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Abstract: Tomato fruits are rich in flavonoids. This study explores the effect of transcription factor
SlNOR-like1 on the accumulation of flavonoids in tomato fruits at different ripening stages. We
used ultra-pressure liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) to ana-
lyze wild-type (WT) and NOR-like1 CRISPR/Cas9-edited (NOR-like1) tomato fruits. A total of
50 flavonoid metabolites were accurately identified and determined in tomatoes. The flavonoid
metabolic differences were observed among the different tomato sample groups using PCA and
OPLS-DA analysis. There were 16 differential flavonoids (13 upregulated and 3 downregulated)
identified between WT-GR (WT tomato at the green-ripening stage) and NOR-like1-GR (NOR-like1
tomato at the green-ripening stage), 9 differential flavonoids (six upregulated and three downreg-
ulated) identified between WT-BR3 (WT tomato at the color-breaking stage) and NOR-like1-BR3
(NOR-like1 tomato at the color-breaking stage), and 12 differential flavonoids (11 upregulated and
1 downregulated) identified between WT-BR9 (WT tomato at the red-ripening stage) and NOR-
like1-BR9 (NOR-like1 tomato at the red-ripening stage). Rutin, nicotiflorin, naringenin chalcone,
eriodictyol, and naringenin-7-glucoside were the five flavonoids with the highest content in the ripen-
ing stages (BR3 and BR9) in both WT and NOR-like1 tomato fruits. The overall flavonoid contents in
WT tomato fruits changed little from GR to BR3 and decreased from BR3 to BR9; meanwhile, in the
NOR-like1 tomato fruits, the total amounts of the flavonoids exhibited an increasing trend during
all three ripening stages. The accumulation pattern of flavonoid metabolites in NOR-like1 tomato
fruits differed from that in WT tomato fruits, especially in the later ripening process of BR9. The
transcription factor SlNOR-like1 has an impact on the accumulation of flavonoids in tomato fruits.
The results provide a preliminary basis for subsequent research into its regulatory mechanism and
will be helpful for attaining future improvements in the nutritional quality and postharvest treatment
of tomato fruits.

Keywords: tomato; metabolomics; NOR-like1; flavonoids

1. Introduction

Tomatoes contain many flavonoids. As typical and representative polyphenolic com-
pounds, flavonoids have very important functional effects. Flavonoids can effectively im-
prove the stress resistance of plants and resist a variety of biological and abiotic stresses [1,2]
occurring in the process of plant growth and development; they also have antioxidant and
other effects in animal experiments and human disease studies [3]. Tomato is an important
vegetable crop throughout the world, and the study of its methods of genome repair is of
great significance for the stable quality of tomato [4]. The ripening of tomatoes leads to
significant physiological and biochemical changes, and primary metabolites play crucial
roles during fruit development and ripening, improving tomato taste and flavor [5].

Flavonoids are secondary metabolites that are modified by a wide range of chemical
reactions and are ubiquitous in the biosynthetic pathways in plants [6]. The synthesis of
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flavonoid compounds, including chalcones, flavonoids, flavonols, anthocyanins, and proan-
thocyanidins, is a complex process, and their metabolic pathways have been extensively
studied using biochemical and molecular biology techniques (Figure 1) [7–9].
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In recent years, many scholars have conducted extensive research on flavonoid sub-
stances in fruits, including their composition, content, detection methods, and related
genes [10–13]. At present, the influence of transcription factors on flavonoids has mainly
been focused on the MYB, bHLH, and WD40 transcription factors; research into NAC
transcription factors is only in the initial stage, and the function and regulation of NAC
genes is relatively poorly studied in tomatoes [14]. Previous studies have confirmed that
NAC has different expression patterns in different species and have isolated and identified
NAC transcription factors in plants to study their effects on plant growth and development,
biotic and abiotic stress, and plant metabolites.

The study of transcription factor families is an important area of post-genomic research.
The biosynthetic pathways of plant flavonoids comprise actions of structural genes and
regulatory genes, and the enzymes in the synthetic pathway are catalyzed by the proteins
encoding synthetic structural genes, including FLS, F3H, CHS, CHI, C4H, etc. Moreover,
they are regulated by transcription factors [15].

Huang et al. (2022) identified 183 NAC transcription factors from the radish OZ-16
genome [16]. The expression patterns of 10 RsNAC genes were verified by means of qPCR,
which provided comprehensive information on the radish NAC gene family and identified
candidate RsNACs associated with taproot discoloration. Sun et al. (2019) discovered an
NAC transcription factor, MdNAC52, which accelerates the expression of this gene when
the color of apples deepens, and the overexpression of the MdNAC52 gene can stimulate
the accumulation of anthocyanins [17]. Duan et al. (2020) identified a total of 111 putative
NAC transcription factors based on celery transcriptomic and genomic databases. Under
field conditions, the overexpression of SNAC1 significantly improved the drought tolerance
of transgenic rice without affecting yield [18,19]. Rice overexpressing OsNAC10 resulted
in higher yields under both normal and field drought conditions [20]. Guo et al. (2022)
identified IbNAC genes associated with abiotic stress through RNA-seq detection and qRT-
PCR analysis, and bioinformatics data supported the prospect of genetically engineering
candidate regulators, such as IbNAC006, IbNAC029, IbNAC138, and IbNAC143, to improve
the stress tolerance of sweet potatoes [21]. Soybean GmNAC06 transcription factor and
capsicum CaNAC46 transcription factor were found to be positive regulators of salt stress
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tolerance [22,23]. Similarly, SINAC4 and SINAC1I genes are involved in the regulation of
salt tolerance and early tolerance in tomatoes [24,25].

NOR-like1 is a novel positive regulator of tomato fruit ripening and plays an impor-
tant role in transcriptional regulatory networks. CRISPR/Cas9 gene editing technology
was used to obtain NOR-like1 gene knockout mutants, and it was found that the fruit
ripening of NOR-like1 mutant fruits was delayed by 14 days compared with wild-type
tomatoes; moreover, the ripening process after color breaking was also significantly in-
hibited [26]. Compared with the wild-type, fruit softening was significantly inhibited in
CR-NOR (CRISPR/Cas9-edited NAC-NOR) but was slightly affected in the NOR mutant
and accelerated in overexpressed NAC-NOR (oe-NOR) fruit [27].

In our previous study, we preliminarily explored the effects of the NOR-like1 tran-
scription factor on the profile of metabolites at different stages of tomato maturity using
transcriptomics and untargeted metabolomics and found that NOR-like1 significantly
affected the changes in flavonoids at different developmental stages [28]. Therefore, the
specific influence of the transcription factor SlNORlike1 on tomato flavonoid compounds
needs to be further studied. In this study, fruits of wild-type and CRISPR/Cas9-edited
lines were collected at different ripening stages: green ripening (GR), color breaking (BR3),
and red ripening (BR9). We quantitatively analyzed the flavonoids in the samples. Re-
gression curves of flavonoid standards were established. The flavonoids identified in the
sample were fitted to the standard curve, and a total of 50 flavonoids were detected. Then,
we analyzed these 50 flavonoids using multivariate analysis. From a paired comparison,
we screened out the differential flavonoids between WT and NOR-like1 tomato fruits at
each ripening stage and explored the trends in the accumulated flavonoids in WT and
NOR-like1 during ripening to understand the effect of NOR-like1 on flavonoids during
tomato ripening.

2. Materials and Methods
2.1. Plant Materials and Sample Preparation

Wild-type tomato Ailsa Craig (AC) and a NOR-like1 tomato transgenic line employing
CRISPR/Cas9 gene-editing techniques were both grown in a greenhouse at China Agri-
cultural University. Fruits of wild-type and NOR-like1 fruits were collected at different
ripening stages (GR, BR3, and BR9). The sampling method was as described in the previous
study [28]. Thus, samples were divided into six groups: WT-GR, WT-BR3, WT-BR9, NOR-
like1-GR, NOR-like1-BR3, and NOR-like1-BR9. The samples were ground into powder
after freeze-drying. Then, 20 mg of powder was weighed and extracted with 0.5 mL of
70% methanol. [2H6]-Daidzein, [2H3]-rutin, and [13C3]-(+/−)-gallocatechin were used
as internal standards, and 10 µL of internal standards (4000 nmol/L) was added into the
extract for quantitation. After ultrasonic extraction for 30 min, the extract was centrifuged
at 12,000× g at 4 ◦C for 5 min and the supernatant was filtered through a 0.22 µm membrane
for further liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis.

2.2. Ultra-Performance Liquid Chromatography (UPLC) Conditions

The sample extracts were analyzed using a UPLC-ESI-MS/MS system, ExionLC™ AD
(SCIEX, Framingham, MA, USA) coupled with a QTRAP® 6500+ (SCIEX, Framingham, MA,
USA) mass spectrometer, which was based on the description by Zhang et al. [29]. Using
[2H6] Daidzein, [2H3] rutin, [13C3]-(+/−)-gallocatechin as internal standard substances,
the mixed concentration of these internal standard substances is 4000 nmol/L, with an
added scalar of 10 µL and an injection volume of 2 µL. All samples were analyzed using
Waters ACQUITY UPLC HSS T3 C18 (100 mm × 2.1 mm i.d., 1.8 µm) at 40 ◦C. The solvent
system was water with 0.05% formic acid as the A phase and acetonitrile with 0.05% formic
acid as the B phase. At the beginning of the reaction, gradient elution was set as A/B at
90:10 (V/V); then, A/B was adjusted to 80:20 (V/V) after 1 min, 30:70 (V/V) after 9 min,
5:95 (V/V) after 12.5 min, and 90:10 (V/V) after 13.6 min until the end of the reaction. The
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gradient elution program protocol was performed as described by Wang et al. [30]. The
eluent was then connected to an ESI-triple quadrupole-linear ion trap (QTRAP)-MS.

2.3. Electrospray Ionization (ESI)–Tandem Mass Spectrometry (MS/MS) (ESI-MS/MS) Conditions

Linear ion trap (LIT) and triple quadrupole (QQQ) scans were conducted on a triple
quadrupole-linear ion trap mass spectrometer (QTRAP) equipped with an ESI operating
in positive and negative ion mode. The ESI source operation parameters were as follows:
an ion source, ESI+/−; the temperature of the electric spray ion source (ESI) was 550 ◦C;
the mass spectrum voltage was 5500 V in the positive ion mode and −4500 V in the
negative ion mode; and the curtain gas pressure (CUR) was 35 psi. The Metware Database
(MWDB), self-built based on standards, was applied to qualitatively analyze the data from
mass spectrometry detection. Quantitative analysis was completed using the Multiple
Reaction Monitoring (MRM) mode of triple-quadrupole mass spectrometry. The mass
spectrometry data were processed using Analyst 1.6.3 software (SCIEX, Toronto, ON,
Canada). MultiQuant 3.0.3 software (SCIEX, Toronto, ON, Canada) was used to quantify
all metabolites.

2.4. Multivariate Statistical Analysis of Flavonoid Metabolites

Unsupervised principal component analysis (PCA) was performed using the built-
in statistical prcomp function of the R software of V3.5.1 version (www.r-project.org/;
accessed on 10 February 2022); the data were unit variance scaled before unsupervised
PCA was conducted.

The metabolite content data in the cluster analysis were standardized using unit
variance scaling (UV), and all samples were subjected to cluster heat map analysis. The R
program script was used to draw the cluster heat map.

OPLS-DA was used to screen differential variables by removing uncorrelated differ-
ences. Firstly, log2-centralization was performed on the data; then, the MetaboAnalystR
package (version V1.0.1) in the R language (version V3.5.1) was used for OPLSR (the R
package script used for volcanic maps is ggplot2 v3.36), the Anal function was used for
OPLS-DA analysis, and, finally, ggplot2 was used to draw the map to obtain OPLS-DA
analysis results. Based on the results of OPLS-DA, the variable importance in projection
(VIP) and fold change in univariate analysis were combined to perform further screen-
ing for differential metabolites with threshold values of fold changes of ≥2 or ≤0.5 and
VIP ≥ 1. The annotation results of the significantly different metabolites are classified
by pathway enrichment in the KEGG database (https://www.kegg.jp/), illustrating all
possible metabolic pathways.

3. Results and Discussion

In this study, we used metabolomics based on UPLC-MS/MS to determine the
flavonoid profiles of tomato fruits. Methods for the accurate determination of flavonoid
standards and their regression curves were established. A total of 50 flavonoid metabolites
were identified in the tomato samples. Total ion current diagrams detected by mass spec-
trometry of QC samples are shown in Figure 2. Detailed information on the fifty flavonoid
metabolites identified in the tomato fruit samples are in Table S1. MS/MS spectra of the fifty
flavonoids identified in the tomato samples are in Supplementary File S1. UHPLC-MS/MS
parameters are in Supplementary File S2. Calibration curves and quantitative details of the
fifty flavonoids are shown in Supplementary File S3.

www.r-project.org/
https://www.kegg.jp/
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3.1. Comprehensive Analysis of Flavonoid Compounds

The hierarchical cluster analysis (HCA) results of samples and metabolites are pre-
sented as heatmaps with dendrograms. In HCA, the normalized signal intensities of
metabolites (unit variance scaling) are visualized as a color spectrum. We performed a
qualitative and quantitative determination of the metabolites of the flavonoids in tomato
fruits; 50 flavonoid metabolites in the fruit samples were identified and quantitatively deter-
mined, including 6 chalcones, 8 flavonols, 4 flavanones, 5 flavanonols, 1 flavone glycosides,
8 flavones, 10 flavonols, 6 isoflavones, 1 xanthone, and 1 other flavonoid (Figure 3).
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3.2. Differential Flavonoid Metabolites Based on Principal Component Analysis (PCA)

In the present study, the three principal components—PC1, PC2, and PC3—accounted
for 82.69%, 6.2%, and 3.59% of the variability in the samples, respectively (Figure 4). The six
different sample groups were clearly separated. The PCA results demonstrate a significant
trend for the separation of the flavonoid metabolomes between the groups and indicate the
difference in metabolites between each group of samples.

3.3. Screening and Analysis of Differential Flavonoid Metabolites

To analyze the trends in the changes in flavonoid metabolites during the fruit ripening
in WT and NOR-like1 tomato fruit, differential flavonoid metabolites were screened and
analyzed through a paired comparison. All flavonoids detected in tomato fruits were
screened to identify differential metabolites with fold a change ≥2 or ≤0.5 and VIP ≥ 1,
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which are represented in volcano maps. The results of the paired comparison are shown in
Table 1. The contents of 50 flavonoids at different stages are detailed in Table 2.
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Table 1. Results of pairwise comparison of fifty flavonoid metabolites identified in the six tomato
sample groups.

Index Compounds

WT-GR vs.
NOR-like1-

GR

WT-BR3 vs.
NOR-like1-

BR3

WT-BR9 vs.
NOR-like1-

BR9

NOR-like1-
GR vs.

NOR-like1-
BR3

NOR-like1-
BR3 vs.

NOR-like1-
BR9

WT-GR vs.
WT-BR3

WT-BR3 vs.
WT-BR9

VIP Log2FC VIP Log2FC VIP Log2FC VIP Log2FC VIP Log2FC VIP Log2FC VIP Log2FC

1 Astilbin - - - - - - - - - - - - - -
2 Miquelianin - - - - - - - - - - - - - -
9 Genistein - - - - - - 1.48 inf 1.41 1.38 1.38 inf - -

106 Typhaneoside - - 1.38 −1.27 - - - - - - - - - -
11 Hydroxysafflor yellow

A - - - - 1.24 1.11 1.19 1.35 - - - - - -
115 Quercitrin 1.08 2.77 - - - - 1.24 −4.87 - - - - - -
117 Engeletin - - 1.35 −1.18 - - - - - - 1.39 inf - -
118 Narcissin - - - - - - - - - - - - 1.04 −1.71
119 Astragalin 1.25 −1.22 - - - - - - - - 1.19 −1.19 - -
124 Silychristin - - - - - - - - - - - - - -
126 Eriodictyol - - - - 1.37 1.34 1.35 6.46 - - 1.38 8.24 - -
13 Isoorientin - - - - 1.32 2.84 - - 1.83 inf - - - -
135 Theaflavin 3,3′-digallate - - - - - - - - - - - - - -
136 6,2′-Dihydroxyflavone - - - - 1.22 1.05 1.05 inf - - 1.39 inf 1.27 −1.38
138 Baimaside - - - - - - - - - - - - 1.15 −6.44
139 Dihydrokaempferol - - - - - - 1.47 6.66 - - 1.38 7.25 1.57 −1.78
145 Procyanidin B2 1.1 4.5 - - - - 1.02 −3.51 - - - - - -
147 (-)-Epicatechin 1.29 3.11 - - - - 1.32 −3.74 - - - - - -
150 (-)-Catechin gallate 1.35 6.76 - - - - 1.2 −6.36 - - - - - -
152 Ononin 1.13 −inf - - - - - - - - - - - -
153 Glycitin 1.63 inf 1.77 1.94 1.72 1.78 1.12 1.62 - - 1.39 inf - -
157 Isomangiferin - - 1.63 1.49 - - - - - - - - - -
160 Apigenin 7-glucoside - - - - - - - - 1.83 inf - - 1.2 inf

169
Quercetin

3-O-(6′′-galloyl)-β-D-
galactopyranoside

- - - - - - - - - - - - - -

176 Naringenin−7-
glucoside - - - - - - 1.39 4.9 1.46 1.39 1.32 5.07 - -

177 Phloretin 1.08 inf - - - - 1.34 7.64 1.07 −1.11 1.39 inf 1.48 −2.26
183 2′-Hydroxygenistein - - - - - - 1.05 inf - - 1.38 inf - -
184 Afzelechin - - - - - - - - - - - - - -
191 Naringenin chalcone 1.15 4.01 - - 1.31 1.02 1.38 7.85 - - 1.38 11.8 1.41 −1.42
195 (-)-Gallocatechin 1.15 2.18 - - - - 1.13 −2.11 - - - - - -
197 Isorhamnetin

3-O-glucoside - - - - - - - - - - - - - -
201 Trilobatin - - - - - - 1.48 inf 1.26 1.4 1.39 inf 1.67 1.68
202 Sieboldin - - 1.36 1.04 - - - - 1.82 3.19 - - 1.49 4.91
23 Quercetin - - - - - - 1.05 inf - - 1.39 inf - -
25 Apigenin-7-glucuronide 1.15 inf 1.98 inf 1.24 inf - - 1.27 −1.34 - - - -
28 Scutellarin - - - - - - - - - - - - - -
30 Isoliquiritigenin - - - - 1.65 2.2 1.05 inf - - 1.38 inf 1.61 _2.77
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Table 1. Cont.

Index Compounds

WT-GR vs.
NOR-like1-

GR

WT-BR3 vs.
NOR-like1-

BR3

WT-BR9 vs.
NOR-like1-

BR9

NOR-like1-
GR vs.

NOR-like1-
BR3

NOR-like1-
BR3 vs.

NOR-like1-
BR9

WT-GR vs.
WT-BR3

WT-BR3 vs.
WT-BR9

VIP Log2FC VIP Log2FC VIP Log2FC VIP Log2FC VIP Log2FC VIP Log2FC VIP Log2FC

42 Nicotiflorin - - - - - - - - - - - - - -
48 Narirutin - - 1.89 −5.14 1.27 −1.89 - - 1.72 4.39 1.39 17.52 - -
50 Luteolin - - - - 1.02 1.36 1.05 inf - - 1.39 inf - -
55 (-)-Catechin - - 1.81 1.43 1.57 1.33 - - - - - - - -
56 Taxifolin - - - - - - 1.48 inf - - 1.38 inf - -
57 Rutin - - - - - - - - - - - - - -
58 Isorhamnetin - - - − - - - - - - - - - -
65 Phlorizin 1.35 −1.60 - - - - 1.35 3.18 1.61 1.85 1.28 2.05 1.6 1.05
69 Liquiritin - - - - - - 1.36 1.37 - - 1.21 1.5 - -
80 (-)-Gallocatechin gallate 1.4 4.27 - - - - 1.13 −3.33 - - - - - -
84 (-)-Epigallocatechin 1.42 3.19 - - - - 1.29 −3.36 - - - - - -
90 Cynaroside 1.16 1.73 1.38 inf - - - - 1.27 −inf - - - -

96 Calycosin-7-O-β-D-
glucoside 1.64 inf - - 1.74 inf - - - - - - 1.23 −inf

* Log2 FC ≥ 1 or ≤−1 and VIP ≥ 1 were considered to denote significant difference. “Inf” means infinity; “-“ in
the table indicates insignificant difference.

Table 2. The individual contents (mg/kg DW) of 50 flavonoids at different stages in the fruit of WT
and NOR-like1 tomatoes.

Index Compounds WT-(mg/kg) WT-BR3
(mg/kg)

WT-BR9
(mg/kg)

NOR-like1-GR
(mg/kg)

NOR-like1-BR3
(mg/kg)

NOR-like1-BR9
(mg/kg)

1 Astilbin 0.021 ± 0.01 0.018 ± 0 0.013 ± 0 0.03 ± 0.01 0.024 ± 0 0.022 ± 0
2 Miquelianin 0.011 ± 0 0.018 ± 0 0.021 ± 0.01 0.013 ± 0 0.014 ± 0 0.06 ± 0.09
9 Genistein - 0.013 ± 0 0.018 ± 0 - 0.011 ± 0.01 0.03 ± 0.01

106 Typhaneoside 0.012 ± 0.01 0.09 ± 0.04 0.03 ± 0.03 0.018 ± 0.03 0.04 ± 0.07 0.04 ± 0.04
11 Hydroxysafflor yellow A 0.08 ± 0.06 0.17 ± 0.09 0.10 ± 0.03 0.08 ± 0.04 0.21 ± 0.02 0.22 ± 0.11

115 Quercitrin 0.015 ± 0.02 0.004 ± 0 0.002 ± 0 0.1 ± 0.09 0.004 ± 0.01 0.006 ± 0.01
117 Engeletin - 0.016 ± 0.01 0.008 ± 0.01 - 0.007 ± 0.01 0.008 ± 0.01
118 Narcissin 1.36 ± 0.31 1.76 ± 1.87 0.54 ± 0.12 0.8 ± 0.16 1.14 ± 0.28 0.77 ± 0.08
119 Astragalin 0.27 ± 0.06 0.12 ± 0.04 0.09 ± 0.07 0.12 ± 0.06 0.1 ± 0.02 0.23 ± 0.24
124 Silychristin - 0.013 ± 0.01 0.03 ± 0.01 0.003 ± 0.01 0.003 ± 0.01 0.017 ± 0.02
126 Eriodictyol 0.016 ± 0 4.89 ± 2.31 4.67 ± 2.54 0.08 ± 0.06 7.19 ± 5.16 11.84 ± 3.07
13 Isoorientin - - 0.005 ± 0.01 0.008 ± 0.01 - 0.04 ± 0.02
135 Theaflavin 3,3′-digallate - 0.05 ± 0.09 - - - -
136 6,2′-Dihydroxyflavone - 0.019 ± 0 0.007 ± 0 - 0.014 ± 0.01 0.015 ± 0
138 Baimaside 0.59 ± 1 0.5 ± 0.53 0.006 ± 0 0.12 ± 0.08 0.07 ± 0.1 0.023 ± 0.03
139 Dihydrokaempferol 0.004 ± 0 0.63 ± 0.1 0.19 ± 0.06 0.005 ± 0 0.51 ± 0.26 0.32 ± 0.15
145 Procyanidin B2 0.016 ± 0.02 0.023 ± 0.02 0.04 ± 0.03 0.37 ± 0.17 0.03 ± 0.03 0.028 ± 0.05
147 (-)-Epicatechin 0.05 ± 0.03 0.04 ± 0.02 0.05 ± 0.02 0.45 ± 0.44 0.03 ± 0.01 0.04 ± 0.03
150 (-)-Catechin gallate 0.015 ± 0.01 0.01 ± 0.01 0.021 ± 0.03 1.57 ± 2.43 0.019 ± 0.02 0.017 ± 0.01
152 Ononin 0.04 ± 0.05 - - - - -
153 Glycitin - 0.05 ± 0.01 0.04 ± 0 0.06 ± 0.05 0.19 ± 0.1 0.13 ± 0.03
157 Isomangiferin 0.005 ± 0 0.002 ± 0 0.003 ± 0 0.005 ± 0 0.005 ± 0 0.006 ± 0
160 Apigenin 7-glucoside - - 0.011 ± 0.01 - - 0.013 ± 0.01

169 Quercetin 3-O-(6′′-galloyl)-β-
D-galactopyranoside

0.003 ± 0 - - - - -

176 Naringenin-7-glucoside 0.08 ± 0.08 2.58 ± 0.75 4.05 ± 1.64 0.05 ± 0.03 1.42 ± 0.91 3.72 ± 0.31
177 Phloretin - 1.80 ± 0.44 0.37 ± 0.17 0.005 ± 0.01 1.07 ± 0.68 0.50 ± 0.27
183 2′-Hydroxygenistein - 0.006 ± 0 0.003 ± 0 - 0.005 ± 0 0.005 ± 0
184 Afzelechin 0.04 ± 0.04 0.013 ± 0.02 0.019 ± 0.02 0.02 ± 0.04 - 0.009 ± 0.02
191 Naringenin chalcone 0.008 ± 0 28.46 ± 5.57 10.67 ± 4.94 0.13 ± 0.15 29.60 ± 22.19 21.62 ± 5.88
195 (-)-Gallocatechin 0.04 ± 0.04 0.05 ± 0.01 0.08 ± 0.03 0.20 ± 0.19 0.05 ± 0.01 0.04 ± 0.01
197 Isorhamnetin 3-O-glucoside 0.004 ± 0 0.004 ± 0.01 0.002 ± 0 0.002 ± 0 0.001 ± 0 -
201 Trilobatin - 0.008 ± 0 0.03 ± 0 - 0.007 ± 0 0.018 ± 0.01
202 Sieboldin 0.008 ± 0.01 0.007 ± 0.01 0.22 ± 0.05 0.017 ± 0 0.015 ± 0.01 0.14 ± 0.04
23 Quercetin - 0.13 ± 0.04 0.09 ± 0.05 - 0.09 ± 0.08 0.09 ± 0.03
25 Apigenin-7-glucuronide - - - 0.002 ± 0 0.007 ± 0 0.003 ± 0
28 Scutellarin - - - 0.019 ± 0.03 - 0.005 ± 0.01
30 Isoliquiritigenin - 0.005 ± 0 0.001 ± 0 - 0.006 ± 0.01 0.003 ± 0
42 Nicotiflorin 102.77 ± 14.56 65.96 ± 25.76 53.63 ± 13.28 68.37 ± 45.17 46.47 ± 13.75 60.35 ± 23.33
48 Narirutin - 0.04 ± 0.01 0.09 ± 0.05 - 0.001 ± 0 0.025 ± 0.02
50 Luteolin - 0.009 ± 0 0.013 ± 0.01 - 0.015 ± 0.01 0.03 ± 0.01
55 (-)-Catechin 0.07 ± 0.03 0.06 ± 0.01 0.05 ± 0 0.34 ± 0.43 0.16 ± 0.06 0.12 ± 0.04
56 Taxifolin - 0.04 ± 0.01 0.06 ± 0.02 - 0.05 ± 0.04 0.09 ± 0.01
57 Rutin 175.26 ± 44.54 168.46 ± 14.85 147.79 ± 18.69 101.18 ± 47.22 125.43 ± 29.2 145.01 ± 15.91
58 Isorhamnetin - 0.004 ± 0.01 - - - -
65 Phlorizin 0.012 ± 0.01 0.05 ± 0.01 0.11 ± 0.01 0.004 ± 0 0.04 ± 0.02 0.13 ± 0.02
69 Liquiritin 0.004 ± 0 0.011 ± 0 0.013 ± 0.01 0.004 ± 0 0.01 ± 0 0.013 ± 0
80 (-)-Gallocatechin gallate 0.09 ± 0.07 0.06 ± 0.04 0.11 ± 0.12 1.66 ± 1.57 0.17 ± 0.19 0.06 ± 0.02
84 (-)-Epigallocatechin 0.09 ± 0.06 0.06 ± 0.03 0.10 ± 0.11 0.85 ± 0.52 0.08 ± 0.06 0.04 ± 0.02
90 Cynaroside 0.05 ± 0.09 - - 0.17 ± 0.03 0.06 ± 0.05 -
96 Calycosin-7-O-β-D-glucoside - 0.009 ± 0.01 - 0.025 ± 0.01 0.025 ± 0.02 0.03 ± 0

total amount 281.02 ± 28.02 276.25 ± 22.95 223.37 ± 33.78 176.87 ± 66.48 214.39 ± 39.51 245.93 ± 35.24

* The result is indicated as the mean ± SD (n = 3); “-” in the table indicates not detected.
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3.3.1. Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) of
Different Tomato Sample Groups

Pairwise comparisons were carried out using Orthogonal Partial Least Squares–
Discriminant Analysis (OPLS-DA) models to clarify the metabolic differences observed
among the different tomato sample groups. The parameters of the OPLS-DA evaluation
model include R2X, R2Y, and Q2, where R2X and R2Y represent the explanatory power of
the constructed model to the X and Y matrices. Q2 represents the predictive ability of the
model. Q2 > 0.5 is generally considered to indicate an acceptable model and, theoretically,
the closer the values of R2 and Q2 to 1, the better the model [31]. The OPLS-DA results
of the pairwise comparison between groups are shown in Figure 5. In the results, the R2

values of all the comparison groups were above 0.5, which indicated a good fit for the
model. Different tomato groups were distributed in different zones, implying that there
were significant differences in their metabolites.
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Figure 5. OPLS-DA model plots and loading plots of pairwise comparisons between the different 
tomato sample groups: (a) NOR-like1-BR3 vs. NOR-like1-BR9 (R2X = 0.786, R2Y = 0.993, Q2 = 0.63); 
(b) NOR-like1-GR vs. NOR-like1-BR3 (R2X = 0.626, R2Y = 0.999, Q2 = 0.822); (c) WT-BR3 vs. WT-BR9 
(R2X = 0.594, R2Y = 0.989, Q2 = 0.771); (d) WT-GR vs. WT-BR3 (R2X = 0.75, R2Y = 0.999, Q2 = 0.943); (e) 

Figure 5. OPLS-DA model plots and loading plots of pairwise comparisons between the different
tomato sample groups: (a) NOR-like1-BR3 vs. NOR-like1-BR9 (R2X = 0.786, R2Y = 0.993, Q2 = 0.63);
(b) NOR-like1-GR vs. NOR-like1-BR3 (R2X = 0.626, R2Y = 0.999, Q2 = 0.822); (c) WT-BR3 vs. WT-BR9
(R2X = 0.594, R2Y = 0.989, Q2 = 0.771); (d) WT-GR vs. WT-BR3 (R2X = 0.75, R2Y = 0.999, Q2 = 0.943);
(e) WT-BR3 vs. NOR-like1-BR3 (R2X = 0.755, R2Y = 0.955, Q2 = 0.632); (f) WT-BR9 vs. NOR-like1-BR9
(R2X = 0.585, R2Y = 0.998, Q2 = 0.752); (g) WT-GR vs. NOR-like1-GR (R2X = 0.726, R2Y = 0.999,
Q2 = 0.891).
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3.3.2. Changes in Flavonoid Metabolites in WT Tomato Fruits at Different Ripening Stages

The expression of metabolites varied at different growth stages of wild tomato fruits.
Twelve differential metabolites (four upregulated and eight downregulated) were identi-
fied between WT-BR3 and WT-BR9 (Figure 6a). Nineteen differential metabolites (eigh-
teen upregulated and one downregulated) were identified between WT-GR and WT-
BR3 (Figure 6b).
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The Venn diagram shows that there were seven common differential metabolites in
the two combinations: 6,2′-dihydroxyflavone, dihydrokaempferol, phloretin, naringenin
chalcone, trilobatin, isoliquiritigenin, and phlorizin (Figure 6c).

The individual metabolite contents are shown in Table 2. The total contents of all the
flavonoids in WT-GR, WT-BR3, and WT-BR9 were 281.02 mg/kg DW, 276.25 mg/kg DW,
and 223.37 mg/kg DW, respectively. Rutin, nicotiflorin, naringenin chalcone, eriodictyol,
and naringenin-7-glucoside were the five flavonoids with the highest content in the ripening
stages (BR3 and BR9) of the WT tomato fruits.
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Rutin and nicotiflorin were the two richest components in WT-GR. Rutin changed
insignificantly, while nicotiflorin decreased from GR to BR3. The content of naringenin
chalcone increased to 28.46 mg/kg DW in BR3, indicating its biosynthesis was very active
in this period.

The contents of some other flavonoids also changed during the ripening stages. Phlo-
rizin and trilobatin increased significantly throughout the entire ripening process. The
contents of nine flavonoids (luteolin, liquiritin, eriodictyol, narirutin, engeletin, genistein,
glycitin, quercetin, and taxifolin) increased significantly from the GR stage to the BR3
stage but changed insignificantly from the BR3 stage to the BR9 stage. The contents of
6,2′-dihydroxyflavone, dihydrokaempferol, phloretin, naringenin chalcone, and isoliquiriti-
genin increased significantly from the GR stage to the BR3 stage but declined significantly
from the BR3 stage to the BR9 stage. These results showed that the contents of a variety of
flavonoids increased significantly in the GR stage to the BR3 stage, which indicated that
flavonoid metabolite biosynthesis is very active in this period.

In contrast, in the later ripening process BR9, the differential flavonoid metabolites
in WT-BR9 tomato fruits were mostly downregulated compared with those in WT-BR3.
Astragalin declined significantly during the entire ripening process of WT tomato fruits.
Narcissin, baimaside, and sieboldin changed little from GR to BR3 but decreased from BR3
to BR9. In WT-BR3, rutin, nicotiflorin, and naringenin chalcone were the three predom-
inant components, while their contents all decreased from BR3 to BR9. Taken together,
the decreased contents of the three main flavonoids and other downregulated flavonoid
metabolites lead to a lower total flavonoid content in WT-BR9 than in WT-BR3.

3.3.3. Change in Flavonoid Metabolites in NOR-like1 Tomato Fruits at Different Ripening Stages

To investigate the changes in flavonoid metabolites among different ripening stages of
NOR-like1 tomato fruits, differentially accumulated flavonoid metabolites were analyzed
among NOR-like1-GR vs. NOR-like1-BR3 and NOR-like1-BR3 vs. NOR-like1-BR9. Eleven
differential metabolites (eight upregulated and three downregulated) were identified be-
tween NOR-like1-BR3 and NOR-like1-BR9 (Figure 7a). Twenty-four differential metabolites
(seventeen upregulated and seven downregulated) were identified between NOR-like1-GR
and NOR-like1-BR3 (Figure 7b).

The Venn diagram shows that two combinations have five common differential metabo-
lites (genistein, naringenin-7-glucoside, phloretin, trilobatin, and phlorizin) (Figure 7c).

The total contents of all the flavonoids in NOR-like1-GR, NOR-like1-BR3, and NOR-
like1-BR9 were 176.87 mg/kg DW, 214.39 mg/kg DW, and 245.93 mg/kg DW, respectively.
Rutin, nicotiflorin, naringenin chalcone, eriodictyol, and naringenin-7-glucoside were
also the five flavonoids with the highest content in the ripening stages (BR3 and BR9) in
NOR-like1 tomato fruits.

Rutin and nicotiflorin were the two dominant flavonoids among the NOR-like1-
GR fruits. From GR to BR3, the contents of rutin and naringenin chalcone increased to
125.43 mg/kg DW and 29.6 mg/kg DW in BR3, respectively, while nicotiflorin decreased
from 68.36 mg/kg DW to 46.47 mg/kg DW. Moreover, there were seventeen upregulated
flavonoid metabolites between NOR-like1-GR and NOR-like1-BR3 (Figure 7b). The results
showed that flavonoid metabolites accumulated in large amounts from the GR stage to the
BR3 stage in NOR-like1 tomato fruits. During this period, flavonoid metabolite biosynthesis
is very active. The increased contents of the two main flavonoids (rutin and naringenin
chalcone) and other upregulated flavonoid metabolites lead to a higher total of flavonoid
content in NOR-like1-BR3 than that in NOR-like1-GR.

From BR3 to BR9, the contents of rutin, nicotiflorin, eriodictyol, and naringenin-
7-glucoside increased to 145.01 mg/kg DW, 60.35 mg/kg DW, 11.84 mg/kg DW, and
3.72 mg/kg DW, respectively. The content of these four components comprised more than
90% of the total content of all the flavonoids in NOR-like1-BR9. Naringenin chalcone
decreased slightly from 29.6 to 21.6 mg/kg DW. The contents of the other flavonoids
also changed from BR3 to BR9. Among them, eight were upregulated and three were
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downregulated. The increased contents of the four dominant flavonoids and the eight
upregulated flavonoids led to an increase in the total flavonoid content in NOR-like1-BR9
than that in NOR-like1-BR3.
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Figure 7. The differential metabolite analysis results at different ripening stages in NOR-like1 tomato
fruits: (a,b) Volcano plot showing the differential metabolite expression levels among NOR-like1-GR
vs. NOR-like1-BR3 and NOR-like1-BR3 vs. NOR-like1-BR9, respectively. (c) Venn diagram showing
the differential metabolites from different ripening stages in NOR-like1 tomato fruits.

3.3.4. Differential Flavonoid Metabolites between WT and NOR-like1 Tomato Fruits

In order to explore the differences in the flavonoid metabolites at different growth
stages of the two varieties of tomato fruits, differential metabolites were screened using a
pairwise comparison. Figure 8a–c presents Volcano plots showing the levels of differential
metabolites between WT and NOR-like1 at different maturity stages. Detailed information
about the contents of flavonoid metabolites detected in each tomato fruit sample is shown
in Table 2.
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Figure 8. Analysis of differential metabolites between WT and NOR-like1 tomato fruits at the same
ripening stage: (a–c) The volcano plot shows the expression levels of the differential metabolites
among WT-BR3 vs. NOR-like1-BR3, WT-BR9 vs. NOR-like1-BR9, and WT-GR vs. NOR-like1-GR,
respectively. (d) The Venn diagram shows the differential metabolites between WT and NOR-like1
tomato fruits at the same ripening stage.

During the BR3 stage, nine differential flavonoids (six upregulated and three downreg-
ulated) were identified between WT-BR3 and NOR-like1-BR3 (Figure 8a). During the BR9
stage, 12 differential metabolites (11 upregulated and 1 downregulated) were identified
between WT-BR9 and NOR-like1-BR9 (Figure 8b). During the GR stage, 16 differential
metabolites (13 upregulated and 3 downregulated) were identified between WT-GR and
NOR-like1-GR (Figure 8c).

The Venn diagram shows that there were two common differential metabolites (glycitin
and apigenin-7-glucuronide) in the three combinations (Figure 8d), three common differ-
ential metabolites (glycitin, apigenin-7-glucuronide, and cynaroside) in the combination
of WT-GR_vs_NOR-like1-GR and WT-BR3_vs_NOR-like1-BR3, four common differential
metabolites (glycitin, naringenin chalcone, apigenin-7-glucuronide, and calycosin-7-O-β-D-
glucoside) in the combination of WT-BR9_vs_NOR-like1-BR9 and WT-BR3_vs_NOR-like1-
BR3, and four common differential metabolites (glycitin, apigenin-7-glucuronide, narirutin,
and (-)-catechin) in the combination of WT-GR_vs_NOR-like1-GR and WT-BR9_vs_NOR-
like1-BR9. Apigenin-7-glucuronide was detected only in NOR-like1 tomato fruits in all
three maturation stages and not in the WT. The contents of glycitin in NOR-like1 tomato
fruits were significantly higher than those in the WT in all three maturation stages.
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Compared to the WT tomato fruits, most of the flavonoids were significantly changed
in NOR-like1 tomato fruits during the ripening stages, indicating that SlNOR-like1 does
regulate the biosynthesis of flavonoids. In our previous study, by using untargeted
metabolomics analysis to study the metabolic profile of NOR-like1 gene-edited tomato
fruits with WT tomato fruits for comparison, it was found that flavonoid metabolites
changed significantly during the whole ripening stages [28], which corresponded to the
results here.

The total amount of all the flavonoids in NOR-like1 tomato fruits was 176.87 mg/kg
DW in the GR stage and increased to 214.39 mg/kg DW in BR3 and 245.93 mg/kg DW
in BR9. The total amount of all the flavonoids in WT tomato fruits was 281.02 mg/kg
DW in the GR stage, which slightly decreased to 276.27 mg/kg DW in BR3 and then to
223.37 mg/kg DW in BR9. The total amount of all the flavonoids in NOR-like1 tomato
fruits was lower than in WT tomato fruits during the GR stage and BR3 stage. However,
during the BR9 stage, the total amount of all the flavonoids in NOR-like1 tomato fruits was
higher than in WT tomato fruits. The dynamic changes of the flavonoids differed among
the two different tomato strains.

To explore the reason causing such a difference, we compared the contents of the
predominant flavonoid compounds and their changes in two different tomato strains and
found that rutin, nicotiflorin, naringenin chalcone, eriodictyol, and naringenin-7-glucoside
were the five flavonoids with the highest content in the ripening stages (BR3 and BR9)
in both WT and NOR-like1 tomato fruits. However, the accumulation patterns of some
flavonoids differed between the WT and NOR-like1 tomato fruits. Rutin was the most
abundant and significantly variable. Rutin has been extensively detected in tomatoes in
multiple literature studies [32–39]. In our study, the content of rutin in WT tomato fruits
was highest during the GR stage (175.26 mg/kg DW), and its content in NOR-like1-GR
tomato fruits was 101.18 mg/kg DW. However, during the subsequent growth process, the
content of rutin gradually increased in NOR-like1 tomato fruits but decreased in the WT. In
BR9, the content of rutin in NOR-like1 tomato fruits was 145.01 mg/kg DW and, in WT
tomato fruits, was 147.79 mg/kg DW, which was very close. In our research, rutin was the
most abundant flavonoid in both WT tomato fruits and NOR-like1 tomato fruits; however,
the accumulation patterns in the two varieties were different.

Naringenin chalcone and rutin were detected in large quantities in different varieties of
tomatoes [40,41]. Similarly, in our study, we found that the content of naringenin chalcone
and rutin in WT tomato fruits was different from that in NOR-like1 tomato fruits but
were both very high. The content of naringenin chalcone in NOR-like1 tomato fruit was
highest during the BR3 stage (29.6 mg/kg DW); the content of naringenin chalcone in
WT-BR3 tomato fruits was 28.46 mg/kg DW. When in the BR9 growth stage, the content
of naringenin chalcone in NOR-like1 tomato fruits was 21.6 mg/kg DW, which was much
higher than that in WT tomato fruit (10.67 mg/kg DW). The content of naringenin chalcone
decreased from the BR3 stage to the BR9 stage. In our study, six types of chalcones showed
significant changes, including isoliquirigenin, philorizin, trilobatin, philoretin, naringenin
chalcone, and sieboldin. Among them, naringenin chalcone showed the most significant
changes and had the highest content. Iijima et al. (2008) demonstrated that naringenin
chalcone was the major chalcone in tomato fruit, revealing the highest accumulation levels
at the breaker stage, which then decreased during ripening [42]. Similarly, Raffo et al. (2002)
also mentioned that the content of naringenin gradually decreased with maturity [43].
Naringenin chalcone and rutin are considered to be the most abundant substances based
on a description by Muir et al. (2001) [44].

The content of nicotiflorin in WT tomato fruits was highest during the GR stage
(102.77 mg/kg DW), and the total content of nicotiflorin in NOR-like1-GR tomato fruits
was 68.37 mg/kg DW. When in the BR3 growth stage, the content of nicotiflorin in NOR-
like1 tomato fruit was 46.47 mg/kg DW, and the content of nicotiflorin in WT-BR3 tomato
fruit was 65.96 mg/kg DW. When in the BR9 growth stage, the content of nicotiflorin NOR-
like1 tomato fruits was 60.35 mg/kg DW; meanwhile, the content of nicotiflorin WT tomato
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fruits decreased to 53.63 mg/kg DW, lower than the NOR-like1 tomato fruits. Nicotiflorin
was also extensively detected in tomatoes in a study by Le Gall et al. (2003) [45].

The content of eriodictyol increased during the GR stage to the BR3 stage, with
4.89 mg/kg DW in WT-BR3 and 7.18 mg/kg DW in NOR-like1-BR3, decreased slightly to
4.66 mg/kg DW in WT-BR9, but increased to 11.84 mg/kg DW in NOR-like1-BR9. For
tomatoes in the same growth period, the content of eriodictol in NOR-like1 tomato fruits
was significantly higher than that in the WT. Mintz Oron et al. (2008) found that tomatoes
contain a large amount of chalconingenin, naringenin, eriodictyol, and nicotiflorin [46].

From the above data comparison, the accumulation pattern of flavonoid metabolites
in NOR-like1 tomato fruits differed from that in WT tomato fruits, especially in the later
ripening process BR9. The contents of the four dominant flavonoids (rutin, nicotiflorin,
eriodictyol, and naringenin-7-glucoside) increased, and there were eight upregulated
flavonoids in NOR-like1-BR9 than that in NOR-like1-BR3. The differential flavonoid
metabolites in WT-BR9 tomato fruits were mostly downregulated compared with those
in WT-BR3. As the three predominant components in WT-BR3, the contents of rutin,
nicotiflorin, and naringenin chalcone decreased from BR3 to BR9. The transcriptomics
results in our previous studies [28] showed that the expression levels of key genes involved
in the biosynthesis of flavonoid metabolites were upregulated significantly during BR9 in
NOR-like1 tomatoes compared to WT tomatoes, which may provide some support to show
that NOR-like1 influences the metabolomics of flavonoid metabolites in tomato fruits at
the level of gene expression.

3.4. Enrichment Analysis of Differential Flavonoid Metabolites

The results of further KEGG enrichment analysis are shown in Figure 9a–f. It is
revealed that the significant enrichment of the differential flavonoid metabolites was
distributed in the following pathways: flavonoid biosynthesis, flavone and flavonol biosyn-
thesis, the biosynthesis of secondary metabolites, metabolic pathways, and isoflavonoid
biosynthesis. The most enriched pathway was the ‘biosynthesis of secondary metabolites’.
This was followed by ‘flavonoid biosynthesis’.

In NOR-like1-BR3_vs_NOR-like1-BR9 (Figure 9a), phlorizin and phloretin were en-
riched in the flavonoid biosynthesis pathway; genistein was enriched in the isoflavonoid
biosynthesis. In NOR-like1-GR_vs_NOR-like1-BR3 (Figure 9b), quercitrin, quercetin, and
luteolin were enriched in flavone and flavonol biosynthesis; isoliquiritigenin, phlorizin,
phloretin, naringenin chalcone, (-)-epicatechin, (-)-epigallocatechin, eriodictyol, dihy-
drokaempferol, taxifolin, luteolin, and quercetin were related to ‘flavonoid biosynthesis’;
genistein, glycitin, and 2′-hydroxygenistein were enriched in isoflavonoid biosynthesis. In
WT-BR3_vs_WT-BR9 (Figure 9c), baimaside was enriched in flavone and flavonol biosyn-
thesis. Isoliquiritigenin, phlorizin, phloretin, naringenin chalcone, and dihydrokaempferol
were enriched in flavonoid biosynthesis. In WT-GR_vs_WT-BR3 (Figure 9d), luteolin,
quercetin, and astragalin were enriched in flavone and flavonol biosynthesis. Isoliquiriti-
genin, phlorizin, phloretin, naringenin chalcone, eriodictyol, dihydrokaempferol, taxifolin,
luteolin, and quercetin were enriched in flavonoid biosynthesis. Genistein, glycitin, and 2′-
hydroxygenistein were related to ‘isoflavonoid biosynthesis’. In WT-GR_vs_NOR-like1-GR
(Figure 9e), astragalin and quercitrin were enriched in flavone and flavonol biosynthesis.
Phlorizin, phloretin, naringenin chalcone, (-)-epicatechin, and (-)-epigallocatechin were
enriched in flavonoid biosynthesis. The regulation of ononin and glycitin was related to
isoflavonoid biosynthesis. In WT-BR9_vs_NOR-like1-BR9 (Figure 9f), luteolin was enriched
in flavone and flavonol biosynthesis. Isoliquiritigenin, naringenin chalcone, eriodictyol,
and luteolin were enriched in flavonoid biosynthesis. Glycitin was related to ‘isoflavonoid
biosynthesis’. In all the above comparison groups, flavonoid biosynthesis was significantly
enriched, which may indicate that the differential flavonoids in these enrichment pathways
may lead to changes in flavonoid accumulation between the two types of tomato fruits
during the whole ripening process.
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4. Conclusions

Flavonoid quantitative metabolomics was used to accurately quantify and analyze
the changes in the flavonoid metabolites of wild-type tomato fruits (WT) and gene-edited
tomato fruits (NOR-like1) during the tomato ripening process. A total of 50 flavonoid
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metabolites were identified from the WT and NOR-like1 tomato fruits using UPLC-MS/MS.
Rutin, nicotiflorin, naringenin chalcone, eriodictyol, and naringenin-7-glucoside were the
five flavonoids with the highest content in the ripening stages (BR3 and BR9) in both
WT and NOR-like1 tomato fruits. The overall flavonoid contents in WT tomato fruits
changed little from GR to BR3 and decreased from BR3 to BR9; meanwhile, in NOR-like1
tomato fruits, the total amounts of the flavonoids exhibited an increasing trend during all
three ripening stages. The accumulation pattern of flavonoid metabolites in NOR-like1
tomato fruits differed from that in WT tomato fruits, especially in the later ripening process
BR9. These findings highlight significant differences in the profile of flavonoid metabolites
between WT and NOR-like1 tomato samples and showed that NOR-like1 regulated the
biosynthesis of flavonoids and changed the accumulation pattern of flavonoids. Overall,
our research provides new insights into the dynamic changes in flavonoid profiles caused
by transcription factor NOR-like1 during ripening. Our future studies may focus on the
flavonoids most significantly affected, extensively investigate the interaction mechanism
between transcription factor NOR-like1 and the related genes, and elucidate the regulatory
mechanism of NOR-like1 on flavonoids.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods12244445/s1, Table S1. Detailed information on the fifty
flavonoid metabolites identified in the tomato fruit samples. Supplementary File S1. MS/MS spectra
of the fifty flavonoids identified in the tomato samples. Supplementary File S2. UHPLC-MS/MS
parameters of the fifty flavonoids. Supplementary File S3. Calibration curves and quantitative details
of the fifty flavonoids.
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