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Abstract: There is a growing demand from consumers for more assurance in premium food products
such as beef and especially steak. The quality of beef steak is primarily dictated by the maturation
which ultimately influences its taste and flavor. These enhanced qualities have resulted in steak
becoming a premium product that consumers are willing to pay a premium price for. A challenge,
however, is analyzing the maturity of beef by traditional analytical techniques. Hyperspectral imaging
(HSI) is a methodology that is gaining traction mainly due to miniaturization, improved optics, and
software. In this study, HSI was applied to wet aged beef supplied at various stages of maturity, with
spectral data generated using a portable hyperspectral camera. Two trials were conducted over a five-
month period: (i) proof of principle and (ii) a bespoke sampling trial for the industry. With the support
of industry participation, all samples were sourced from a highly reputable UK/Ireland supplier. To
enhance data interpretation, the spectral data collected were combined with multivariate analysis.
A range of chemometric models were generated using unsupervised and supervised methods to
determine the maturity of the beef, and external validation was performed. The external validation
showed good accuracy for “unknown samples” tested against the model set and ranged from 74 to
100% for the different stages of maturity (20, 30, and 40 days old). This study demonstrated that
HSI can detect different maturity timepoints for beef samples, which could play an important role in
solving some of the challenges that the industry faces with ensuring the authenticity of their products.
This is the first time that portable HSI has been coupled with chemometric modeling for assessing the
maturity of beef, and it can serve as a model for other food authenticity and quality applications.
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1. Introduction

A crucial component in the modern meat industry is ensuring that consumer demand
for premium products can be sustained by suppliers. Achieving this is underpinned
by the sectors’ ability to evaluate the quality of meat with a view towards delivering
a consistently premium product. In doing so, it justifies the cost associated with such
products while providing the consumer with confidence in their purchase. Therefore, there
is increasing interest in adopting technologies that can facilitate this process and quantify
the key parameters and evaluation indicators in meat products.

For beef steak, the quality is usually indicated by its texture and flavor. This is achieved
with fresh beef that has been dry or wet-aged from a few days to several weeks to allow the
natural enzymes present to break down the muscle tissue. Therefore, aged beef commands a
premium price on the open market, with consumers willing to pay extra for these enhanced
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qualities. The average retail price for a kilogram (kg) of steak in 2023 is GBP 16.45 (£), being
the most expensive cut of beef on the market [1].

Over the past number of years, there has been rapid growth in the number of research
publications using spectroscopy coupled with chemometric analysis to objectively measure
different meat quality traits including moisture content, microbial count, species, and
freshness [2-8]. More specifically, hyperspectral imaging (HSI) has been gaining traction
due to being non-destructive, pollution-free, and having a rapid analysis time. These
advantages are ideal for both the industry and research community. HSI can capture both
the structural and biochemical information through the individual pixels collected across
the wavelength range (400-1000 nm). Each pixel is broken into different spectral bands
across the primary colors to provide a data cube of information. In a review article, Xiong
et al. [9] emphasized advances in hardware and software developments of hyperspectral
imaging systems, as well as discussing advances in using HSI to detect quality attributes
of meat such as beef, lamb, and pork. The attributes highlighted as being measured using
this technique included determination of color, pH, tenderness, water-holding capacity,
microbial spoilage, and marbling, depending on the species of animal from which the
meat was obtained. In a more recent review article, Jia et al. [10] outlined the use of HSI
for meat quality evaluation across the supply chains, including its use in the following;:
(i) determining the color of fresh meat; (ii) determining the water content; (iii) determining
the biogenic amine index; (iv) determining total viable count; (v) determining the nutritional
composition; (vi) detecting adulteration; and (vii) determining gel and water injection. In
addition, the review article also discussed possible future applications of HSI in the supply
chain. However, there was no discussion around the application of HSI and chemometrics
for determining beef maturity.

The adoption of chemometric modeling of the spectral data could be used to help ob-
serve any differences and/or similarities between variables in the data set. Two approaches
can be employed in the model building method and include the use of unsupervised and
supervised chemometric algorithms. The unsupervised method, principal component
analysis (PCA), is usually employed initially to identify if there are any differences in
the spectral data with no classifications applied. Supervised methods including partial
least squares discriminant analysis (PLS-DA) and orthogonal partial least squares discrim-
inant analysis (OPLS-DA) can be applied to help in assigning classes and can be used
for predicting unknown samples against an authentic model set based on the input class
description [11,12]. Therefore, chemometric analysis of spectral data plays an important
role when using spectroscopic techniques and helps to model the differences found in
the data.

In this study, collaboration with meat suppliers and processors in the UK/Ireland
was vital to help understand the current testing conducted for meat quality. One of the
challenges faced within the industry is determining the maturation of beef using a quick
and simple analytical method. Therefore, the main aim of this study was to investigate if
the maturation of sirloin beef steaks could be distinguished on different days of the aging
process using HSI coupled with chemometrics. To the best of the authors knowledge, this is
the first time that this combination of HSI and chemometrics has been used to determine the
maturity of meat. Potentially, this could help in the food supply chain testing where food
packagers rely solely on the paperwork supplied by the processors. Method development
within this area would not only be beneficial to the industry but also to the consumer and
would help to reduce waste.

2. Materials and Methods
2.1. Sample Collection

All samples were received from a commercial beef processor and selected randomly
during normal plant operations. Samples were de-boned prior to being received and cut to
size (each sample was less than 1 kg) to reduce wastage.
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2.2. Scope of Methods

Over a five-month period during 2022, two trials were conceptualized and conducted
for testing sirloin beef steaks for maturity. Testing was conducted over winter, spring, and
summer to allow for seasonal variation to be included in the studies.

2.2.1. Trial 1 (Proof of Principle)

Trial 1 was designed to initially evaluate and optimize the HSI Imager and to develop
a method for testing the beef samples. Wet-aged sirloin steaks (n = 160) were collected for
testing at the various stages of maturation (days: 10; 20; 30; 40). Samples were vacuum-
packed (40 samples per pack) at the processing plant and stored at 4 °C for less than 24 h
before testing. All samples were locally sourced beef; however, the breed and sex of the
animals were unknown during the trial.

2.2.2. Trial 2 (Bespoke Sampling Trial)

Trial 2 primarily focused on conducting a more detailed study which included con-
sideration of parameters such as breed, category (heifer or steer), grade, and age (animals
under 36 months old). This was achieved by the beef processor supplying full trace-
ability for each steak supplied. The breed of animal was based on typical breeds in the
UK/Ireland: Aberdeen Angus (n = 32), Charolais (n = 30), Limousin (n = 28), Holstein
Friesian (or crosses) (n = 20), Hereford (n = 28), Simmental (n = 18), Shorthorn (n = 10), and
British Blue (n = 20). The beef samples were taken from 70 heifers and 116 steers and were
graded according to the EUROP classification standard [13]. The samples were assigned
to four of the five different classifications for beef and included the following: Very Good
(U) n = 34, Good (R) n = 72, Fair (O) n = 60, and Poor (P) n = 20. The grades given to
the carcasses determine the value of the beef and classify both the conformation (shape)
and fat cover of the carcass, which determines the price in pence per kilogram (p/kg) [14].
To allow for variation amongst animals, a maximum of one sample per loin (therefore, a
maximum of 2 per animal) was taken and vacuum-packed. In total, 186 wet-aged sirloin
steaks were collected for testing at 3 stages of maturation (days: 20, 30, and 40). All samples
were received individually vacuum-packed and stored at 4 °C before their assigned day
of testing.

2.3. Acquisition of Hyperspectral Images and Chemometric Analysis (Including
Validation Methods)

No sample preparation was required prior to analysis, and samples were analyzed
as received. Each sample was analyzed on a fixed platform using the portable HinaLea
4250 VNIR HSI camera (HinaLea Imaging, Emeryville, CA, USA). The working spectral
range of the system was 400-1000 nm with 4 nm spectral resolution and 2.3 MegaPixel
color sensor with 300 spectral wavelengths. In addition to the HSI camera, two adjacent
halogen light bulbs were mounted on a stand for illumination of the samples. The camera
settings were optimized to ascertain image quality. Both intensity and reflectance data
were collected within the processing options, and the exposure was set to 32.2 ms and
gain to 0. Prior to analysis, dark and white reference standards were used to calibrate the
system using HinaLea Truscope Windows 1.1.17. One beef image (13 x 8 cm (1 x b)) was
obtained (Figure 1A) for each sample. For this work, the whole region of the collected
image contained information of interest held within a three-dimensional hypercube (x, y, A).
The size of the beef samples in the acquisition of the image played an important role in
trying to avoid any bias and selecting the regions of interest (ROI). Due to the variation in
fat/muscle of the samples, it was decided to include the whole sample instead of selecting
points of interest which may have introduced bias. Three ROIs were selected to capture
data from the whole sample. ROIs were manually selected using the HSI software (version
1.1.17) and indicated by different colors: red, green, and blue (Figure 1B). Each sample was
averaged prior to data processing (Figure 1C,D). Figure 1 provides a schematic overview of
the workflow applied to generate the data and build the chemometric models.
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Figure 1. Instrument set-up and workflow for data acquisition and chemometric analysis.

The data were subsequently evaluated by chemometric analysis using SIMCA 17
software (Version 17.0.2.34594, Sartorius Data Analytics AB, Umea, Sweden). The raw data
for both trials were treated in the same way using the following steps of pre-processing,
model building (with internal cross-validation), and external validation. Validation was per-
formed based on the procedure described and recommended by the US Pharmacopoeia [15]
and McGrath et al. [16].
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3. Results and Discussion
3.1. Trial 1
3.1.1. Spectra Collection

After analysis of the beef samples, all spectra were collected and extracted from the
HSI software. Figure 2a shows the raw data spectra which were collected prior to any
pre-processing filters. Figure 2b shows the averaged spectra of the samples at the different
maturation time points (10, 20, 30, and 40 days).
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Figure 2. HSI spectra collected from Trial 1 for maturation determination: (a) complete raw data set
showing the 160 samples; (b) the averaged spectrum for a sample from day 10, 20, 30, and 40.

Visually, the reflectance spectral data for the four time points are extremely similar,
with some distribution variation around 800-1000 nm between samples. It is important to
use all wavelengths available since in a previous publication, the authors indicated that
reduced wavelength models using only the most important wavelengths showed reduced
and erratic levels of performance [17]. To aid in the spectra interpretation, chemometrics
were employed for modeling.

3.1.2. Chemometric Modeling

To examine the hyperspectral data, spectra were transferred to SIMCA 17 chemometric
software to aid in multivariate data analysis. Prior to model building, several pre-processing
steps were applied to the data set to assist in eliminating background noise, light scattering,
and sample texture. Five different types of pre-processing filters were applied to the spectra
data and included the following: standard normal variate (SNV), first derivative (1st D),
second derivative (2nd D), Savitzky—Golay (SG) smoothing, and pareto scaling (par). SNV
was used to remove any slope differences in the spectra which may have occurred from
light scattering. The software does this by subtracting the row mean and dividing it by
the row standard deviation. SG was also applied for noise canceling and smoothing of
the data set. First or second derivatives were applied to transform the original data set to
its first or second derivatives which can help in removing any peak overlap and baseline
drift. Lastly, pareto scaling was used which divides each variable by the square root of its
standard deviation [18]. In this study, principal component analysis (PCA), partial least
square discriminant analysis (PLS-DA), and orthogonal projections to latent structures
discrimination analysis (OPLS-DA) were applied for model building. Models can be
visually viewed within the software using 2D or 3D score scatter plots. Figure 3 shows the
unsupervised PCA score plot (SNV; pareto scaling). Visually, the PCA plot shows limited
separation between the different maturation dates and therefore requires further modeling
using supervised algorithms, PLS-DA and OPLS-DA.
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Figure 3. PCA 3D score plot for the model set colored according to maturity days (where the ¢ axis
refers to the models’ vector for each dimension and is based on new variables as linear combinations
of X).

3.1.3. Internal Validation of Chemometric Models

Internal validation was performed by the software for all of the models, and Table 1
provides an overview of the supervised calibration models (including pre-processing) and
the predictive values based on internal cross-validation for the data set.

Table 1. Overview of supervised models generated for Trial 1.

Model Number Type (with Details of Pre-Processing Applied) R2 Q2
M3 PLS-DA (with SNV; par scaling) 0.926 0.914
M4 PLS-DA (with SNV, 1st D, SG, and par scaling) 0.832 0.882
M5 PLS-DA (with SNV, 2nd D, SG, and par scaling) 0.796 0.888
Mé6 PLS-DA (with 1st D, SG, SNV, and par scaling) 0.805 0.88
M7 PLS-DA (with 2nd D, SG, SNV, and par scaling) 0.776 0.874

M14 PLS-DA (no processing; par scaling) 0.991 0.877
M8 OPLS-DA (with SNV; par scaling) 0.926 0.915
M9 OPLS-DA (with SNV, 1st D, SG, and par scaling) 0.736 0.865

M10 OPLS-DA (with SNV, 2nd D, SG, and par scaling) 0.779 0.883
M11 OPLS-DA (1st D, SG, SNV, and par scaling) 0.806 0.882
M12 OPLS-DA (2nd D, SG, SNV, and par scaling) 0.757 0.882
M13 OPLS-DA (no processing; par scaling) 0.982 0.8

The R2 values relate to the measure of the model’s fit to the original data. The range
is from zero to one, with values closer to one indicating a good model fit. The R2 value is
calculated using the following equation: R2 =1 — RSS/SSX, where SSX is the overall sum
of squares and RRS is the residual sum of squares = Y_(observed — fitted)?. The software
performs internal cross-validation by removing 1/7th of the data and predicting it against a
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new model made from 6/7th of the remaining data. This process is repeated until all of the
data have been predicted. The result is provided by the predicted residual sum of squares
(PRESS), where the squared differences between the observed and predicted values for
the data are excluded from the model fit, PRESS =} (Vim — Vim) [18]. In Table 1, model 14
(PLS-DA, with no pre-processing) shows the highest R2 value of 0.991. The Q2 value is
provided from internal cross-validation based on the variation between X or Y that can be
predicted by a component and can be calculated using the following: Q2 =1 )" PRESS/SS,
where SS is the sum of squares of Y [18]. The closer the value is to one, the greater the
predictive power based on the internal validation. The supervised OPLS-DA model 8 has
the highest Q2 value of 0.915, as shown in Table 1.

3.1.4. External Validation of Calibration Models

External validation was performed on the data set and included splitting the data
70:30, i.e., 112 samples (or 70% of the total number of samples) were randomly assigned to
the calibration set and 48 samples (or 30% of the total number of samples) were randomly
assigned to the validation set. To create the validation set, each time point (10, 20, 30, and
40 day) was randomized (using Excel), and then, 70% of the samples were taken for the
calibration set and the remaining samples were added to the validation set. The calibration
sample set was representative of correctly identified beef samples for the four different time
points. The validation set was composed of an equal mix of correctly identified samples that
do not form part of the calibration set. The validation set was tested against the calibration
set and used to generate the model. Prediction percentages were generated and could be
assigned to the relevant classes as shown in Table 2. Overall, the 12 calibration models
in Table 2 show high percentages for correctly predicting and identifying external meat
samples matured over 10, 20, 30, and 40 days. Five of the models show that 100% of the
meat samples were correctly identified across the four ageing time points (highlighted in
green). As an example of a supervised chemometric model, Figure 4 shows the visual 3D
score scatter plot for model 8 with the different maturity classes which are color coded in
green (10-day maturity), blue (20-day maturity), red (30-day maturity), and yellow (40-day
maturity). The model shows each of the maturity groups clustering tightly together and
major separation between the four maturity classes. Table 3 shows the confusion matrix for
the validation set tested against the model set.

Table 2. % of correct predictions from the validation sample set (results based on SIMCA classifica-
tion results).

% of Correct Classification

Model Number Model For 10 Days For 20 Days For 30 Days For 40 Days
M6 PLS-DA (with 1st D, SG, and SNV) 100.0 100.0 100.0 100.0
M7 PLS-DA (with 2nd D, SG, and SNV) 100.0 100.0 100.0 100.0
M4 PLS-DA (with SNV, 1st D, and SG) 100.0 100.0 100.0 91.7
M5 PLS-DA (with SNV, 2nd D, and SG) 100.0 91.7 100.0 100.0
M3 PLS-DA (with SNV) 100.0 83.3 100.0 100.0
M14 PLS-DA (no processing) 100.0 83.3 100.0 100.0
M9 OPLS-DA (with SNV, 1st D, and SG) 100.0 100.0 100.0 100.0
M10 OPLS-DA (with SNV, 2nd D, and SG) 100.0 100.0 100.0 100.0
M11 OPLS-DA (1st D, SG, and SNV) 100.0 100.0 100.0 100.0
M12 OPLS-DA (2nd D, SG, and SNV) 100.0 100.0 91.7 100.0
M8 OPLS-DA (with SNV) 100.0 83.3 100.0 100.0
M13 OPLS-DA (no processing) 91.7 66.7 83.3 91.7
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Figure 4. 3D score scatter plot for OPLS-DA with SNV (model 8).
Table 3. Confusion matrix based on validation data determined using model 8.
Predicted Class False
Day 10 Day 20 Day 30 Day 40 Negatives
Day 10 12 0 0 0 0
True Class
Day 30 0 0 12 0 0
Day 40 0 0 0 12 0
False
Positives 1 0 0 1

Table 3 highlights the days that the beef matured over 10, 30, and 40 days could be
correctly identified, with only two samples from day 20 incorrectly assigned as day 10 and
day 40. From this confusion matrix, different performance metrics can be evaluated, i.e.,
accuracy, specificity, recall/sensitivity, precision, f-score, and error rate, which will indicate
the effectiveness of the model as recommended by Sokolova and Lapalme [19]. The average
values found for each metric were as follows: (i) accuracy = 0.96; (ii) specificity = 0.99;
(iii) recall /sensitivity = 0.94; (iv) precision = 0.96; (v) f-score = 0.95; and (vi) error rate = 0.08.
Overall, these metrics, based on the results from Trial 1, indicate that the model performed
extremely well and was fit for purpose, with a high number (96%) of the beef samples
collected and analyzed being properly assigned to the correct maturity class.

3.2. Trial 2

During Trial 1, there were limited meta-data for the samples provided; therefore, it
was unclear whether the samples had come from different carcasses, breeds, grades, or sex.
Therefore, it was proposed for Trial 2 to gather more meta-data to improve the diversity
of the samples collected for analysis. This would allow for a more bespoke model for
the industry which would also help improve the reliability and robustness of the models
created. In total, 186 samples were received for testing, with 62 samples at each of the
maturation stages (20, 30, and 40 days). For Trial 2, it was decided not to include day 10, as
sirloin steaks would not commonly be aged for only 10 days. Table 4 shows the breakdown
of different breeds and sexes (i.e., heifers or steers) from which the samples were collected.
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These breeds were selected as they are the most typical breeds found in the UK and Ireland,
with Aberdeen Angus being the most popular. Heifers and steers refer to female and male
bovine, respectively, which have not been used to birth calves or reproduce. As a result,
the meat produced by heifers and steers is normally of higher quality.

Table 4. Breakdown of sample breeds and sex of animals included in Trial 2.

Breed No. of Each Breed Heifer Steer
Aberdeen Angus (AA) 32 14 18
Charolais (CH) 30 18 12
Limousin (LIM) 28 14 14
British Blue (BB) 20 8 12
Simmental (SIM) 18 8 10
Holstein (HOL) 12 - 12
Shorthorn (SH) 10 - 10
Friesian (FR) 8 - 8

Total 186 70 116

3.2.1. Internal Validation of Calibration Models

Chemometric models were created for the data acquired during Trial 2 using PCA,
PLS-DA, and OPLS-DA algorithms. Figure 5 shows the unsupervised PCA score plot
(with SNV + 1st Derivative + Savitzky—Golay; pareto scaling). As anticipated from Trial 1,
visually, there was some limited separation across the three maturity classes using the unsu-
pervised PCA algorithm. Therefore, further processing was required using the supervised
algorithms, i.e., PLS-DA or OPLS-DA.

Maturity
.20 days

B 30 days
.40 days

Figure 5. PCA 3D score plot, colored according to the number of days that beef was matured
(model 3).

Table 5 summarizes the model fit and predictive parameters achieved for the super-
vised models created (including details of the pre-processing techniques applied). The
OPLS-DA model (M13), shown in Figure 6a, provided the highest R2 value of 0.99 (model
fit) and a Q2 value of 0.852 (predictive measurement) which indicated that the generated
calibration model could sufficiently determine the maturity or age of beef. To illustrate
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that the OPLS-DA model was not overfitting the data, which can lead to false-positive
results, the model was further validated by performing a permutation test (200 times). The
result of the permutation analysis in Figure 6b shows the correlation coefficients between
original Y and permuted Y in relation to a cumulative R2 and Q2 value, with the X-axis
displaying the correlation and the Y-axis showing the R2/Q2 values. Also displayed are
fitted regression lines connecting the observed Q2 to the corresponding centroid of the
permuted Q2 clusters. A model is considered valid if its Q2 values are higher than the
permutation test values (i.e., all Q2 values of the permutated data set to the left are lower
than the Q2 values of the original data set to the right), and, in addition, if a negative
intercept value on the Y-axis is found for the regression line [20]. Therefore, based on the
data generated from this permutation test, it can be determined that the OPLS-DA model
does not overfit the data and the model is fit for purpose.

Table 5. Overview of models (including pre-processing details) created for Trial 2.

Model Number Type (with Details of Processing Applied) R2 Q2
M7 PLS-DA (no processing; par scaling) 0.989 0.749
M8 PLS-DA (SNV; par scaling) 0.929 0.763
M9 PLS-DA (SNV + 1st Der + SG; par scaling) 0.802 0.734
M10 PLS-DA (SNV + 2nd Der + SG; par scaling) 0.745 0.784
M11 PLS-DA (1st Der + SG + SNV, par scaling) 0.826 0.757
Mi2 PLS-DA (2nd Der + SG + SNV; par scaling) 0.706 0.794
M13 OPLS-DA (no processing; par scaling) 0.99 0.852
M14 OPLS-DA (SNV; par scaling) 0.912 0.802
M15 OPLS-DA (SNV + 1st Der + SG; par scaling) 0.761 0.709
Mieé OPLS-DA (SNV + 2nd Der + SG; par scaling) 0.744 0.806
M17 OPLS-DA (1st Der + S-G + SNV par scaling) 0.825 0.779
M18 OPLS-DA (2nd Der + S-G + SNV; par scaling) 0.704 0.822
to[3] * 1.4167 Maturity
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Figure 6. (a) OPLS-DA 3D score plot; (b) permutation analysis (n = 200) to test calibration model for
overfitting the data.

3.2.2. External Validation of Calibration Models

As conducted during Trial 1, external validation was also performed on the data set
in which the work set was split 70:30 (i.e., 129 samples were randomly assigned to the
calibration sample set and 57 samples to the validation sample set). The validation set
was then tested against the calibration set and prediction percentages were assigned to the
relevant classes, as shown in Table 6.
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Table 6. % of correctly identified predictions from the validation sample set.
% of Correct Classification
Model Number Model
For 20 Days For 30 Days For 40 Days
M7 PLS-DA (no processing; par scaling) 100 84 89
M8 PLS-DA (SNV; par scaling) 100 74 89
M9 PLS-DA (SNV + 1st Der + SG; par scaling) 100 79 95
M10 PLS-DA (SNV + 2nd Der + SG; par scaling) 79 74 74
M11 PLS-DA (1st Der + SG + SNV; par scaling) 95 79 84
Mi12 PLS-DA (2nd Der + SG + SNV; par scaling) 89 84 79
M13 OPLS-DA (no processing; par scaling) 100 74 89
M18 OPLS-DA (SNV; par scaling) 100 74 89
M14 OPLS-DA (SNV + 1st Der + SG; par scaling) 100 84 74
M15 OPLS-DA (SNV + 2nd Der + SG; par scaling) 95 79 100
Mieé OPLS-DA (1st Der + SG + SNV; par scaling) 95 79 84
M17 OPLS-DA (2nd Der + SG + SNV; par scaling) 95 84 95

112)* 100024

Overall, the prediction results from the external validation for all 12 models and meat
samples matured over 20, 30, or 40 days ranged from 74% to 100%. Day 20 showed the
highest number of samples correctly assigned, with six models able to correctly match 100%
of the meat samples. The highest percentage of meat samples correctly predicted for day 30
and day 40 was 84% and 95%, respectively.

The calibration model (M17) shown in Figure 7a indicates that each of the maturity
groups clustered together within their classes for days 20 (green), 30 (blue)), and 40 (red).
Table 7 shows the confusion matrix for the validation set results which was tested against
the model set. From the results, only one sample was incorrectly predicted for day 20
and day 40, and three samples were incorrectly predicted for day 30. As determined in
Trial 1, average performance metrics were obtained for the Trial 2 results and were found
to be as follows: (i) accuracy = 0.91; (ii) specificity = 0.96; (iii) recall/sensitivity = 0.91;
(iv) precision = 0.91; (v) f-score = 0.91; and (vi) error rate = 0.18. Overall, the percentage
of correctly identified samples for Trial 2 was 91%, which is lower than that achieved
during Trial 1 (96%) and is attributable to the use of a more diverse sample set including
different breeds of animals, different sex, and different seasons. However, these results,
with very good performance metrics, indicate the potential of portable HSI coupled with
chemometrics to determine the maturity of wet-aged beef. This technology could have a
beneficial impact for the industry which may have limited or no procedures in place to test
beef aging.
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Figure 7. The 2D score plots of the OPLS-DA model (no pre-processing; pareto scaling) with classes
colored by (a) maturity, (b) sex (heifer or steer), and (c) breed.
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Table 7. Confusion matrix based on validation data determined using model 17.

Predicted Class

False Negatives

Day 20 Day 30 Day 40
Day 20 18 0
True Class Day 30 16 3
Day40 0 18
False Positives 2 1 2

Due to the additional meta-data received during this phase of the study, further
investigations were conducted to establish whether the breed or sex of the cattle (i.e., heifer
or steer) could have a direct influence on the models developed. Therefore, the model
was color coded by breed and sex to establish whether the original clustering observed
was solely due to the maturity of beef samples. These results are highlighted in Figure 7b,
whereby the scatter plot relates only to heifer or steer, and Figure 7c, which relates to cattle
by breed. Overall, these results confirm that the calibration model was not influenced by
the sex or breed of the cattle used in the study and was exclusively due to the maturity/age
of the beef.

4. Conclusions

The adoption of innovative analytical methods is an important area for the meat
industry. These developments help to maintain the quality and authenticity of meat
products and ensure that consumers are consistently provided with high standard products,
in addition to protecting the reputation of businesses. This study reports the utilization of
portable HSI combined with chemometrics to successfully determine the maturity of sirloin
steaks which ranged from 10 to 40 days aged. For both trials, the external validation sets
could predict “unknown” samples, with 96% and 91% of meat samples correctly assigned
to the correct maturity class during Trial 1 and Trial 2, respectively. The results highlight the
potential for this non-destructive and rapid methodology to be employed as an authenticity
tool within industry. Future research could also incorporate other parameters (including
different cuts of meat) to develop further models and explore how this technique could be
incorporated within a digitally connected food supply chain.
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