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Abstract: Black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) is widely recognized for its
bioactive compounds and antioxidant properties. The black carrot of Cuevas Bajas (Málaga) is a local
variety characterized by a black/purple core, which differs from other black carrot varieties. Therefore,
this autochthonous variety was characterized according to the root size and the harvesting season by
means of a study of its antioxidant capacity analyzed by three methods, its total carotenoids content,
and its sugars and phenolic compounds profile by ultra-high performance liquid chromatography
coupled to high-resolution mass spectrometry (UHPLC-MS). A total of 20 polyphenolic compounds
were quantified in 144 samples analyzed. The anthocyanidins group was observed to be the most
abundant, followed by the hydroxycinnamic acids group. Moreover, pelargonidin 3-sambubioside
was observed in black carrot for the first time. The medium-sized carrots presented the highest
content of phenolic compounds, largely due to their significantly higher anthocyanidins content.
Comparatively, the small carrots showed a higher content of simple sugars than the large ones.
Regarding the influence of season, significantly higher quantities of glucose and fructose were
observed in the late-season carrots, while sucrose was the main sugar in early-season samples. No
significant differences were observed in the total carotenoid content of black carrot.

Keywords: black carrot; antioxidant capacity; flavonoids; anthocyanins; simple sugars; carotenoids;
HPLC-MS; vegetables

1. Introduction

The last few decades have seen a paradigm shift from the consumption of processed
foods to natural, healthier food products [1]. One reason for this trend is that foods like
fruits and vegetables are a good source of an extensive range of phytochemicals with proven
health-promoting properties. Among them, black carrot (Daucus carota ssp. sativus var.
atrorubens Alef.) has presented a higher antioxidant capacity and quantity of polyphenols
than other vegetables, including the more widely consumed orange carrot [2,3]. Black
carrot originated in Middle Asia, although the consumption of its different varieties has
been increasing in Western European countries in the last decade [4].

The phytochemical content of black carrot differs greatly from other colored carrots,
with them being a richer source of phenolic compounds [3,5]. The polyphenol profile of
black carrots is remarkable for a high content of anthocyanins, a group of water-soluble
pigments responsible for the purple color in many fruits and vegetables [6]. Anthocyanins
constitute the largest group of bioactive compounds in black carrots, with acylated com-
pounds being the major anthocyanin derivatives present in this vegetable [5]. Therefore,
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black carrot anthocyanins have been the focus of numerous investigations [7,8]. The litera-
ture reports high contents of hydroxycinnamic acids and flavonoids such as chlorogenic
acid, caffeic acid, ferulic acid, and epicatechin [8]. This characteristic polyphenolic pro-
file is important in terms of pharmacological properties, as it is related to its antioxidant,
antitumor, and anti-inflammatory activities, and to preventing the effects of metabolic
disorders [9]. In addition, products derived from black carrots [10,11] or their use to enrich
other products [12,13] have been widely evaluated, promoting their potential application
in the food industry.

However, the phytochemical composition of black carrot depends on many factors,
such as cultivar, root size, soil, irrigation, and the environmental conditions during produc-
tion [14,15].

Specifically, black carrot, known in Spain as “zanahoria morá”, is an indigenous crop
from Cuevas Bajas with distinctive features that are specific to the production area, such
as its roots with a purple core, which positively influence its polyphenolic profile. The
cultivation of this autochthonous variety is limited to small farms in an endangered area.
The promotion of its cultivation is an opportunity for rural development and helps to
prevent the depopulation of the area, objectives within the common agricultural policy
(CAP) of the European Commission. Moreover, black carrots traditionally have been
harvested in November, December, and January. This early harvesting greatly limits the
production capacity of the location. Extending the harvesting periods to February, March,
and April would increase the economic value of this crop.

This study aims to chemically characterize the black carrot from Cuevas Bajas and
to investigate its polyphenol profile, antioxidant activity, and individual sugar and total
carotenoid content. Therefore, this study will provide information about how the phenolic
profile of the zanahoria morá varies according to the growing season and the root size at
harvesting time.

2. Materials and Methods
2.1. Chemicals

The reference compounds 3,4-dihydroxycinnamic acid, chlorogenic acid, 4-hydroxy-
3-methoxycinnamic acid, 4′-hydroxycinnamic acid, 3,4,5-trihydroxycinnamic acid,
4-hydroxybenzoic acid, (−-epicatechin, apigenin, cyanidin-3-glucoside, (±)-6-hydroxy-
2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox), and β-carotene, and the individual
sugars glucose, fructose, and sucrose, were obtained from Sigma-Aldrich (Steinheim, Ger-
many). Formic acid was obtained from Sigma-Aldrich. LC-MS grade water, methanol,
ethanol, dichloromethane, and acetonitrile were acquired from PanReac Applichem (Castel-
lar del Vallés, Barcelona, Spain).

Note: the names for the phenolic compounds used in this paper are based on the
nomenclature thesaurus of Kay et al., 2020 [16].

The reagents 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium
salt (ABTS), 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH), 2,2′-azobis(2-
methylpropionamidine) dihydrochloride (AAPH), fluorescein, potassium persulfate, sodium
hydroxyde, potassium dihydrogen phosphate, and sodium hydrogen phosphate were also
acquired from Sigma-Aldrich (Steinheim, Germany).

2.2. Materials, Sample Collection, and Preparation

The black carrot samples were grown in a Mediterranean cultivation area. These
soils are free-draining, highly porous, and have a very abundant mineral composition
characteristic of the area. No chemical fertilizers were used. The samples were harvested
in two consecutive harvesting seasons: early-season (from November to January) and
late-season (from February to April) over two years 2016–17 and 2017–18 from Cuevas
Bajas (Málaga, Spain). The weather conditions of both periods are detailed in Table S1 [17].
The early-season carrots were planted at the end of August and harvested at a crop age of
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3–5 months (from November to January), while late-season carrots were planted in October
and harvested from February to April.

Upon arrival in the laboratory, the black carrots were classified into different independent
groups by root size: small (<30 mm diameter), medium (between 30 and 60 mm diameter),
and large (>60 mm diameter). Thus, a total of 144 black carrot samples were organized
according to carrot size into 36 groups, namely 8 big, 10 medium, and 18 small sizes, each
group consisting of 4 carrots. Besides, the samples were also classified as early-season (n = 25)
and late-season (n = 11) black carrots.

The black carrot samples from each group were cut and ground with a Sammic Cutter
SK-3 and subsequently lyophilized using a Labconco Stoppering Tray Dryers lyophilizer,
and then ground to a final particle size of 10 µm using a mixer mill (Retsch GmbH, Haan,
Germany). They were then stored at –80 ◦C until their extraction and analysis.

For polyphenol analysis and assays of antioxidant activity, the black carrot samples were
extracted adapting a previously published protocol optimized by Moreno-Rojas et al. [15].
Briefly, 0.2 g of lyophilized and ground sample was mixed with 1 mL of deionized wa-
ter:methanol (80:20, v/v) with 1% formic acid for 2 min and the mixture was sonicated for
15 min and then centrifuged at 15,000 rpm for 20 min at 4 ◦C. The supernatant was collected
and the residue was re-extracted twice using 1 mL of the same solvent following the same
protocol described previously. All supernatants were pooled to a final volume of 2 mL and
frozen at −80 ◦C until their analysis. Sugars were extracted from the black carrot samples
following the method previously described by Moreno-Ortega et al. [18]. Briefly, 0.2 g of
sample was mixed with 1 mL of deionized water:ethanol (20:80, v/v), sonicated in ultrasonic
bath for 10 min, and centrifugated at 15,000 rpm for 15 min. The supernatant was collected and
the residue was re-extracted twice using 1 mL of the same solvent following the same protocol
described previously. All the supernatants were pooled together and frozen at −80 ◦C until
HPLC-RID analysis.

2.3. Analysis of Flavonoids, Phenolic Acids, and Anthocyanins

The identification and quantification of flavonoids and anthocyanins in the black
carrot extracts were carried out using a UHPLC-HR-MS mass spectrometer system (Thermo
Scientific, San José, CA, USA) consisting of a UHPLC pump, a PDA detector scanning from
200 to 600 nm, an autosampler operating at 4 ◦C (Dionex Ultimate 3000 RS, (ThermoFisher
Scientific, San Jose, CA, USA), and an Exactive Orbitrap mass spectrometer.

2.3.1. Analysis of Flavonoids and Phenolic Acids

The analysis of phenolic compounds was based on the protocol previously described by
Pereira-Caro et al. [11]. The separation was performed on a Kinetex C18 (150 mm × 4.6 mm;
i.d., 5 µm 100 A (Phenomenex, Macclesfield, UK) preceded by a guard pre-column of the same
stationary phase and maintained at 40 ◦C. An Exactive Orbitrap mass spectrometer (Thermo
Scientific, San José, CA, USA) fitted with a heated electrospray ionization probe (HESI) was
used to determine the polyphenols. The operating method was in negative ionization mode.

Quality control samples (QC) were applied to assess and ensure the analytical process.
Data acquisition and processing were carried out using Xcalibur 3.0 software (Thermo
Scientific, San José, CA, USA).

2.3.2. Analysis of Anthocyanins

The anthocyanins in the black carrot extracts were separated following the protocol
previously described by Ordoñez-Díaz et al. [19]. Subsequently, the eluate from the column
was directed straight to an Exactive Orbitrap mass spectrometer (Thermo Scientific, San
José, CA, USA), equipped with a heated electrospray ionization probe (HESI), functioning
in positive ionization mode to ascertain the presence of anthocyanins.
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2.3.3. Identification and Quantification of Flavonoids and Anthocyanins

Targeted identifications of polyphenols were achieved as follows: (i) by comparing
the exact mass and the retention time with available standards; and (ii) in the absence of
standards, compounds were tentatively identified by comparing the theoretical exact mass
of the molecular ion with the measured accurate mass of the molecular ion, and a search
was performed of metabolite databases such as Metlin, Phenol Explorer, and more general
chemical databases including PubChem and ChemSpider.

Metabolites with molecular masses falling within the predetermined tolerance (≤5 ppm)
of the target masses were obtained from these databases. Polyphenols were measured by
identifying the theoretical exact mass of the molecular ion using standard curves. If reference
compounds were unavailable, quantification was based on the calibration curve of a closely
related parent compound.

2.4. Analysis of Simple Sugars

The quantification of glucose, fructose, and sucrose in the black carrot extracts was
carried out using the method described by Moreno-Ortega et al. [18]. The sugars were iden-
tified by comparing the retention times with pure reference standards. Quantification was
performed by reference to the 0.3–50.0 g/L calibration curves of fructose and 0.3–10.0 g/L
of glucose and sucrose.

2.5. Analysis of Antioxidant Activity
2.5.1. ABTS Assay

The free radical scavenging activity was measured using the ABTS decoloration
method by Ordoñez-Diaz et al. [19]. The antioxidant activity was represented as mg of
Trolox equivalents per 100 g of dry sample (mg TE/100 g DW). Values represent the mean
of three measurements.

2.5.2. DPPH Assay

Free radical DPPH (1,1-diphenyl-2-picryl-hydrazyl) scavenging capacity was de-
termined using the method previously described by Pereira-Caro et al. [11]. The an-
tioxidant activity was expressed as mg of Trolox equivalents per 100 g of dry sample
(mg TE/100 g DW). Each value is the average of three measurements.

2.5.3. ORAC Assay

The oxygen radical scavenging activity was measured by the ORAC assay, according to
the method previously published by Tuárez-García et al. [20]. ORAC values are expressed
as mg of Trolox equivalents per 100 g of dry sample (mg TE/100 g DW).

2.6. Analysis of Total Carotenoids

The lipophilic fraction extraction and saponification were conducted according to a
method previously described by Ordóñez-Díaz et al. [19], with some adjustments. Total
carotenoids were quantified using the procedure outlined by Morales et al. [21]. The
lipophilic extract was dissolved in dichloromethane and transferred to a flat-bottomed
96-well quartz microplate with a well capacity of 300 µL (Hellma Analytics, Plainview, NY,
USA). Absorbance was measured at 450 nm using a Synergy HTX Multi-Mode Microplate
Reader (Biotek Instruments, Winooski, VT, USA). Total carotenoids were expressed as mg
of β-carotene equivalents per 100 g of dry sample (mg βC/100 g DW). All measurements
were performed in triplicate.

2.7. Statistical Analysis

The data underwent analysis of variance (ANOVA) to discern variations among the
samples. A two-way ANOVA was performed, followed by a means comparison using the
Tukey post hoc test, conducted using R software (v. 3.6.3, R Core Team, Vienna, Austria).
The level of significance was established at p < 0.05. The Pearson correlation (p ≤ 0.01)
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was analyzed by the OriginPro software, version 2024 (free trial version) (OriginLab
Corporation, Northampton, MA, USA).

3. Results and Discussion
3.1. Effect of the Harvesting Season Period and the Root Size on Individual Sugars of Black Carrot

Figure 1 shows the content of fructose, glucose, and sucrose present in black carrots
obtained by HPLC-RID. Focusing on individual sugars, sucrose was the main sugar quanti-
fied in all three carrot sizes, followed by glucose (Figure 1A). Glucose, fructose, and sucrose
confirm the simple sugar content of black carrot [22]. Therefore, these three sugars are
responsible for the sweet taste of black carrot. The results showed significant differences
between the samples by size. Small carrots presented a higher content of fructose and
glucose than large carrots. This could be explained by the synthesis of fructose while
the plant matures and grows [23]. Regarding the harvesting season period, significant
differences were observed in the sugar profile (Figure 1B). The early-season carrots had
a lower concentration of glucose and fructose and a higher content of sucrose, whilst
late-season carrots contained more of the two monosaccharides and less sucrose. A reverse
trend was noted between the content of fructose and glucose in carrots versus the sucrose
content. According to our results, collecting small carrots early in the season could be a
good strategy for increasing the naturally sweet taste.
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Black carrots have a high concentration of glucose and fructose, making them sweeter
than commercial orange carrots [24]. In the literature, orange carrots have reported a lower
content of the monosaccharides glucose (1.13 g/100 g) and fructose (1.16 g/100 g), as well
as the disaccharide sucrose (2.19 g/100 g) [24] when compared with the mean concentration
obtained in these black carrot samples (13.4 g/100 g of glucose, 12 g/100 g of fructose, and
17 g/100 g of sucrose). The choice of variety seems to be the most important pre-harvest
factor for the nutritional quality of carrots [14]. This makes black carrots more desirable
for fresh consumption and the elaboration of derived products [25], and, therefore, of
greater value to the food industry. To this end, previous studies have positively evaluated
the use of black carrot powder in baked products. The results showed an increase in
consumer acceptability of these healthier products [26,27]. Moreover, the local carrot
studied here presented significantly higher sugar content than other black carrots found
in the literature [3,24], so the addition of free sugars or sweeteners to make manufactured
products would be reduced, increasing their health benefits, a feature highly demanded
by consumers.
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3.2. Identification and Quantification of Polyphenols in Black Carrot

The basis of the proposed identification is shown in Table 1. For additional information
on the HPLC-HR-MS profiles, see Figures S1 and S2 in Supporting Information. A total
of 20 phenolic compounds were tentatively identified and quantified in the black carrot
samples, namely four hydroxybenzoic acid derivatives (3.4.5-trihydroxybenzoic acid, 3,4-
dihydroxybenozic acid, 4-hydroxybenzoic acid, and 2.4-methoxy.4-hydroxybenzoic acid),
four hydroxycinnamic acid derivatives (chlorogenic acid, 3,4-dihydroxycinnamic acid, 4-
hydroxy-3-methoxycinnamic acid, and o-feruloylquinic acid), two flavanones (two isomers
of eriodictyol-glucoside), one flavonol (quercetin-3-galactoside), and eight anthocyanins
(including cyanidin-3-xylosyl-glucosyl-galactoside, cyanidin-3-xylosyl-galactoside, cyanidin-
3-xylosyl-(sinapoylglucoside)-galactoside, cyanidin-3-xylosyl-(feruloylglucosyl)-galactoside,
cyanidin-3-xylosyl-(coumaroylglucosyl)-galactoside,
perlargonidin-3,5-diglucoside, pelargonidin-3-sambiburoside, and delphinidin-3-glucoside).

Most previous studies of black carrots focused on their anthocyanin profile, with little
attention paid to the other polyphenol families [2,5]. In the literature, only one similar
study of black carrots performed a complete analysis of the polyphenolic profile, to the
authors’ knowledge [8]. In addition, to our knowledge, this study marks the first time
that pelargonidin 3-sambubioside has been identified and quantified in black carrot. This
compound has been previously identified in different berry fruits [28,29].

The mean concentration of phenolic compounds quantified in the black carrot samples,
divided into three different root sizes and two harvesting season periods, is presented in
Table 2. In general, a high content of phenolic compounds (340–432 mg/100 g DW) was
found in the samples. This black carrot variety was found to have a higher content of
phenolic acids than other black carrots reported previously in the literature [31]. Antho-
cyanins followed by hydroxycinnamic acids represented the major groups quantified in the
samples. The contents of hydroxybenzoic acids, flavonols, and flavanones groups were
significantly lower.

Black carrot is known for its high anthocyanin content due to its characteristic color.
Indeed, other studies reported that black carrots have significantly larger amounts of an-
thocyanins compared to carrots of other colors [3,5]. Anthocyanins represented between
45.6–49.5% of the total phenolic compounds in all the carrot samples evaluated. These
compounds are widely known for their health-promoting and pigmenting properties [32].
Therefore, considering that consumers are increasingly demanding more natural food
processing, the use of colored foods instead of synthetic dyes would improve the nutri-
tional quality and economic value of food products. Regarding the anthocyanins profile,
cyanidin-derived compounds accounted for 99.5% of the total anthocyanin content in the
black carrots evaluated, cyanidin 3-xylosyl(feruloylglucosyl)galactoside being the main
compound for all the sizes and seasons. Moreover, other anthocyanin compounds (peonidin
3-xylosylglucosylgalactoside, pelargonidin 3,5-diglucoside, pelargonidin 3-sambubioside,
and delphinidin 3-glucoside) were detected in lower concentrations. In general, these antho-
cyanin compounds present important antioxidant and anti-inflammatory properties [33,34],
proving their remarkable importance in black carrot.

Among phenolic acids, hydroxycinnamic acids represented 98% of the total content,
with a great contribution of o-feruloylquinic acid and chlorogenic acid (Table 2). It was
noted that o-feruloylquinic acid was the main compound in black carrot, representing
among the 72.8–79% of the total phenolic acids content. This information contrasts with
other results from the literature, where various authors reported chlorogenic acid as the
main phenolic acid in black carrot [3,8]. This is explained by the absence of feruloylquinic
acid among the compounds identified in most of the articles.
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Table 1. Identification by HPLC-HR-MS of polyphenols in black carrots. For HPLC-HR-MS peaks see Figures S1 and S2 in Supporting Information.

Peaks Compounds Chemical Formula [m/z]− Theoretical Error (ppm) Retention Time (min) MSIMI Level a

Hydroxybenzoic acids
C1 3,4,5-Trihydroxybenzoic acid (gallic acid) C7H6O5 169.0131 1.12 3.2 1
C2 3,4-Dihydroxybenzoic acid C7H6O4 153.0182 1.60 5.9 1
C3 4-Hydroxybenzoic acid C7H6O3 137.0243 1.82 9.3 1

C4 2,4-Methoxy-4-hydroxybenzoic acid
(siringic acid) C9H10O5 197.0445 4.01 16.8 1

Hydroxycinnamic acids
C5 Chlorogenic acid C16H18O9 353.0867 1.63 11.7 1
C6 3,4-Dihydroxycinnamic acid (caffeic acid) C9H8O4 179.0351 2.31 11.8 1

C7 4-Hydroxy-3-methoxycinnamic acid
(ferulic acid) C10H10O4 193.0516 3.29 15.2 1

C8 O-Feruoylquinic acid C17H20O9 367.1024 1.31 14.4 2

Flavanones
C9 Eriodictiol-O-glucoside (I) C21H22O11 449.1078 −1.48 12.6 2
C10 Eriodictiol-O-glucoside (II) C21H22O11 449.1078 −1.48 15.8 2

Flavonols
C11 Quercetin-3-galactoside C21H20O12 463.0871 3.06 15.9 2

Anthocyanins
C12 Cyanidin-3-xylosyl-glucosyl-galactoside C32H38O20 743.2039 b −2.12 5.1 2
C13 Cyanidin-3-xylosyl-galactoside C26H28O15 581.1497 b -0.6 5.3 2

C14 Cyanidin-3-
xylosyl(sinapoylglucosyl)galactoside C43H48O23 949.2608 b −1.26 5.6 2

C15 Cyanidin-3-
xylosyl(feruoylglucosyl)galactoside C42H46O23 919.2503 b −2.75 5.7 2

C16 Cyanidin-3-
xylosyl(coumaroylglucosyl)galactoside C41H44O22 889.2397 b −0.76 5.7 2

C17 Peonidin 3-xylosylglucosylgalactoside C33H40O20 757.2185 b −3.85 8.2 2
C18 Pelargonidin-3-sambiburoside C26H28O14 565.1544 b −1.42 5.6 2
C19 Pelargonidin-3.5-diglucoside C27H30O15 595.1641 b −0.53 5.7 2
C20 Delphinidin-3-glucoside C21H20O12 465.1028 b −0.87 6.4 1

a Metabolite Standards Initiative metabolite identification (MSIMI) levels [30]. Reference compounds were available for all compounds identified at MSIMI level 1. Compounds at
MSIMSI level 2 were tentatively identified. b Compounds identified with positive ionization [m/z]+.
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Table 2. Concentration (mg/100 g DW) of phenolic compounds identified in black carrot samples of different root sizes (S) and harvesting seasons (H).

Size Season

Compounds Large Medium Small p-Value Early Late p-Value SxH
p-Value

3,4,5-Trihydroxybenzoic acid (gallic acid) 0.018 0.008 0.014 ns 0.019 a 0.000 b ** ns
3,4-Dihydroxybenzoic acid 2.59 2.77 2.62 ns 3.22 a 1.35 b *** ns
4-Hydroxybenzoic acid 1.09 ab 1.17 a 0.97 b * 1.15 a 0.87 b *** ns
2,4-Methoxy-4-hydroxybenzoic acid (siringic acid) 0.053 b 0.073 a 0.066 ab * 0.067 0.06 ns ns

Total Hydroxybenzoic acids 3.7 4 3.7 ns 4.5 a 2.3 b *** ns
Chlorogenic acid 35 44 41 ns 40 42 ns ns
3,4-Dihydroxycinnamic acid (caffeic acid) 0.31 0.39 0.31 ns 0.40 a 0.17 b ** ns
4-Hydroxy-3-methoxycinnamic acid (ferulic acid) 4.3 a 4.2 ab 4.0 b * 4.2 4.0 ns ns
O-Feruoylquinic acid 128 171 135 ns 130 b 182 a * ns

Total Hydroxycinnamic acids 167 220 181 ns 174 b 228 a * ns
Total Phenolic Acids 171 224 184 ns 178 b 230 a * ns

Eriodictyol-O-glycoside (I) 0.31 ab 0.31 b 0.31 a ** 0.31 0.31 ns ns
Eriodictyol-O-glycoside (II) 0.31 0.31 0.31 ns 0.31 0.31 ns ns

Total Flavanones 0.62 ab 0.61 b 0.63 a * 0.62 0.62 ns ns

Quercetin-3-O-galactoside 0.33 b 0.42 a 0.40 a ** 0.38 0.41 ns ns

Cyanidin 3-xylosyl-glucosyl-galactoside 10 b 14 a 12 ab * 10 b 17 a *** ns
Cyanidin 3-xylosyl-galactoside 43 b 65 a 50 ab * 57 a 43 b * ns
Cyanidin 3-xylosyl(sinapoylglucosyl)galactoside 24 25 24 ns 21 b 32 a *** **
Cyanidin 3-xylosyl(feruloylglucosyl)galactoside 79 91 77 ns 77 b 93 a * ***
Cyanidin 3-xylosyl(coumaroylglucosyl)galactoside 11 10.4 7.8 ns 10.6 a 7.1 b * *
Peonidin 3-xylosylglucosylgalactoside 0.053 0.06 0.057 ns 0.058 0.053 ns ns
Pelargonidin 3,5-diglucoside 0.34 0.46 0.33 ns 0.42 a 0.27 b * ns
Pelargonidin 3-sambubioside 0.19 ab 0.28 a 0.18 b * 0.25 a 0.14 b ** ns
Delphinidin 3-glucoside 0.28 b 0.48 a 0.39 ab * 0.37 0.43 ns ns

Cyanidin 167 b 205 a 171 b ** 176 193 ns ***
Peonidin 0.053 0.060 0.057 ns 0.058 0.053 ns ns

Pelargonidin 0.53 ab 0.74 a 0.50 b * 0.67 a 0.40 b ** ns
Delphiinidin 0.28 b 0.48 a 0.39 ab * 0.37 0.43 ns ns

Total Anthocyanins 168 b 207 a 172 b ** 177 194 ns ***

Total Phenolic Compounds 340 b 432 a 357 ab ** 357 b 425 a ** ***

Mean values with different letters in the same row present significant differences. Significant level: ns = not significant. * = p < 0.05. ** = p < 0.01. *** = p < 0.001. Values are expressed as
means of root sizes and harvesting seasons.
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Significant differences were found in the concentration of polyphenols according to
the size of the black carrots. The medium ones showed the highest total phenolic con-
tent. Specifically, they presented higher contents of total anthocyanins than the small
and big sizes. Focusing on their anthocyanins profile, a significantly higher content of
cyanidins was found in the medium-sized carrots, with a notable contribution from the
cyanidin 3-xylosyl-glucosyl-galactoside, cyanidin 3-xylosyl-galactoside, and cyanidin 3-
xylosyl(feruloylglucosyl)galactoside compounds. A remarkably higher content of hydrocin-
namic acids were also obtained in the medium-sized samples due to the high contribution
of feruloylquinic acid and chlorogenic acid compounds.

The carrots harvested late in the season presented a significantly higher content of
total phenolic compounds, due to their higher phenolic acid content. Those harvested
early in the season presented a two-fold higher content of the hydroxybenzoic acids group
of compounds, mainly due to the contribution of protocatechuic acid, 4-hydroxybenzoic
acids, and gallic acid compounds, whilst the black carrots harvested during the late season
showed a significantly higher amount of the hydroxycinnamic acids group of compounds.
Regarding the anthocyanins profile, no significant differences were observed for its total
content by harvesting period, but differences were observed for individual compounds.
While the early-season carrots reported higher contents of cyanidin 3-xylosyl-galactoside,
cyanidin 3-xylosyl(coumaroylglucosyl)galactoside, pelargonidin 3,5-diglucoside, and
pelargonidin 3-sambubioside, the late-season samples showed a higher content of cyani-
din 3-xylosyl-glucosyl-galactoside, cyanidin 3-xylosyl(sinapoylglucosyl)galactoside, and
cyanidin 3-xylosyl(feruloylglucosyl)galactoside. It can be hypothesized that the differ-
ences found could be due to the competitive synthesis mechanism determined by the
harvesting season.

3.3. Effect of the Harvesting Season and the Root Size on the Antioxidant Capacity of Black Carrot

The black carrot samples analyzed from different harvesting seasons and root sizes
presented high antioxidant activity values (Figure 2), according to previous research in the
literature [5]. In general, the amount of total phenolic compounds determined by HPLC
is linked to the antioxidant activity results obtained for root size samples (ABTS) and for
harvesting season (DPPH) (Table 2). The medium-sized black carrot samples analyzed
showed the highest values for antioxidant capacity using the ABTS assay. Similar trends
were observed for the data obtained with the DPPH and ORAC assays, but no statistically
significant differences were found for either. Regarding the harvesting periods under study,
statistical differences (p < 0.05) were found for the DPPH method, specifically, the black
carrot samples harvested during the late season showed higher antioxidant capacity values.
Differences in the results of antioxidant activity obtained with the ORAC assay and those
from the ABTS and DPPH assays are common due to their different chemical principles.
While ORAC is based on the evaluation of peroxyl radical scavenging, ABTS and DPPH
assays are based on the capacity of sample extracts to scavenge the free radical cation [35].

The black carrot samples analyzed showed much higher antioxidant capacity values
(DPPH) than traditionally-consumed orange carrots (48.78 mg/100 g). Indeed, the black car-
rots presented higher antioxidant capacity values than any other colored carrots evaluated
to date in the literature (yellow carrot: 25.47 mg/100 g; purple carrot: 545.28 mg/100 g) [24].
Anthocyanins were the main family of compounds found in the samples analyzed and
have been proven to have a good free radical scavenging capacity [2,36]. These compounds
have even been evaluated for their use to enrich products and increase their value [37].
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3.4. Effect of the Season Period and the Root Size on Total Carotenoids and Lipophilic Antioxidant
Capacity of Black Carrot

The total carotenoid values obtained from the samples of different sizes were not
significantly different (Table 3). Moreover, significant differences were not found in the
mean values obtained for total carotenoids for the samples harvested during the early- and
late-season periods (4.0 and 4.1 mg/100 g DW, respectively). These results prove the high
stability of the carotenoid content in black carrots. The carotenoid content results were
conditioned by the color of the root [38], being significantly higher in varieties of different
colors [2]. Moreover, no significant differences were observed in the antioxidant activity
evaluated in the lipophilic extract for the black carrot samples based on the two factors
under study: harvesting season period or root size. These results are in agreement with
previous studies of black carrots that reported a less significant value for the antioxidant
capacity of the lipophilic fraction [3,39,40].

Table 3. Total carotenoid content (mg/100 g DW) and antioxidant activity of the lipophilic extract
measured by the ABTS assay of black carrot samples of different harvesting seasons (H) and root
sizes (S).

Size (S) Season (H)

Large
Size

Medium
Size

Small
Size p-Value Early-

Season
Late-

Season p-Value SxH
p-Value

Carotenoids 3.9 3.9 4.2 ns 4 4.1 ns ns
ABTS-L 27 29 25 ns 26 28 ns ns

Significant level: ns = not significant. Data are expressed as mean values.

3.5. Pearson Correlation

In this study, a Pearson correlation test was performed to evaluate the relationship
between the different parameters evaluated (Figure 3). As expected, a high correlation
was observed between the three antioxidant activity assays performed on the hydrophilic
extract. In addition, a strong correlation between the antioxidant assays data and the total
anthocyanins content was observed. Despite the influence of other compounds on the
antioxidant capacity, this result can be explained by the fact that anthocyanins represent
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almost 50% of the phenolic content obtained by the chromatographic method. More-
over, this family of phenolic compounds has been widely characterized by the literature
because of its great antioxidant potential [36], it being mainly responsible for the high
antioxidant power of the black carrot. Meanwhile, an inverse relationship was found be-
tween monosaccharides and the disaccharide, which is evidence of the synthesis of sucrose
from the glucose and fructose monosaccharides during carrot ripening. No correlation
between total carotenoid content and the antioxidant activity of the lipophilic extract was
found, as would be expected. This result could be explained by the contribution of other
lipophilic substances present in the lipophilic extract with antioxidant capacity, such as
tocopherol [18].
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Figure 3. Pearson’s correlation coefficients between the antioxidant activity of the hydrophilic
extract (ABTS-H, DPPH, ORAC), the total carotenoids content (TC) and antioxidant activity of the
lipophilic extract (ABTS-L), the sugar content (HPLC) and total phenolic acids and flavonoids content
(HPLC). TA: total anthocyanins; HBA: total hydroxybenzoic acids; HCA: hydroxycinnamic acids;
FLAV: flavonols; FLAN; flavanones.

3.6. Partial Least Squares-Discriminant Analysis (PLS-DA)

Multivariate analyses (PLS-DA) were performed to evaluate the information found
in this research and the factors under study. The implication of the variables in the differ-
entiation between the samples and the degree of homogeneity within the samples of the
same group were also evaluated. Figure 4 displays the differences between the samples
grouped by harvesting season (early- and late-season). The subspace spanned by the
first two latent variables (LV) explained 54.1% of the total variance. The first component
explained 33.2% of the total variance, and the main differences between the carrot samples
harvested during the early and late periods. As Figure 4B shows, the variation was mainly
attributed to the sugar content and the phenolic acids profile. On the one hand, fructose
and glucose, the two monosaccharides that constitute sucrose, are present in late-season
carrots in higher quantities, whilst sucrose, used by maturing plants for growth, is the
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main sugar in the early-season carrots (Figure 1). On the other hand, the late-season carrots
presented a significantly higher hydroxycinnamic acids content, whilst the early-season
carrots presented a higher content of hydroxybenzoic acids (Table 2). For this reason, the
phenolic acids content also contributes to the variance due to the season period.
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A PLS-DA method was performed to study the main sources of variation due to the
root size, but the results showed that no variable was mainly involved in the differences by
size (Figure S3).

4. Conclusions

This study provides information about the bioactive stability of the zanahoria morá
under the influence of the growing season and the root size at harvesting time. The
study brought to light the strong influence of the black core root of this carrot on the
anthocyanidins profile. The zanahoria morá of Cuevas Bajas presented a higher content of
anthocyanidins and therefore a higher antioxidant activity. In addition, this study marks
the first time that pelargonidin 3-sambubioside was observed in black carrot. Regarding the
harvesting period, the late-season carrots presented a higher concentration of anthocyanins
and total phenolic compounds, and a significantly higher antioxidant capacity by the DPPH
method (p < 0.05). Other parameters studied for both harvesting periods highlight that
the late season carrot could be an additional source of fresh black carrots, increasing the
productivity of this crop and providing longer periods of availability of this root vegetable.
These results evidence the great potential of this carrot variety, its great concentration of
bioactive compounds and high sugar profile providing added nutritional value. Moreover,
longer periods of availability of fresh black carrot could result in the increased production
of products with health benefits, which would be of great interest to the food industry and
provide an economic boost to the production area.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods13101575/s1. Table S1: Monthly values of the meteorological
factors of the experimental period. Figure S1: Representative UHPLC-HR-MS profile of polyphenols
in black carrot. Figure S2: Representative UHPLC-HR-MS profile of anthocyanins in black carrot. For
peak identification see Table 1. Figure S3: Score plot (A) and loading plot (B) of the PLS-DA by root
size in black carrot.
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