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Abstract: The recent millennium has witnessed a notable shift in consumer focus towards natural
products for addressing lifestyle-related disorders, driven by their safety and cost-effectiveness.
Nutraceuticals and functional foods play an imperative role by meeting nutritional needs and
offering medicinal benefits. With increased scientific knowledge and awareness, the significance of a
healthy lifestyle, including diet, in reducing disease risk is widely acknowledged, facilitating access
to a diverse and safer diet for longevity. Plant-based foods rich in phytochemicals are increasingly
popular and effectively utilized in disease management. Agricultural waste from plant-based foods is
being recognized as a valuable source of nutraceuticals for dietary interventions. Citrus peels, known
for their diverse flavonoids, are emerging as a promising health-promoting ingredient. Globally,
citrus production yields approximately 15 million tons of by-products annually, highlighting the
substantial potential for utilizing citrus waste in phyto-therapeutic and nutraceutical applications.
Citrus peels are a rich source of flavonoids, with concentrations ranging from 2.5 to 5.5 g/100 g
dry weight, depending on the citrus variety. The most abundant flavonoids in citrus peel include
hesperidin and naringin, as well as essential oils rich in monoterpenes like limonene. The peel
extracts exhibit high antioxidant capacity, with DPPH radical scavenging activities ranging from 70
to 90%, comparable to synthetic antioxidants like BHA and BHT. Additionally, the flavonoids present
in citrus peel have been found to have antioxidant properties, which can help reduce oxidative
stress by 30% and cardiovascular disease by 25%. Potent anti-inflammatory effects have also been
demonstrated, reducing inflammatory markers such as IL-6 and TNF-α by up to 40% in cell culture
studies. These findings highlight the potential of citrus peel as a valuable source of nutraceuticals in
diet-based therapies.

Keywords: citrus peel; extraction; supercritical; hyperlipidemia; hypoglycemic; antidiabetic

1. Nutraceuticals and Pharma Foods

In dietary regimen, functional and nutraceutical foods are gaining immense impor-
tance due to their health-enhancing potential [1,2]. These foods go beyond basic nutrition
to provide additional health benefits that can help prevent disease, thereby promoting
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overall health and well-being [3]. In spite of modern medical technologies, dietary inter-
ventions are gaining more popularity, owing to their long-term administration consistency
and antagonizing effect of various pharmaceuticals [4]. In this regard, functional and
nutraceutical foods are considered as a more cautious and sustainable approach for health
management [5]. Internationally, consumers have great concern for using natural resources
as an adjunct to pharmaceuticals against many ailments [6]. The thought of food as a
therapeutic agent can be traced back up to the era of Hippocrates, the father of medicine [7].

Functional foods may be natural or with certain components added or removed as
per their effectiveness, technological, or biotechnological practices [8]. Moreover, a food
with an altered nature of its one or more constituents, or one in which the bioavailability
of one or more of its components has been customized, or any combination of these
possibilities, also comes under the term functional foods, nutraceuticals, and designer
and therapeutic foods [9]. In addition, these foods contain medicinal properties and are
found in the prophylaxis of certain diseases such as cardiac events, hepatic and renal
disparities, hyperlipidemia, cancer, and PCOS; they also possess certain bio-regulatory
functions [10–13].

A diet rich in phytochemicals or bioactive components is of choice for the present
community because it is responsible for a decline in mortality rates due to their disease
defensive mechanism [14]. People consuming functional and nutraceutical diets are less
prone to illnesses, so they enjoy healthier lives [15]. Moreover, the outcome of lifestyle-
related disparities has been augmented due to an unhealthy lifestyle, poor eating habits,
and consumption of junk food. Moreover, a sedentary lifestyle and lack of exercise is also a
major contributor of these ailments [16].

Bioactive or functional components of plant-based foods have been claimed to have
disease-combating activities, and their regular utilization improves health status [17,18].
Recent advancements in the field of food and nutrition have focused on the consumption
of functional foods, and consuming functional foods will become the largest adaptive
trend in coming decades [19,20]. The health-enhancing and disease-preventive activities of
these foods are due to some non-nutritive or bioactive components [21]. These bioactive
components are different for different foods and include catechins, flavonoids, polyphenols,
anthocyanin, carotenoids, sulforaphane, isothiocyanates, fibers, and essential oils [22].

Poor dietary habits and sedentary lifestyles have created many health disparities like
cardiovascular diseases, high blood pressure, diabetes, obesity, osteoporosis, and cancer,
resulting in reduced life expectancy [23]. Advances in medical science have provided
mankind different ways to cope with these perils. However, their safety is a matter of
prime care. An increase in oxidative stress is the cardinal root for all of these diseases [24].

Among agricultural waste materials, the citrus peel has now become the latest issue
for researchers, who are exploring its rich phytochemical profile [25]. Interestingly, citrus
peel is considered as waste and is believed to adversely affect the cleanliness of urban areas.
However, their exploitation in food will not only offer an impending cost-effective inno-
vative generation therapeutics but also enhance the value of functional and nutraceutical
food products [26]. Citrus peel has been valorized for its phenolic content, e.g., phenolic
acid and flavonoids [27]. In the present decade, phenolic compounds of natural origin are
more desired due to their strong antioxidant potential either in food systems or in living
organisms for various maladies [28]. Therefore, the present chapter is an effort to highlight
the citrus peel’s dietary components and bioactive ingredients that are being exploited as
therapeutic agents (Figure 1) because they are more economical, effective, and practical to
reduce the risks associated with life-threatening disorders [29].
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2. Citrus Peel: An Insight

Citrus genus belongs to family Rutaceae and subfamily Aurantioideae. It is categorized
as a fruit having juicy vesicles containing segments [30]. Chief marketable citrus species
comprise of orange (Citrus sinensis), grapefruit (Citrus paradisi), lemon (Citrus limon), lime
(Citrus aurantifolia), and mandarin (Citrus reticulata) [31]. Citrus outer peel, having four por-
tions, includes endocarp, albedo, epidermis, and flavedo [30]. The flavedo portion of citrus
peel has chromoplasts, which give an orange, green, or yellow color, and glands containing
essential oil [32]. The inner portion, commonly known as the mesocarp of citrus, is called
the albedo; it is rich in hemicellulose, pectin and cellulose [33]. The inner flesh, or endocarp,
consists of carpels filled with compacted juice packets. Endocarp is primary source of juice
having sugar, organic acids, and pigments. Seeds of citrus fruit are found adjacent to core
in center of fruit [34].

According to data published by FAO in 2020, the annual production of citrus is
158,490,986 tons, and more than one-third have been processed in some of developing
countries, while up to 70% have been used in production of juice and concentrate [29,35].
Pakistan produces 2.6 million tons of citrus annually and is ranked 12th amongst the
citrus-producing countries [36]. During the development of the juice industry in 1950s,
researchers developed a new method regarding the use of high volumes of rind produce
in processing [37,38]. Juices and fresh citrus fruits are considered beneficial for health [39].
Nevertheless, the main sources and benefits were not well known for many years. New
health claims from citrus fruit and juice in physiological threats have been documented,
including the investigation of properties of various health-enhancing compounds like
phenolics, vitamin C, thiamine, folic acid, flavonoids, dietary fibers, carotenoids, and
limionoids [40].

Citrus is a valued fruit in Pakistan, ranking first amongst all fruits in terms of land
and output [41]. Pakistan’s environment is ideal for producing an extensive range of
fruits. Citrus fruits account for almost 40% of the total amount of fruits harvested in
Pakistan, where they are grown on an area of 199,400 hectares with a yearly production
of approximately 2.29 million tons [42]. Punjab province produces more than 95% of
citrus, with the Kinnow variety accounting for 70% of that total [43]. However, throughout
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the remaining regions of the globe, sweet orange varieties account for more than 70% of
the market, owing to a wider range of types from early to late ripening and fewer seeds
per fruit [44]. Pakistan’s average citrus production (11,000 kg/ha) is inadequate when
contrasted to the standard yields in different citrus-producing countries like Brazil, the
United States, and Turkey (22,000, 26,000, and 27,000 kg/hectare, correspondingly) [42,45].
The estimated annual yield of citrus throughout Pakistan is 18,000–20,000 kg/ha [42,46].
In Pakistan, the whole scenario of fruit cultivation is dominated by citrus with a large
area and production [36]. Punjab accounts for 75% of the total production of citrus fruit in
Pakistan [43,47]. About 33% of the total citrus fruit produced is processed commercially [48].
This percentage is greater in case of oranges, as more than 40% of globally produced oranges
are utilized for processing [49]. The proportion of grapefruit utilization for processing is
similar to that of oranges.

Citrus Peel: Chemical Profile

Citrus peel is obtained as a by-product after juice extraction or any other citrus pro-
cessing operation [50]. Pollution monitoring agencies and processing industries face severe
problem due to the perishable nature of citrus peel [51]. In the present scenario, there is a
need to utilize citrus peel to produce value added food products [52]. The utilization of by-
products of fruit waste provides monitoring benefits and resolves environmental problems
regarding citrus peel perishability [53]. Scientists have explored the rich phytochemistry
of this agro base waste for the development of functional foods and as well as dietary
supplements [54]. Consideration of people for the safe alternative of drugs also leads to
the production of nutraceutical products using citrus peel [55]. The antibacterial property
of citrus peel is also one of the leading causes to use it as a natural preservative instead of
employing various synthetic preservatives in different food products [56,57] (Table 1).

Table 1. Compositional profile of citrus peel.

Components Chemical Composition References

Total sugar content 165 mg/g

[58–60]

Pectin 128 mg/g

Crude fiber 86 mg/g

Crude protein 42 mg/g

Lignin 22 mg/g

Total ash 21 mg/g

Crude fat 15 mg/g

Carbohydrate 715.7 mg/g

Phenolic compounds 179 mg/g

Vitamin C 65 mg/g

β-carotene on dry weight basis 0.021 mg/g

Hesperidin 0.066 to 66 mg/g

Narirutin 0.03 to 26.5 mg/g

Certain scientific approaches have explored such sources for coping with physiological
threats that are cost-effective, easily assessable, and less toxic [61]. Fruits, vegetables, and
their peels are cheap sources of bioactive components [62]. Citrus peel, a by-product of the
juice processing industry, has proved its benefits due to its effectiveness against various
diseases like cardiovascular complications, diabetes, oxidative stress, cancer, etc. [29]. These
therapeutic effects are attributed to its flavonoid content, which has the power to scavenge
free radicals and shield cells and protect tissues from degeneration [63,64].
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Flavonoids are the largest group of naturally occurring phenolics that are mostly found
in the citrus family [65]. Citrus peel is a rich source of polymethoxylated flavones and
flavanones which are not present in other plants [66]. Two remarkable properties of citrus
flavonoids are their bitter taste and low solubility, which maximize its recovery in polar
solvents [67]. To explore the health-enhancing effects of peel extract, it is imperative to
estimate the therapeutically active ingredients as well as to optimize its content in resultant
extract [68].

The most prevalent flavanones present in orange peel (Citrus sinensis) are hesperidin,
naringin, and rutinose, which make up to 6.5 g/L of essential oil [59]. Hesperetin and
naringin are promising flavanones of orange peel and grapefruit peel, respectively [65].
Hesperidin is abundantly found in all over the peel, whereas naringin is predominant in
the flavedo portion [69].

Polymethoxylated flavone (PMF) from orange peel is a mixture of 5.44% hydroxylated
PMFs and 75.1% non-hydroxylated PMFs that show a comprehensive range of biological
activity [70]. Polymethoxylated flavones such as nobiletin, sinenstin, and tangeretin are
mostly confined in the essential oil of the flavedo portion; however, they are less frequent
than flavonones [59]. Comparatively, they are common in citrus, as two polymethoxylated
flavones (PMFs), nobiletin and tangeretin, are present in sweet and bitter orange peel [71].

In citrus fruits, two groups of flavonoids are present, including flavanone glycosides
like hesperidin, naringin, and neohesperidin, and polymethoxylated flavones comprising
nobiletin, tangeretin and sinensetin, as illustrated in Figure 2 [66]. Hesperidin, considered
the best among all flavanone glycosides, is well known to reduce the permeability of capil-
laries and enhance vascular integrity; it is also used as supplement for fragility and for the
permeability of blood vessel-compromised patients [72]. Hesperidin has certain pharmaco-
logical properties, like anti-inflammatory and analgesic effects, with oral carcinogenesis
inhibitory effects and menopausal symptoms against estrogen-like effects [73].
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Studies have shown the positive effects of nobiletin against Hepatitis-C, edema, sun-
burn (erythema), photo carcinogenesis, and photo aging [74]. About 1700 years ago, citrus
was cultivated in China, and they believed that drugs and foods were from same source;
citrus base ingredients are used commonly in TCM (Traditional Chinese Medicine) [75].
Menopausal symptoms and flatulence are cured in China using sour orange flower and
mature whole citrus fruit, and the peel is also used in reducing lung phlegm. Immature
citrus peel is recommended for digestion and gut disorders [76,77].
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Biological and pharmacological properties of peel, such as antioxidant, anti-inflammatory,
antiallergic, antiviral, antibacterial, antimutagenic and anticarcinogenic activities, are as-
sociated with these two major classes of flavonoids [65]. In the United States, previous
studies have reported that the total intake of flavonoids should be 1 g/day for glycosides
and 650 mg/day for aglycones. Keeping in view the health aspects associated with citrus
peel flavonoids, food processors are engaged in the preparation of peel extracts of variable
concentrations to be utilized as food supplements for humans [59,78]. For example, hes-
peridin that is extracted from de-oiled orange peel and contains both classes of flavonoids
(flavanones and flavones) is being used in Western countries for various ailments [79].

3. Comparative Assessment of Citrus Peel Extraction Methods

Phenolic compounds are comprised of aromatic rings, and their enormous structural
diversity ranges from simple to highly polymerized phenolics [2,80]. Phenolics naturally
exist as conjugates of monosaccharaides, polysaccharides, and their derivatives, such as
methyl esters [81]. They are categorized into three classes due to their structural diver-
gence: phenolic acids, tannins, and flavonoids [80]. There are two subclasses of phenolic
acids: hydroxycinnamic acids and hydroxybenzoic acids, which mostly occur in citrus
by-products [82]. Hydroxycinnamic acids have aromatic ring structure, including caffeic,
ferulic and sinapic acids, while hydroxylbenzoic acid comprises gallic, vanillic, syringic
acids [83]. Tannins are high-molecular-weight compounds that are of less significance in
the human diet [84].

Different solvents are used to extract bioactive components from citrus peel (Figure 3).
Solvents such as ethyl acetate, petroleum ether acetone, ethanol, and water are used [85].
After lemon peel extraction, results have shown differences in the extraction yields of
different solvents [86]. Ethyl acetate has the highest extraction yield (18%), followed by
acetone, and ethanol has the least [87]. Citrus sinensis peel showed the maximum extraction
yield in acetone (17%), followed by ethyl acetate, which was about 12% [88]. Aqueous
extract has moderate extraction yield compared to other solvents [89].
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Moreover, the supercritical fluid extraction of bioactive ingredients from natural
compounds of different sources is widely investigated due to its immediate advantage on
many other traditional extraction techniques [2,90,91]. Solvent selectivity and power make
this process flexible, reducing the losses of expensive solvents and the polluting effect of
organic solvents [92]. Many compounds are considered as supercritical fluid extraction
solvents, including hydrocarbons such as butane, hexane, pentane, sulfur hexafluoride,
nitrous oxide, and fluorinated hydrocarbons [93]. The most popular, safe, readily available,
and low-cost solvent used in supercritical fluid extraction is carbon dioxide (CO2) [94]. It
allows operations moderately at room temperature and different pressures [95]. The only
drawback of supercritical fluid extraction is its high initial investment cost compared to
conventional extraction techniques [96]. Nevertheless, the processing scheme is relatively
cheap and simple [97].

In supercritical fluid extraction, fluids have better diffusion properties and lower
viscosities [2,95]. The efficiency of supercritical fluid extraction (SFE) depends on the purity
of the solvent, along with the supercritical fluid (CO2) and the motion of gases with the
solvent [98]. The viscosity and density of these fluids exist between those of liquids and
gases [99]. Likewise, the diffusivity of such fluids is aptly higher than that of liquids, which
permits higher extraction rates [100]. Operating conditions like temperature and pressure
are responsible for fluctuations in the extraction efficiency, enabling the regulation of the
solvent effect [101]. Recently, supercritical fluid extraction (SFE) was considered as a good
technique for extracting health-enhancing components [102].

A shorter extraction period and high selectivity in extraction compounds is offered
by supercritical CO2 extraction, along with no solvent residue and with positive effects on
extract quality [103]. The flexibility in controlling the variables intact in the supercritical
fluids extraction process allows one to improve an experimental condition that considers
the influence of a substance of interest [104,105]. Essential oil, carotenoids, fatty acids,
phenolic compounds, and alkaloids have been extracted from various natural products
using water at hydrothermal conditions and supercritical extraction [106].

In the field extraction of heat-sensitive components that are specially made for human
nutrition, CO2 is the best supercritical fluid due to its physical and chemical properties
and its values of low critical pressure and temperature [102]. Mainly in the fields of food
application, water is also considered as a supercritical solvent for extraction [107]. Polar
components are environmentally friendly, like water, especially for compounds sensitive to
heat [108]. Extracts collected by the procedure of supercritical fluid extraction are of higher
quality than those which are gained from steam and water distillation or from organic
solvent extraction, which can induce water solubilization, hydrolysis, and the thermal
degradation of some components [90,106].

4. Polyphenolic Moieties

Various chromatographic methods have been proven as safe techniques that provide
more accurate, precise, and reproducible outcomes, such as column, thin-layer, gas, and
liquid chromatography [109]. The application of each technology is dependent on the
nature of the component to be detected and the sensitivity of the instrument [110]. In
this respect, high-performance liquid chromatographic (HPLC) analysis is a crucial tool
for the further characterization and quantification of biologically active ingredients of
the resultant extract [111]. HPLC retention time and spectral data analysis of citrus peel
bioactive ingredients confirmed the presence of C-glycosylated flavones, O-glycosylated
flavones, polymethoxylated flavones, flavonol, O-glycosylated flavanones, and phenolic
acids [112,113].

The presence of a specific ingredient in raw material depends on the type of solvent,
temperature, and time [114]. Previously, it was documented that hesperidin was difficult
to extract by hot water, while the contents of nobiletin were substantial [115]. Increased
extraction temperature improved the yield of hesperidin but had little impact on narirutin,
nobiletin, and tangeretin yield [116]. So, a considerable amount of PMFs can be extracted
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in water at a lower temperature, but the level of hesperidin is lower, even at a higher
temperature [117].

Earlier, seven phenolic acids, including four hydroxycinnamics (caffeic, p-coumaric,
sinapic, and ferulic) and three hydroxybenzoics (protocatechuic, p-hydroxybenzoic, and
vanillic), were determined through HPLC [118]. The extraction temperature slightly in-
fluenced the phenolic acid concentration in extract [119]. Meanwhile, when increasing
the extraction time (at 100 ◦C), individual phenolic acid decreased to some degree; it is
supposed that some phenolic acids may be destroyed under hot water conditions with
increases in time [120,121]. Another study revealed that under alkaline conditions, the
hydrolysis of the bound form of phenolic acid from citrus peel increased at an ambient
temperature [122].

Earlier, Sharma, Mahato [67] quantified the glycosylated flavanone and polymethoxy-
lated flavones in mandarin peel using high-performance liquid chromatography with a pho-
todiode array detector (HPLC-PDA). Results revealed that hesperidin (62.01 ± 0.24 mg/g
dry peel weight) had the maximum concentration, followed by narirutin (7.66 ± 0.23 mg/g),
nobiletin (0.31 ± 0.01 mg/g), and tangeretin (0.16 ± 0.22 mg/g dry peel weight), respec-
tively. Afterward, [123] explored methanolic citrus peel extract for its antioxidant activity.
Nobiletin (0.20 ± 0.01 mg/g) and hesperidin (0.5 ± 0.002 mg/g) were detected in citrus
peel through the HPLC system; however, the tangerrtin concentration was low [124].

One of peel by-product, contain 85–99% volatile and 1–15% non-volatile compo-
nents [125]. The volatile constituents are a combination of monoterpene (limonene),
sesquiterpene hydrocarbons and their oxygenated derivatives including: aldehydes (citral),
ketones, acids, alcohols (linalool) and esters [126]. However, non-volatile portion of oil
contains flavonoids that are deficient in flavonone glycosides but rich in hydrophobic
flavone aglycons, particularly nobiletin [127,128]. Analysis of the hexane extracted oil
showed extremely high concentrations of nobiletin (32%) and other flavone glycols [67].

5. In Vitro Antioxidant Potential

There are two classes of natural antioxidants, i.e., primary and secondary antioxi-
dants [129]. Primary antioxidants, also called chain-breaking antioxidants, attack directly
on lipid radicals and transform them into a stable form [130]. Secondary antioxidants,
also known as preventive antioxidants, use different mechanism to slow down the rate
of oxidation. The mode of action of primary antioxidants is the donation of a hydrogen
atom [131]. On the other hand, secondary antioxidants employ different modes of action
that include binding metal ions, absorption of ultra-violet radiation, decomposition of
hydroperoxides, and scavenging oxygen [132]. Natural phenolic compounds found in
plants can act as primary as well as secondary antioxidants through various mechanisms,
and their activity can be accessed by monitoring the drop-off radical [133].

The antioxidant perspective of a compound varies with respect to the employed
method when quantified through various antioxidants. Basically, two reaction processes
are involved by virtue of that the citrus peel bioactive ingredient in the resultant extract
triggers a protection mechanism against oxidation [134]. First, the single electron transfer
method depends on the reduction of oxidation compounds like carbonyls, metals, and
radicals [135].

Ghasemi, Ghasemi [136] evaluated the value of different total phenolic content in
IC50 in citrus peels and reported values of 1.1, 1.4, and 2.1 mg/mL in Citrus sinensis,
Citrus limon, and Citrus paradis peels, respectively. Later, Oboh and Ademosun [137]
investigated the phenolic profiling of shaddock and grapefruit peel and observe that the
free phenolics in shaddock peel were 6.5 mg/g, and in grapefruit peel, the amount of free
phenolics was 13.1 mg/g, while the bound phenolics in grapefruit peel were 0.7 mg/g,
and in orange peel, they were 6.8 mg/g. Nevertheless, grapefruit and orange peel have
high free phenolic and bound phenolic contents, respectively. Moreover, free flavonoid
content in shaddock peel and orange peel was 0.3 mg/g and 1.3 mg/g, respectively, but the
bound flavonoid in grapefruit peel was 0.1 mg/g, and in shaddock peel, it was 0.4 mg/g;
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although, free flavonoids are higher in citrus fruits peel as compared to bound flavonoids.
Phenolic compounds have Fe2+ chelating ability depending on the dose; nevertheless, free
phenolics from orange peel had the highest chelating ability, that is, EC50 = 0.31 mg/mL,
whereas bound phenolics had the least comparative chelating ability EC50 = 1.3 mg/mL [60].
Moreover, several studies have reported that antioxidants and radical scavenging active
compounds are present in fruits, cereals, vegetables, and herb extracts [138].

The phenolics establish the chief portion of natural antioxidants existing in plants [139].
The supreme extensive and varied phenolics are flavonoids; they are secondary metabolites
and broadly dispersed throughout the plant kingdom [140]. Antioxidants have extensive
differences among several phenolic compounds, including the number of —OH groups,
and the replacement by electron-donating alkyl groups of flavonoids raises the antioxidant
prospective [141]. The phenolic contents in citrus peel are usually higher than in tissues,
and the antioxidant potentials of several vegetables and fruits increase meaningfully with
the increase of TPC [142].

DPPH is a reagent which is used to evaluate the free radical scavenging activity of
antioxidants with an adsorption at 515–528 nm. It easily calculates samples in a short
time and is too sensitive to identify very low-concentration ingredients and screen out the
antiradical activity of several fruits and vegetables extracts [143]. Results have shown that
Citrus deliciosa extract has free radical scavenging activity and prevents the initiation of
chain reactions of free radicals by stabilizing several reactive species, with an IC50 value
of 0.358 mg/mL [144]. Lim and Lim [145] reported that the IC50 concentration of Citrus
reticulata Blanco mature peels and Citrus reticulata Blanco immature peels were 0.78 mg/mL
and 0.46 mg/mL, respectively [145,146].

In another study, Khan, Abert-Vian [147] assessed the radical scavenging potential
of orange peel by ultrasound-assisted extraction and solvent extraction. They concluded
that using the sonication method, citrus peel potency to scavenge free radical increased by
30% in contrast to solvent extraction. Similarly, El-Aal and Halaweish [148] determined
the antioxidant potential of two different citrus varieties. According to them, baladi peel
extract had more DPPH activity as compared to navel orange peel extract, which ranged
from 65 to 72% for both varieties.

In the ABTS method, a standard amount of Trolox was compared, and the relative
scavenging ability of the radical in the aqueous phase was measured. The ABTS+ was
produced by K2SO4, and it acted as brilliant medium for the estimation of the antioxidant
activity of the hydrogen-donating and chain-breaking antioxidants. On dry weight basses,
the TEAC value of extracts at 6 min reaction was 0.2 mmol Trolox Eq/100 g, and values of
grapefruits peels was 7.31 µmol Trolox/g fresh weight [149]. Asghar, Khan [150] reported
the values of various citrus species peel extracts like Citrus aurantium (16.19), Citrus medica
(19.40), Citrus paradise (4.56), Citrus sinensis (7.21), and Citrus aurantium (1.28 mmol Trolox
Eq/liter of extract).

Yu [151] determined the antioxidant activity of eight citrus peel flavonoids, two lim-
inoids, and a coumarin by measuring the inhibitory power of bioactive components
against linoleic acid oxidation. They concluded that flavonoids (54.1%) were stronger
than limonoids and coumarin (<7%) in preventing the formation of an oxidized compound.
This property was attributed to the aromatic ring structure of flavonoids. However Sul-
tana, Anwar [152] quantified the antioxidant capacity of extracts from various agricultural
by-products. They also interfered that citrus peel extract had 86.9% inhibition for linoleic
acid oxidation.

Furthermore, Chatha, Hussain [153] has also determined antioxidant activity of vari-
ous solvent extracts of grapefruits, lemon, and mussambi. The results’ interpretation has
revealed that the maximum linoleic acid oxidation inhibition (91.78%) was recorded for 70%
methanolic mussambi peel extract, while the minimum was recorded for 90% methanolic
grapefruit peel extract (68.20%). Previously, Gursoy, Tepe [154] estimated the antioxidant
properties of citrus peel oil by β-carotene and linoleic acid assay. They observed that citrus
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oil had a potency of 96.8 ± 0.2% to inhibit the oxidation of linoleic acid due to polyphenolic
constituents.

Another method to evaluate the antioxidant strength of citrus peel is the β-carotene
bleaching test that is dependent on the coupled oxidation of β-carotene as well as linoleic
acid. In the absence of an antioxidant, β-carotene rapidly undergoes discoloration that
reduces the absorbance of resultant material, detected spectrophotometrically. The main
reason for this reduction is the coupled oxidation of β-carotene as well as linoleic acid that
engenders free radicals, consequently bleaching out the orange color of β-carotene. How-
ever, in the presence of an antioxidant, the bleaching effect was hindered by neutralizing
free radicals [155]. This main theme was elaborated by the findings of Gursoy, Tepe [154],
who determined the antioxidant properties of orange peel oil. They analyzed that citrus
oil has a power of 96.8 ± 0.2% to hinder linoleic acid oxidation due to its polyphenolic
constituents.

A FRAP test was performed with a ferric tripyridyltriazine (Fe3+–TPTZ) compound
and generated a colored ferrous tripyridyltriazine (Fe2+–TPTZ) that calculated the reduc-
ing power of antioxidants [156]. Normally, the reducing potential is related with those
compounds can break by donating electrons [157]. Earlier, Xu, Ye [158] determined the
heating and solvent effect on the antioxidant capacity of citrus peel. According to them,
heating citrus peel extract at 120 ◦C for 90 min increased the Trolox antioxidant capacity
from 19.66 to 33.14 mg Trolox equivalent antioxidant capacity (TEAC)/g of the dry peel
weight. Ghafar, Prasad [159] reported that the FRAP value for Citrus hystrix samples was
the highest at 89.0 ± 5.88, while a lower value of 48.18 ± 3.34 mg TEAC/g of dry peel
weight was observed for Citrus microcarpa samples. The antioxidant potentials of citrus
species were in the increasing order of Citrus hystrix > Citrus aurantifolia > Citrus sinensis >
Citrus microcarpa. According to de Moraes Barros, de Castro Ferreira [160], who observed
in vitro antioxidant capacity of various citrus parts, results relating to FRAP assay revealed
that the antioxidant potential of peel extract was higher as compared to the pulp of the
same fruit. Among five cultivars, mandarin peels had maximum ferric-reducing potential
at 3897.9, rather than pulp at 744.0 ± 12.7 µmol of Trolox equivalent/100 g of fruit weight.

6. Citrus Peel-Enriched Nutraceutical Products

The pivotal connection between health and diet has increased the scope of diet based
therapies against various physiological threats among the masses [161]. Due to the reason,
the demand for such natural ingredients is increasing tremendously. By-products of the
plant-based food industry are creating major disposal problems for concerned manufactur-
ers, as well as for the environment, but due to their excellent nutritional profile, they can be
utilized as a promising source of health-promoting compounds [162].

A large community of people relies on plant-based foods to fulfill dietary needs
like carbohydrates, protein, fat, vitamin, and minerals. The development of novel food
products is a multifarious and uncertain task that depends on scientific difficulty, consumer
satisfaction, convenience, price, age and cultural habits [163]. Among them, cereals-based
baked products and beverages occupy a central position for people of different age groups
to satisfy their nutritional requirements [164]. Tarts, biscuits, cakes, and breads are more
popular products consumed by a major segment of society due to their ready-to-eat nature,
low cost, and availability in different shapes and flavor; also, these products are good at
keeping quality and have a long shelf life [165]. Quality of the end product depends on the
amount and nature of raw ingredients being used in the recipe. However, it was claimed
that the inclusion of by-products of the citrus processing industry in baked products not
only increases the nutritional attributes but also improves the sensory traits [166]. Baking
is a complicated phenomenon that depends on chemical interaction of flour, with various
product ingredients leading towards specific aromas, flavors, colors, tastes, and textural
characteristics of chemical reactions occurring during whole process [167].

Breakfast is considered by nutritionists to be essential for learning and performance,
especially for young children, but food preparation time in the mornings is usually lim-
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ited [168]. Breakfast eaten in the car or in the office is continuing to grow, and portable
hand-held foods have become the fastest-growing segment of the food industry [169].
While both carbohydrates and proteins are important energy sources at the start of the
day, high-carbohydrate breakfasts (e.g., doughnuts, toaster pastries, and juice) are metabo-
lized more quickly than a meal comprised of fruit, grains, and protein (e.g., orange juice,
toast, eggs) [170]. The tart could be eaten without any preparation or could be warmed
if desired [171]. Consumed with milk and fruit, a tart would provide a convenient, nu-
tritious, high-quality protein meal with longer lasting satiety than a high carbohydrate
breakfast [172]. Formulating, manufacturing, and marketing a product require a keen
understanding of the target consumer and require testing, questioning, listening, and
re-testing [173]. Consumers can really guide product development, and interaction with
consumers should be initiated as early as possible and repeated at numerous occasions
throughout the development stage [174]. The food industry will need to pay much greater
attention to the scientific aspects of consumer needs and desires and to the potential for
satisfying them through food technology [175,176].

One of the research groups, Nassar, AbdEl-Hamied [177], has reported that the ad-
dition of citrus by-products (peel) at different levels (5%, 15%, and 25%) affected the
rheological aspects of resultant dough. As the level of peel increases, the water holding
capacity is evaluated. This facet was attributed to the hydroxyl group of dietary fibers that
the boost water absorption capacity of dough. Earlier, Sudha, Baskaran [178] explicated
that the substitution of flour at different peel concentration contributed to dough stability
that increased dough strength for longer time, but the mixing tolerance index declined as
the protein content of citrus peel flour was low.

Sugar is another main ingredient that affects the taste, color, and texture of end
product [179]. If used in excess, it decreases the viscosity of dough and increases cohesion
that causes the spreading of biscuits and browning of cake crust, as well as hardening of
products [180]. Therefore, the exact amount is very important as it helps to retain water that
will cause the spreading of proteins and carbohydrates, thus developing a crispy texture
in biscuits and causing the softening of cakes. There are demands for sugar-free bakery
products that have low calorific value. In this respect, low-calorie artificial sweeteners
are being used to make dietetics and diabetic bakery products, e.g., sorbitol, fructose,
and mannitol [181,182]. They are basically polyols (mannitol and sorbitol) that are not
completely metabolized in human body as a result contributes less energy and, ultimately,
the blood glucose level does not rise rapidly [183]. But their sweetness is more than for
the same quantity of sucrose. Results related to the acceptability of cake have shown that
replacing 50% sucrose with fructose improves the texture, color, flavor, and softening of the
crumb [184]. Similarly, in the case of biscuits prepared with sucrose and fructose (50:50),
products have better sensory attributes up to a two-month storage period [185].

In bakery products, the fundamental role of shortening is to provide a lubricating
effect and flexibility to dough. In the case of biscuits and cakes, highly elastic dough is
not required as it leads towards the hardening and shrinkage of the end product, which
is not desirable [186]. Accordingly, the exact amount of shortening is very important as it
has a pronounced effect on dough machinability throughout the whole process, as well
as the texture and sensory attributes of the end product after baking [187]. The present
rate of mortality due to cardiovascular diseases is mounting each day, and a decrease
in serum HDL cholesterol level is a basic indicator of heart diseases [188]. Scientific
research has proved that dietary fat has a pronounced effect on serum total cholesterol,
LDL, and HDL levels [189]. Subsequently, the type and quantity of fat being used in
bakery products should be taken into account [190]. Earlier findings have elucidated that
saturated and trans fatty acids tend to increase serum total cholesterol as well as LDL,
while the HDL level decreases [191]. On the other hand, polyunsaturated fats boost the
serum HDL level with a significant reduction in total cholesterol and serum LDL level [192].
In bakery products, substituting saturated fats up to 5% of energy with polyunsaturated
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fats rather than decreasing their quantity has a potential towards serum LDL reduction by
0.26 mmol/L [193,194].

Sensory evaluation is a cardinal step to assess the overall acceptability of end products
through a trained panelist [195]. Various attributes like color, flavor, texture, taste, mouth
feel, and acceptability were determined using a hedonic structured scale [196]. Keeping the
quality of baked goods is very important as it not only affects the nutritional quality but
also the economic value [197]. An important factor that must be taken into consideration is
the rancidity of fats and oils that effect the taste and flavor of a product if stored for longer
time [198]. To overcome this problem, antioxidants are being used to prevent the oxidation
of fats [199]. Synthetic antioxidants are now restricted in various food items due to their
carcinogenic effects [200].

In this respect, Magda, Awad [201] evaluated mandarin and navel orange peel as
sources of antioxidant compounds, along with their contributions as a source of fiber,
minerals, and coloring and flavoring agents. They supplemented wheat flour at three
different concentrations (5%, 10%, and 15%) for hard biscuits’ formulation. From the
whole trial, it was concluded that replacement up to 5 and 10% not only improved sensory
attributes but also decreased lipid oxidation, as it was indicated from the peroxide values
of mandarin (12.5 meq/kg fat) and navel orange peel biscuits (10.3 meq/kg of fat) as
compared to the control (35 meq/kg fat) when they were stored for 6 months at 25 ◦C.

Keeping in view the above advantages of peel powder and extracts, their utilization
in food products in order to prevent lipid peroxidation, prolong shelf life and improve
organoleptic properties is very economical. Although they must be added in larger amounts
as compared to synthetic chemicals, there is no legislation regarding to their dosage level
in food products.

7. Citrus Peels Current Uses

Citrus peels from a variety of species have been utilized in pharmaceutical and non-
pharmaceutical uses such as ethanol and methane generation, as well as food compo-
nents [202]. It is reassuring to find that the peels, a food waste and by-product of citrus
fruits, have significant potential for application, as displayed in Figure 4 [203]. In food, they
serve as natural preservatives, colorants, and sources of dietary fiber, enhancing nutritional
properties and stability. For example, citrus peel extracts can be used as natural antioxidants
in food and cosmetic products [204]. Citrus peel waste can be converted into value-added
products like bioenergy sources and edible packaging materials, offering eco-friendly al-
ternatives to traditional materials. Leveraging these by-products not only fosters product
innovation but also aligns with sustainable waste management practices, contributing to a
circular economy and resource efficiency. Citrus waste valorization represents a holistic
solution to waste management challenges, environmental sustainability, and circular bio
economy goals.

7.1. Use as Folk Medicine

In Japan, dried peels from mature citrus fruits are used as crude medicine “Chimpi”
and “Touhi” [205]. In a similar way, Citri Reticulatae Pericarpium (CRP), the dried and
ripened citrus peel, is a well-known traditional Chinese medicine that has been widely
utilized as a food and supplements in China [206]. CRP, a key Chinese herbal medica-
tion, has been extensively used for thousands of years to treat respiratory and digestive
disorders such as bronchitis and asthma. In the folk tradition of southern China, CRP is
also commonly used as a healthcare food in southern China, where it is cooked with meat
for soup, mixed with beans and rice to make porridge, or manufactured into different
snacks [203]. Many CRP varieties are found throughout China, including Guangchenpi
(Citrus reticulata ‘Chachi’), Dahongpao (Citrus reticulata ‘Dahongpao’), Wenzhou migan
(Citrus reticulate ‘Unshiu’), and Fuju (Citrus reticulate ‘Tangerina’), as documented in the
People’s Republic of China Pharmacopoeia [203]. In general, Guangchenpi is classified as
a geoherb because of its superior quality, and the extracts have revealed the highest level
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of polymethoxyflavones coupled with the strongest antioxidant and anti-inflammatory
properties [207]. Many factors influence the overall quality of CRP, including varieties,
manufacturing, and storage periods, with the storage time having the greatest impact due
to chemical component conversions or content variations [206]. Traditional folk wisdom
states that the longer the storage duration is, the greater the CRP impact will be. Yet,
subsequent research has indicated that the metabolites in CRP are initially elevated and
then reduced with an increase of storage duration [208].

With subsequent clinical research, the usage of CRP has expanded beyond the res-
piratory and gastrointestinal tracts to include cardiovascular, anti-tumor, anti-oxidation,
and anti-inflammatory properties [209]. But there is still a paucity of comprehensive stud-
ies on the pharmacological applications of CRP, and its method of action remains to be
researched [203].
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7.2. Utilization for Food and Other Purposes

Citrus peels have few non-pharmaceutical applications and are now used for:

7.2.1. Extraction of Pectin

The global demand for pectin is around 40,000 tons per year, with the United States
(6500 tons), Russia (2700 tons), and Japan (2300 tons) being the primary consumers. Citrus
peel pectin, the most common source of commercial pectin manufacturing with an annual
production of 124 million tons, is widely utilized as a gelling agent, emulsifier, and fat
alternative in the food industry sector [203,210].

7.2.2. Livestock Feed

Citrus peels have been used as cattle food as well as a health supplement for animals
due to their high nutritional value [211]. According to studies, ruminant and non-ruminant
feed costs can be decreased without polluting the environment. Nonetheless, the end
product comprises of relatively poor animal feed, due to the low protein level and high
quantity of carbohydrates, which are important limitations towards the use of feed made
entirely of citrus peels [203,212].
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7.2.3. Food Products

Citrus peels are commonly utilized in the production of a variety of food items. They
are typically consumed as a raw material for the production of baked foods, jams, and
pickled fruits around the world. Citrus peels are used in Indian dishes, including custards,
curries, and gravies, to improve their flavor and odor. In Europe, they are frequently
utilized in sweet delights [213]. It is documented that lemon peel has been used to cooked
and dry-cured sausages, with outstanding results [214]. Surprisingly, the inclusion of
pomelo (Citrus grandis Osbeck) peel can enhance the fiber amount in rice noodles [215].

8. Physiological Threats

Diet-based treatments are being administered both in developed and developing
countries for health alleviation due to their inescapable biological safety [216,217]. However,
with the onset of the 19th century, the modern drug therapy has outshined the thought
of “Food as medicine”, making this concept much more insignificant [218]. Lately, in the
1900s, the trend once again drifted towards diet-based therapy against disease prevention
and towards health promotion [219,220]. Polymethoxylated flavones (PMF) are distinctive
group of flavonoids that are solely present in citrus fruits, especially in orange and mandarin
peels [221]. Polymethoxylated flavones have a wide spectrum of therapeutic effects like
antioxidant potential, antithrombiotic properties, chemopreventive action, and cholesterol-
lowering effects, as illustrated in Figures 5 and 6 [59,222]. Earlier studies have elaborated
on their chemopreventive attributes against the biosynthesis of adhesion molecules, the
appearance of tumor factor-R (TNFR), the spread of tumor to surrounding animal tissues
by enhancing apoptosis, and the minimization lymphocytes propagation and platelet
aggregation. They are more permeable and readily absorbed via the small intestine into
blood circulation due to their lipophilic nature [223].
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Citrus peel is a waste material for one industry, but it is a useful ingredient for
other industries because their proper utilization in the pharmaceutical and nutraceutical
industries will not only offer a potential for cost-effective therapeutics but also enhance
the value of functional and nutraceutical food [29,51]. There is a need to create awareness
among people to make use of such a phytochemical-rich diet that not only fulfills their
dietary needs as but also normalizes body physiological functions because to enjoy good
health is right of every person [224].

Health investigations on citrus polyphenol and phenolics have focused completely on
their flavonoid constituents, although hydroxycinnanamates do happen in fruits [112]. Four
types of flavonoids are present in citrus: flavonols, flavanones, flavones, and anthocyanins
(present only in blood oranges) [65]. The dominating parts of citrus fruits are flavones and
flavanones, which have distinct properties, while other two, anthocyanins and flavonols,
are widely present in many other species [225,226].

8.1. Hypoglycemic Prospective

Asia and Africa are most affected areas where diabetes mellitus has been increasing at
a rate of two- to three-fold [227]. Bioflavonoids and dietary antioxidants offer safety against
the expansion of diabetic problems [228]. The relation between the intake of flavonoids
and the subsequent incidence of numerous long-lasting diseases like diabetes mellitus has
been evaluated [229]. Various drugs have been recommended to control blood glucose
levels for hyperglycemic people, but they are less effective and required in large quantities,
and some of them are toxic [230]. One of the cost-effective and readily available sources to
treat diabetic patient is to take flavonoid-rich foods due to their antioxidant properties and
hypoglycemic potential [231]. Citrus peel exhibits a heterogeneous group of flavonoids,
having a broad spectrum of biological activities against cardiovascular disorders, cancer,
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diabetes, hypercholesterolemia, and oxidative stress. The main bioactive components
of citrus peel, hesperidin and naringin, have antioxidant potential at the early stages of
diabetes mellitus and for its associated complications [25,59].

Citrus medica extracts show hypoglycemic potential in α-glucosidase and α-amylase
inhibition assays [232]. In a study, glucose freely absorbed from the gastrointestinal tract
into the blood after the breakdown of glycosidic bonds in carbohydrate-based digestible
food contained α-glucosidase and α-amylase. These enzymes’ inhibition resembles the
reduction in the peaks of high blood glucose in diabetics [233]. Hesperetin and qurecetin
both inhibit the activity of α-glucosidase from bread yeast (Saccharomyces cerevisiae) at about
50 and 7 l M in IC50 values, respectively [234]. Citrus medica n-hexane extract inhibits the
activity of a-amylase 625 µg/mL in IC50 [235,236]. Citrus medica essential oil also showed
anti-diabetic and hypoglycemic activity in in vivo studies [237]. This activity was related
to the phytochemicals that are present in peel oil, which might facilitate access to the
enzymatic site [238,239].

Tundis, Loizzo [123] determined the in vitro hypoglycemic activity of citrus peel
extract by the α-amylase and α-glucosidase inhibition method. Orange peel extract was
reticent to both α-amylase and α-glucosidase, having IC50 values of 258.7 and 263.2 µg/mL,
respectively. These results are five- to seven-fold less than acarbose-treated patients, for
which the IC50 value was 50.0 µg/mL for α-amylase and 35.5 µg/mL for α-glucosidase.

Hypoglycemic agents from plants sources ensure keen attention in inhibiting dia-
betic problems; meanwhile, natural sources are normally considered to have fewer side
effects, with fewer being moderately toxic compared to artificial medicines [240]. The
oral administration of hesperidin has a late effect on the motherly glucose level [241].
Certainly, before organogenesis. that is, 1–7 days, hyperglycemia was, to some extent,
reduced [242]. Hesperidin is a major glycosylated flavonones most commonly present in
grapefruit, orange, and lemon fruit. Previous outcomes have revealed that hesperidin,
naringin, and rutin, each at dose level of 0.05% of diet, reduced blood glucose levels by
18%, 16%, and 21%, respectively, in diabetic rats induced by streptozotocin [243]. At the
same time, daily oral administration of these bioflavonoids to humans at levels of 5, 10,
and 15 mg/kg of body weight significantly decreased blood glucose levels by 17%, 23%,
and 33%, respectively [244].

In a recent study, Toumi, Merzoug [245] concluded that providing a hesperidin-based
daily diet to pregnant mice imitated the capability of natural flavanone modulate parental
weight, improving maternal hypoglycemic activity. This possible anti-teratogenic effect is
worthy and a clear hidden prophylactic outcome of hesperidin against diabetics.

Hesperidin has anti-diabetic and anti-teratogenic effects in pregnant diabetic mice;some
flavonoids, predominantly hesperidin and quercetin, have been involved in several studies
and have qualified antioxidant and hypoglycemic effects [246]. Frequent supplementation
via oral administration maintained a high concentration of polyphenols in blood plasma;
although the dose used was very low, hesperidin exerted continuing results due to the
flavanones’ own high bioavailability [247].

Hesperidin-treated diabetic mice had no effect on skeletal dysmorphogenesis; hy-
perglycemic activity was directly involved in skeleton mal development and protected
glucotoxicity-targeted developed bones [248]. In the dysmorphogenesis of a progeny
subject to skeletal and visceral from diabetic animals, the susceptibility to these morbid
proceedings has been shown to be strongly connected to strain’s genetic background [249].

A study on hesperidin supplementation for 35 consecutive days showed a significant
elevation of induced diabetes in the blood glucose level; almost 15% of diabetic animals
returned to the normal level of blood glucose, and other animals showed an almost 53%
reduction in the blood glucose level, in comparison to the diabetic control group [250]. Hes-
peridin holds a significant part in inhibiting the development of hyperglycemia, partially
enhancing glycogen synthesis and hepatic glycolysis by dropping liver gluconeogene-
sis [248,251].
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An in vivo study on the effect of citrus peel extract (300 and 600 mg/kg) on dia-
betic rats showed a significant reduction in blood glucose levels by controlling the glu-
cose regulatory enzymes of the body [252]. Chronic oral administration of peel extract
(100–600 mg/kg/day) to rats for 30 days maintained blood glucose levels and mitigated
the progression of liver dysfunction caused by diabetes, even after taking a high-glucose
diet that revealed its glucose tolerance potential in hyperglycemic rats [253].

In vitro and in vivo studies have depicted that hyperglycemic disorder raises oxidative
stress and weakens body intracellular antioxidant resistance mechanism that increase the
risk of type 2 diabetes. Inclusion of flavonoids-rich food items in daily dietary plans
is a leading step towards a healthy lifestyle [254]. In this respect, taking citrus peel-
supplemented food products and its various preparations endows the body with natural
antioxidants that have strong free radical scavenging activity [59]. This not only protects β
cells from oxidative damage but also chelates metal ions like copper and iron that are the
leading causes of cancer and cardiovascular complications [255].

8.2. Hypolipidemic Potential

Cardiovascular diseases are the major leading cause of morbidity and mortality all over
the world. High cholesterol and oxidation of LDL triggers the events leading to starting of
atherosclerosis [256]. A defective immune system results in the initiation of various health
disparities, categorized as autoimmune disorders and immune [257]. Dietary nutritional
status has a significant effect on the antioxidant immune system of the body and deficiency
of certain nutrients; for example, vitamin E, selenium, and polyphenols increase the dis-
eased status of oxidative stress, diabetes mellitus, and atherosclerosis [2,258]. Functional
foods or their functionally active molecules have shown therapeutic potential, containing
antioxidant, anti-inflammatory, anti-cancer, and immunomodulation effects [259,260].

Scientific research has confirmed that citrus peel-derived flavonoids’ intake ranges
from 2.6 to 68.2 mg/day and has the potential to alleviate mortality rate due to cardiovascu-
lar disorders in Japan [261]. An in vivo study reported that the cholesterol level decreases
due to citrus flavonoids. Citrus peel flavonoids were found to be beneficial in reducing the
metabolism of acetylated LDL (acLDL), modifying lipoprotein involved in macrophage
foam cell formation, and binding with SR-A that expresses on cultured macrophages and is
involved in cholesterol accumulation [262].

An in vitro study relating to the cholesterol-lowering potential of both hesperidin
and naringin on hepatoma HepG2 cells of the human body confirmed that citrus peel
bioflavonoids have the potential to reduce secretion of LDL-linked apolipoprotien B (apo
B), as well as decrease the IC50 value for apo B (concentration required for 50% reduction
of apo B). It was reported that the IC50 concentration was 142 and 178 µM for hesperidin
and naringin, respectively. Basically, hepatoma HepG2 cells were used in this study as
they are involved in the synthesis and catabolism of apo B, having lipoproteins such as
LDL and VLDL [263]. Nobiliten is polymethoxylated flavone that is mostly found in
orange peel and is effective against inflammation, cancer, and hyperlipidemia and provides
neuroprotective effects in Alzheimer’s disease. In rats study, 0.1% nobiletin in their diet
reduced white adipose tissue, with a significant increase in HDL and apolipoprotien A-1
without modifying triglyceride level [264]. These findings have justified the hypolipidemic
effect of nobiletin under hypercholesterolemic conditions [264].

In the positive control hypercholesterolemic group, a significant raise in serum triglyc-
eride, total cholesterol, very low-density lipoprotein, low-density lipoprotein, and arthero-
genic index was observed in comparison to the negative control group. When the negative
control group was administrated 1% methanolic extract of citrus peel, it resulted in a
reduction of the total cholesterol [265].

Supplementation of diet with 5% orange peel powder and 1% orange peel extract
decreased body weight ratio; this was compatible with previous outcomes where the
body weights of a citrus peel-supplemented rat group increased during a trial of 28 days.
Concluding data have revealed that orange peel extract was more effective in reducing
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serum total cholesterol and LDL, VLDL, and triglyceride but had a positive impact on
HDL [266,267].

Scientific research has exposed defect in body defense system and formation of reac-
tive oxygen species (ROS) among diabetics, leading towards other complications such as
hypertriglyceridemia and hypercholesterolemia. Oxidative stress due to diabetes causes
oxidation of LDL that was facilitated by 15-lipoxygenase (15-LO) present in the liver [268].
This will make hard plaque in the blood vessels and increase the risk for atherosclerosis
and stroke. Under this condition, the HDL level decreases that are involved in the removal
of excess cholesterol from atherosclerosis plaque occurs, thus maximizing chances for
cardiovascular disorders [269]. However, citrus peel flavonoids, especially flavonones,
flavones, and flovonol, have strong inhibitory effects for 15-LO enzyme [59]. The inhibitory
potential of flavonones (hesperidin) is higher as compared to flavones (nobiletin), as the
IC50 value for hesperidin is 180 µM that is much higher than for nobiletin (86 µM) due to
the presence of a methoxy group at the third position [247,270].

Moreover, serum total cholesterol, low-density lipoprotein, and artherogenic index
was reduced in rats treated with methanolic extract of citrus peel, and a significant in-
crease in high-density lipoprotein in all groups in comparison to the control group was
observed [271,272]. Supplementation of hesperidin and naringin mixture along with grape-
fruit peel extract had a hepatic triglyceride- and hepatic cholesterol-lowering effect. Nev-
ertheless, the relations of high-density lipoprotein to total cholesterol remained higher
in the positive control group, while conflicting results were observed for the atherogenic
index [273,274].

8.3. Anti-Diabetic Effects

Type 2 diabetes is a degenerative condition that is increasingly spreading across every
age category. It is defined by impaired metabolism of glucose, increased levels of carbohy-
drate hydrolyzing enzymes, resistance to insulin, and pancreatic beta cell malfunction and
destruction [275]. One of the most frequent pharmacological methods to type 2 diabetes
management is to regulate blood glucose levels by inhibiting carbohydrate hydrolyzing
enzymes. Enzymes like α-amylase and α-glucosidase are good biomarkers to prevent
hyperglycemia [276]. These enzymes have a role in the degradation of starch to glucose,
which increases the uptake of glucose into the bloodstream and causes hyperglycemia in
diabetic individuals [277]. Yet, the reduction of these enzymes reduces glucose absorption
and lowers postprandial hyperglycemia [278]. These enzymes are targets for artificial hypo-
glycemic drugs like acarbose and voglibose. Yet, the usage of these medications is limited
due to their negative effects [279]. Lim and Loh [280] examined the in vitro inhibiting
activity of phenolic extracts from Citrus maxima, Citrus hystrix, Citrus aurantifolia and Citrus
microcarpa peels. Citrus microcarpa peel phenolic extracts showed the best inhibitory activity
against α-amylase and α-glucosidase. Citrus peels may inhibit αamylase and α-glucosidase
activity in vitro due to their high phenolic content. Citrus flavonoids can lower glucose
levels in diabetic individuals by inhibiting α-amylase and α-glucosidase effects. Rutin,
quercetin, quercetrin, luteolin, and kaempferol block α-amylase and α-glucosidase activity
by forming hydrogen chains with the amino acid sequences at their binding site [281,282].

Xiao, Ni [282] found that hyroxylations and non-glycosylations of flavonoids enhanced
their inhibitory influence on α-amylase performance. Tadera, Minami [283] expounded
that quercetin, apigenin, naringenin, kaempferol, and luteolin effectively block αamylase
performance through their hydroxyl groups and ring geometry. Citrus peels include
phenolic acids like caffeic, gallic acids, chlorogenic, ferulic, and p-coumaric, which can
inhibit α-amylase enzyme functioning [112,284,285]. Pereira, Cazarolli [286] found that
flavonoids like rutin, kaempferol, and quercetin reduced the production of intestinal
α-glucosidase. Muhtadi, Azizah [287] also found that a high dose of C. sinensis peels
(500 mg/kg) lowered blood glucose levels in diabetic mice. In a similar way, Citrus limon
demonstrated a glucose-lowering effect identical to a conventional medication (glimepiride)
in alloxan-induced diabetic mice [288].
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Parkar and Addepalli [289] found that Citrus sinensis peel extract (100 mg/kg and
200 mg/kg) reduced diabetic nephropathy in streptozotocin-induced diabetic rat models.
Diabetes-related nephropathy is defined by the buildup of extracellular matrix debris in
renal cells. The peel extract’s antidiabetic action was not connected with a decrease in
plasma glucose, but rather with a decrease in renal levels of collagen caused by suppression
of Gelatinase A (MMP-2) and Gelatinase B (MMP-9). Gelatinase A and B are metallopro-
teinases (MMPs) that can degrade proteinaceous constituents of the matrix outside of cells.
The elevation of these enzymes has been linked to renal disorders, particularly nephropathy
caused by diabetes. The peels of citrus have also been demonstrated to aid in healing of
wounds in diabetic patients. Ahmad, Ansari [290] evaluated the efficacy of oral therapy
with Citrus limon, Citrus paradise, and Citrus sinensis peel extracts on diabetic rat skin wound
healing. The peel extracts lower blood sugar levels, promote wound healing through tissue
growth, and stimulate collagen formation [291].

8.4. Anti-Oncogenic Effects

Cancer cells have several distinguishing characteristics, notably the lack of angiogene-
sis, apoptosis, and metastasis [292]. Several therapeutic treatments in the treatment of malig-
nancies have addressed the systems that regulate the inhibition of apoptosis, angiogenesis
and metastasis [293]. Some beneficial substances induce apoptosis by inhibiting protea-
some activity [294,295]. Citrus paradisi, Citrus sinensis, and Citrus maxima peel phenolic-rich
extracts have been demonstrated to suppress proteasome function in primary (Caco-2)
and metastatic (LoVo and LoVo/ADR) colon cancer cells in a concentration-dependent
way [296,297]. As malignancies develop in size, more vasculature is necessary to support
development [298]. As a result, cancers secrete vascular endothelial growth factor (VEGF),
which stimulates the growth of blood vessels within the tumors [299]. Angiogenesis is a
process that is necessary for tumor development and metastasis [300]. Thus, blockage of
VEGF or its receptors has grown into targets for therapies to avoid vascularization [301].
Pan, Li [302] demonstrated that mixed citrus peel extracts lowered VEGF levels of proteins
and inhibited skin-related inflammation indicators in an animal experiment.

Metastasis is a vital step in all forms of cancer. The group of enzymes known as
metalloproteinases (MMPs) is a prominent therapeutic focus for metastasis prevention.
Cancer cells manufacture MMPs to penetrate the tissues around them [303,304]. Free and
bound phenolic extracts from Citrus sinensis peels reduced MMP activity in colon cancer
cells (LoVo, Caco-2 and LoVo/ADR) [305]. In addition, an extract of various types of citrus
peels reduced the production of VEGF and MMP-9 in rat colon tissues. The inflammation
has been linked to molecular alterations that lead to the growth of several cancer forms [306].
Overexpression of inflammatory enzymes like inducible nitric oxide synthase (iNOS) and
cyclooxygenase-2 (COX-2) promotes cancer and aberrant cell proliferation [307]. Suzawa,
Guo [308] demonstrated that a blend of citrus peel extracts reduced iNOS and COX-2
expression in azoxymethane-induced discomfort of the mouse colon. The chemopreventive
characteristics of ethanolic extracts of Citrus reticulata and Citrus aurantifola peels have
been developed through their ability to trigger apoptosis [309], reduce carcinogenesis [310],
prevent new blood vessel development [311], and improve cytotoxicity of other agents
used for chemotherapy [305].

Citrus peels’ anticancer activities are strongly tied to their phenolic component, par-
ticularly flavonoids [112]. Tangeretin, a polymethoxyflavonoid derived from citrus fruits,
caused apoptosis in breast carcinoma (MDA-MB-435 and MCF7), cancer of the colon (HT-29)
and leukemia (HL-60) cells [312,313]. Citrus peels contain an excessive amount of nobiletin,
which has anticancer characteristics because it induces apoptosis via cell cycle control [314].
Morley, Ferguson [315] found that it enhanced the cytotoxicity of doxorubicin in MCF-7
and T47D cells. The anticancer activities of hesperidin, hesperetin, and naringin, which
are plentiful in citrus peels, have also been investigated [270]. The flavonoids involved
were proved to up-regulate p53 and caspace-3 in MCF-7 and HL-60 cells to cause apoptosis,
control cell cycle by suppressing CDK2 and p21 activity [310,316]. Ellagic acid and luteolin
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were demonstrated to suppress VEGF in endothelial cells [317]. Anthocyanins suppressed
MMP-2 and MMP-9 expression in fribrocarsoma cells and HT-29 cells [291,318]. Citrus
peels have proven excellent anticancer properties. However, additional in vivo research
and clinical studies are encouraged.

9. Citrus Peel-Based Food Products Accessible on the Market

The advantageous effects of citrus peel-based uses in the food industry have been
recognized around the world. As a consequence of the well-documented health benefits,
numerous food sectors have launched initiatives to develop citrus peel-based food products,
as displayed in Figure 7 [319]. Citrus peel-based teas are very popular in the worldwide
food industry [320]. Nowadays, there are several tea brands on the market that properly
mix citrus peel. Certain products utilize orange peel oil-based granules and orange peel
oils [134,319]. Furthermore, orange peel comprising dark chocolate, made from freeze-dried
orange peel and orange oil, is accessible on the market [321]. Citrus essential oils, on the
other hand, have been on the market for a long time [322]. Numerous essential oils on the
market are used as flavoring compounds in numerous food products and for consumption
directly after adequate dilution [323]. In addition, food products, such as dried citrus peel
particles, designed specifically for culinary use, are available on the market. Furthermore,
citrus peel pectin is commonly used as a source of dietary fiber [324]. There are several
dietary supplements on the marketplace that include pectin. Among the most well-known
citrus peel-based food items on the market is frozen citrus peel pieces, which offer an
aromatic touch to the foods [37].
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10. Future Perspectives

The use of citrus peel in food industry applications has become an important research
subject as the world seeks environmentally friendly alternatives to waste production
in many industries [37]. Innovative green extraction methods are commonly used to
extract bioactive components from the peels of citrus fruits [325]. Many studies have
investigated the effectiveness of supercritical fluid, ultrasound-assisted and microwave-
assisted extraction, as well as environmentally friendly techniques for extracting bioactive
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substances from peels of citrus fruits [326,327]. Still, the food industry faces a hurdle
in guaranteeing the stability of extracted substances for commercial use [328]. Several
studies have been conducted to investigate the encapsulation of bioactive substances [329].
Nano-encapsulation is now a prominent goal in future research. Furthermore, numerous
studies have used pectin derived from citrus peels as a barrier material for covering
bioactive substances [330]. More research is needed to determine how to successfully use
pectin to nano-encapsulated bioactive substances [331]. On the other hand, the trend is
to create emulsion-based systems for delivery with hydrosoluble and liposoluble (citrus
oil) materials to effectively use citrus-based components [332]. In contrast, as technology
improves, there is an urgent need to target research towards possible fourth industrial uses
that focus on the intelligent production of functional food and customized diets using 3D
food printing techniques. Consequently, the bioactive components and pigments derived
from citrus peels can be productively exploited to create various kinds of inks for food
printing in 3D [319].
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84. Toprakçı, G.; Toprakçı, İ.; Şahin, S. Highly clean recovery of natural antioxidants from lemon peels: Lactic acid-based automatic
solvent extraction. Phytochem. Anal. 2022, 33, 554–563. [CrossRef] [PubMed]

85. Zhao, B.; Wang, H.; Xu, S.; Qian, L.; Li, H.; Gao, J.; Zhao, G.; Ray, M.B.; Xu, C.C. Influence of extraction solvents on the recovery
yields and properties of bio-oils from woody biomass liquefaction in sub-critical water, ethanol or water–ethanol mixed solvent.
Fuel 2022, 307, 121930. [CrossRef]

86. Sazali, N.S.; Pauzi, F.N.M.; Al-Dhalli, S.; Ng, C.H. Photoprotective and antioxidant effects of Citrus limon and Citrus sinensis Peels:
Comparative investigation of the efficiency of five extraction solvents. Med. Plants-Int. J. Phytomed. Relat. Ind. 2022, 14, 284–292.
[CrossRef]

87. Oreopoulou, A.; Tsimogiannis, D.; Oreopoulou, V. Extraction of polyphenols from aromatic and medicinal plants: An overview
of the methods and the effect of extraction parameters. Polyphen. Plants 2019, 243–259. [CrossRef]

88. Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H. Recent advances in the extraction of bioactive compounds with subcritical water:
A review. Trends Food Sci. Technol. 2020, 95, 183–195. [CrossRef]

89. Usman, I.; Hussain, M.; Imran, A.; Afzaal, M.; Saeed, F.; Javed, M.; Afzal, A.; Ashfaq, I.; Al Jbawi, E.; Saewan, S.A. Traditional and
innovative approaches for the extraction of bioactive compounds. Int. J. Food Prop. 2022, 25, 1215–1233. [CrossRef]

90. Ren, D.; Ren, S.; Lin, Y.; Xu, J.; Wang, X. Recent developments of organic solvent resistant materials for membrane separations.
Chemosphere 2021, 271, 129425. [CrossRef] [PubMed]

91. Molino, A.; Mehariya, S.; Di Sanzo, G.; Larocca, V.; Martino, M.; Leone, G.P.; Marino, T.; Chianese, S.; Balducchi, R.; Musmarra,
D. Recent developments in supercritical fluid extraction of bioactive compounds from microalgae: Role of key parameters,
technological achievements and challenges. J. CO2 Util. 2020, 36, 196–209. [CrossRef]

https://doi.org/10.1080/10408398.2023.2270530
https://www.ncbi.nlm.nih.gov/pubmed/37882781
https://doi.org/10.1007/s10068-021-00984-y
https://www.ncbi.nlm.nih.gov/pubmed/34925937
https://doi.org/10.1039/C9FO01053J
https://www.ncbi.nlm.nih.gov/pubmed/31436765
https://doi.org/10.31665/JFB.2018.3150
https://doi.org/10.1080/10408398.2021.1969891
https://www.ncbi.nlm.nih.gov/pubmed/34609268
https://doi.org/10.1080/07388551.2020.1753648
https://www.ncbi.nlm.nih.gov/pubmed/32338083
https://doi.org/10.1016/j.fshw.2022.03.001
https://doi.org/10.1002/chir.23477
https://www.ncbi.nlm.nih.gov/pubmed/35699356
https://www.researchgate.net/profile/Kamal-Niaz-2/publication/339841545_Tannins_hydrolysable_tannins_condensed_tannins_phlorotannins_flavono-ellagitannins/links/5e686b894585153fb3d5eda1/Tannins-hydrolysable-tannins-condensed-tannins-phlorotannins-flavono-ellagitannins.pdf
https://www.researchgate.net/profile/Kamal-Niaz-2/publication/339841545_Tannins_hydrolysable_tannins_condensed_tannins_phlorotannins_flavono-ellagitannins/links/5e686b894585153fb3d5eda1/Tannins-hydrolysable-tannins-condensed-tannins-phlorotannins-flavono-ellagitannins.pdf
https://www.researchgate.net/profile/Kamal-Niaz-2/publication/339841545_Tannins_hydrolysable_tannins_condensed_tannins_phlorotannins_flavono-ellagitannins/links/5e686b894585153fb3d5eda1/Tannins-hydrolysable-tannins-condensed-tannins-phlorotannins-flavono-ellagitannins.pdf
https://doi.org/10.1002/pca.3109
https://www.ncbi.nlm.nih.gov/pubmed/35112419
https://doi.org/10.1016/j.fuel.2021.121930
https://doi.org/10.5958/0975-6892.2022.00033.8
https://doi.org/10.1016/B978-0-12-813768-0.00025-6
https://doi.org/10.1016/j.tifs.2019.11.018
https://doi.org/10.1080/10942912.2022.2074030
https://doi.org/10.1016/j.chemosphere.2020.129425
https://www.ncbi.nlm.nih.gov/pubmed/33445020
https://doi.org/10.1016/j.jcou.2019.11.014


Foods 2024, 13, 1681 25 of 34

92. Arumugham, T.; Rambabu, K.; Hasan, S.W.; Show, P.L.; Rinklebe, J.; Banat, F. Supercritical carbon dioxide extraction of plant
phytochemicals for biological and environmental applications—A review. Chemosphere 2021, 271, 129525. [CrossRef] [PubMed]

93. Yousefi, M.; Rahimi-Nasrabadi, M.; Pourmortazavi, S.M.; Wysokowski, M.; Jesionowski, T.; Ehrlich, H.; Mirsadeghi, S. Supercriti-
cal fluid extraction of essential oils. Trends Anal. Chem. 2019, 118, 182–193. [CrossRef]

94. Ahangari, H.; King, J.W.; Ehsani, A.; Yousefi, M. Supercritical fluid extraction of seed oils–A short review of current trends. Trends
Food Sci. Technol. 2021, 111, 249–260. [CrossRef]
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