4.2.12) 0.024
K02495 oxygen-independent coproporphyrinogen III oxidase (EC:1.3.98.3) 0.012
K01462 peptide deformylase (EC:3.5.1.88) 0.016
K03100 signal peptidase I (EC:3.4.21.89) 0.007
K07052 uncharacterized protein 0.030

Note: Milk samples were collected from Dezhou donkeys at 7 different lactation stages: 1 d (A), 30 d (B), 60 d (C),
90 d (D), 120 d (E), 150 d (F), and 180 d (G) after foaling.

The pathways related to the microbiota differential metabolic functions are displayed
in Figure 9. TCA cycle I (prokaryotic), fatty acid beta-oxidation I, and pyruvate fermenta-
tion to isobutanol (engineered) were the significantly enriched pathways in milk of group A.
Oleate biosynthesis IV (anaerobic), mycolate biosynthesis, palmitoleate biosynthesis I (from
(5Z)-dodec-5-enoate), and stearate biosynthesis II (bacteria and plants) were significantly
higher in milk from group B. In milk from group C, L-valine biosynthesis, L-isoleucine
biosynthesis II, and L-isoleucine biosynthesis I (from threonine) were significantly en-
riched pathways. In milk of group D, the pathway for palmitate biosynthesis II (bacteria
and plants), the superpathway of fatty acid biosynthesis initiation (E. coli), and stearate
biosynthesis II (bacteria and plants) were much more abundant. The relatively abundant of
pathways, the superpathway of guanosine nucleotides de novo biosynthesis and guanosine
ribonucleotides de novo biosynthesis of milk, from group E were significantly higher than
for other groups. The relatively abundant pathways TCA cycle VIII (helicobacter) and gly-
colysis I (from glucose 6-phosphate) in milk from group F. were significantly higher than for
other groups. Significantly enriched pathways of milk from group G were the pentose phos-
phate pathway (non-oxidative branch), peptidoglycan maturation (meso-diaminopimelate
containing), the Calvin–Benson–Bassham cycle, CDP-diacylglycerol biosynthesis II, and
CDP-diacylglycerol biosynthesis I.
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Figure 9. The pathways related to the microbiota differential metabolic functions. Milk samples were
collected from Dezhou donkeys at 7 different lactation stages: 1 d (A), 30 d (B), 60 d (C), 90 d (D),
120 d (E), 150 d (F), and 180 d (G) after foaling. Red indicates pathways with relatively high values
(0–2), while blue represents a relatively low value (0–(−2)).

4. Discussion

DM is a characteristic, high-quality variety of milk source, and its nutritional composi-
tion is very close to that of human milk. DM has a low fat content and a high proportion
of unsaturated fatty acids. Compared with dairy milk, DM reduces calorie intake and the
risk of diseases such as hyperlipidemia, which is conducive to cardiovascular health [4,24].
In addition, DM contains a variety of functional nutritional factors such as lysozyme, lac-
talbumin, lactoferrin, and immunoglobulin [2,25,26]. DM can improve glucose and lipid
metabolism and detoxification activities in rats by regulating the gut microbiota (affecting
the proportions of bacterial phyla and genera) [27]. Research has found that DM can affect
the gut microbiota composition of donkey foals. As foals shift from milk consumption to
a forage and grain diet, there are identifiable changes in the fecal microbial composition
of their feces [28]. A properly established gastrointestinal microbiota is beneficial for the
healthy growth of foals, and abnormalities in the microbiota can affect the health of foals
and cause diseases such as diarrhea [29].

The yield of DM and the content of milk protein, lactose, and milk fat vary with
different lactation stages [29–31]. There is little research on the changes in the microbial
composition of DM during lactation. The microbial composition and function in DM of
different lactation stages were investigated via 16S rRNA high-throughput sequencing
technology in this study. The results indicated that the relatively abundant bacterial phyla
in DM are mainly Proteobacteria and Firmicutes, followed by Bacteroidota, Actinobacteriota,
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Cyanobacteria, and Deinococcota. This result is in-keeping with the conclusion drawn by
Luoyizha et al. (2020) for DM [13]. The microbial composition in milk is complex and
influenced by many factors. Research has shown that lactation stage is the main factor
causing human milk microbiota composition changes [32]. The bacterial composition
of goat colostrum has significant differences compared to that of mature milk [16]. Our
findings suggest that the lactation stage is an important factor affecting the composition
of DM microbiota. There were significant differences in bacterial and functional com-
positions in different groups of DM. The Ralstonia, Pseudomonas, and Acinetobacter were
the predominant bacterial genera detected in all milk samples. Streptococcus was more
abundant in the mature milk. Rothia and Chloroplast were more abundant in milk samples
from the middle and later lactation stages (90–180 d). Furthermore, the other predominant
bacterial genera detected in group A were Escherichia-Shigella, Salinicoccus, Staphylococcus,
and Corynebacterium. In addition, the breeding environment is another key factor affecting
the microbial composition in milk. Luoyizha et al. (2020) found a significant difference
in genera richness between DM samples from two different places in China [13]. The
distribution of bacteria and biotypes in DM between and within farms is variable [10,12].
A study conducted in Italy showed that the bacteria genera with higher relative abundance
in DM were Pseudomonas and Ralstonia. Another study in Italy found that Pseudomonas and
Chryseobacterium were the main bacterial genera in DM. However, in a study from Cyprus,
the Sphingomonas, Mesorhizobium, and Pseudomonas were detected to have relatively high
abundance in DM [4]. It can be seen that Pseudomonas is the most common bacterial genus
in DM.

Antimicrobial factors can promote the intestinal beneficial microbiota growth, thereby
eliminating pathogens and preventing infection [33]. Probiotics such as Lactobacillus and
Lactococcus have been used for mastitis treatment and have achieved good therapeutic ef-
fects [34]. Microorganisms that may have important probiotic activity have also been found
in DM. Derdak et al. (2021) isolated and identified lactic acid bacteria in DM and evaluated
their antibacterial activity against pathogenic bacteria such as Staphylococcus aureus [11].
It was found that Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, and
Streptococcus were present in DM [4,10,12]. In this study, all the above lactic acid bacteria
were also found in DM. The lactic acid bacteria were mainly composed of Streptococcus and
Lactobacillus, with a relatively low abundance of Enterococcus, Leuconostoc, Lactococcus, and
Carnobacterium. The Streptococcus, Lactobacillus, Enterococcus, and Leuconostoc were more
abundant in mature milk, while Lactococcus and Carnobacterium had relatively high content
in colostrum. Therefore, DM is a good source of beneficial bacteria. An appropriate number
of beneficial bacteria is beneficial for the immune system development of the intestine and
can make sure that infants experience healthy growth [35].

However, there are also pathogens in DM, such as Escherichia coli O157, Salmonella
spp., and Listeria monocytogenes [4,9]. Furthermore, some thermoduric bacteria (Bacillus,
Arthrobacter, Microbacterium, and Corynebacterium) are reported to be present in DM [13].
In this study, both the pathogens Escherichia-Shigella and Staphylococcus and thermoduric
bacteria Corynebacterium, Arthrobacter, and Microbacterium were detected in DM. This could
cause sterilization failure during thermal processing or cause diseases. Moreover, the
Escherichia-Shigella, Staphylococcus, and Corynebacterium were predominant bacterial genera
detected in colostrum at significantly higher levels than in mature milk. It is speculated that
this may be related to antibacterial components such as lysozyme and lactoferrin in milk.
The lysozyme content of raw DM is high, which is the main factor that exerts antibacterial
activity, so it can keep a low level of bacteria in DM and a long natural shelf life [36]. In
another study, we found the relative expression level of lysozyme and lactoferrin in mature
milk was significantly higher than that in colostrum (unpublished data). This may be
the reason for the low abundance of pathogens in mature milk, but further research is
still needed.

Analysis of the metabolic functions of microbiota revealed significant differences in
the function of microbiota in DM at different lactation stages. The significantly enriched
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pathways (TCA cycle I, fatty acid beta-oxidation I, and pyruvate fermentation to isobutanol)
in colostrum were mainly related to energy generation. In the early lactation stage, the
metabolic pathways of unsaturated fatty acid synthesis (30 d, oleate and palmitoleate)
and amino acids synthesis (60 d, L-valine and L-isoleucine) were more active. In the
middle lactation stage, the metabolic pathways regulating saturated fatty acid synthesis
(90 d, palmitate and stearate) and nucleotide synthesis (120 d, guanosine nucleotides) were
significantly enriched in DM. In the late lactation stage, the enriched metabolic pathways
were related to energy production (150 d, TCA cycle and glycolysis) and the synthesis of
functional biomolecules (180 d, pentose phosphate pathway, peptidoglycan maturation,
and CDP-diacylglycerol). The above results suggest that the lactation stage may affect the
DM function by changing the composition of microorganisms. The mechanism by which
microbiota affect the function of DM needs further research.

5. Conclusions

In conclusion, the dominant bacterial phyla in DM were Proteobacteria and Firmicutes;
the Ralstonia, Pseudomonas, and Acinetobacter were the predominant bacterial genera de-
tected in DM; there were beneficial bacteria, pathogens, and thermoduric bacteria in DM;
and the microbiota composition and function altered with the lactation stage. The above
findings have improved our understanding of the microbial quality of DM during lactation
stages, which is beneficial for the rational utilization of DM. Further research is needed on
the microbial quality evaluation of DM, the utilization of beneficial bacteria in DM, and the
effects of antibacterial components on microorganisms in DM, as well as the relationship
between microbial function and DM function.
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