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Abstract: The oxidation step in Oolong tea processing significantly influences its final flavor and 

aroma. In this study, a gas sensors detection system based on 13 metal oxide semiconductors with 

strong stability and sensitivity to the aroma during the Oolong tea oxidation production is pro-

posed. The gas sensors detection system consists of a gas path, a signal acquisition module, and a 

signal processing module. The characteristic response signals of the sensor exhibit rapid release of 

volatile organic compounds (VOCs) such as aldehydes, alcohols, and olefins during oxidative pro-

duction. Furthermore, principal component analysis (PCA) is used to extract the features of the col-

lected signals. Then, three classical recognition models and two convolutional neural network 

(CNN) deep learning models were established, including linear discriminant analysis (LDA), k-

nearest neighbors (KNN), back-propagation neural network (BP-ANN), LeNet5, and AlexNet. The 

results indicate that the BP-ANN model achieved optimal recognition performance with a 3−4−1 

topology at pc = 3 with accuracy rates for the calibration and prediction of 94.16% and 94.11%, re-

spectively. Therefore, the proposed gas sensors detection system can effectively differentiate be-

tween the distinct stages of the Oolong tea oxidation process. This work can improve the stability 

of Oolong tea products and facilitate the automation of the oxidation process. The detection system 

is capable of long-term online real-time monitoring of the processing process. 
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1. Introduction 

Oolong tea, a distinctive tea category originating from China, has a rich history span-

ning over three hundred years, dating back to the Yongzheng era of the Qing Dynasty [1]. 

This tea is renowned for its enduring fragrance [2]. Oolong tea undergoes several crucial 

processing stages in order to produce its distinctive aroma. Fresh tea leaves, after being 

harvested, undergo several processing steps including sorting, sun withering, oxidation, 

fixing, rolling, and roasting. Each step involves specific procedures and standard proto-

cols to ensure the production of high-quality Oolong tea [3].  

The oxidation step in particular is crucial for the formation of the associated distinc-

tive aroma [4] including alternating and repeating stages of shaking and fermenting in 

the production of Oolong tea [5]. Friction and collision promote the rupture of leaf margin 

cells and the diffusion and penetration of water, contributing to the release of a grassy 

flavor [6]. The subsequent fermentation step involves the settling of tea leaves, with mois-

ture permeating from the stems and veins to the leaf cells [7]. The soluble substances in 
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the tea leaves gradually oxidize and ferment, forming the main chemical components that 

decisively influence the final product’s quality [8]. 

Oolong tea has higher levels of ether extracts and phenolic compounds than other 

teas; this is due to oxidation [9]. Oxidation, as the primary fermentation stage, forms pol-

yphenolic compounds through chemical and enzymatic reactions [8]. During oxidation, 

the low boiling point species that induce a raw, grassy smell are volatilized and trans-

formed, while the high-boiling-point component that imparts a floral and fruity fragrance 

persists [10,11]. Therefore, the quality control of the Oolong tea oxidation process is par-

ticularly important. Traditional processing heavily relies on the expertise of tea makers, 

lacking a comprehensive automated control system [12]. Therefore, employing convenient 

and nondestructive detection technologies to precisely monitor this key step holds prom-

ise in tea aroma and flavor quality information [13]. Although the practical application of 

this research method requires a significant amount of time to build the discrimination 

model database, it can provide a theoretical basis for further guiding tea production. 

To detect the aroma of rooibos tea (Aspalathus linearis), Song et al. utilized both sim-

ultaneous distillation–extraction (SDE) and reduced-pressure steam distillation (DRP) 

methods for the extraction of volatile compounds. Subsequently, gas chromatography–

mass spectrometry (GC-MS) was employed to analyze the volatile aroma-related com-

pounds in the extracts. Ultimately, 50 volatile compounds were identified in both extrac-

tion methods. Comparative analysis revealed that aldehydes and acidic compounds 

among them contribute to the formation of the unique aroma of tea [14]. Li, ZW et al. 

employed headspace solid-phase microextraction (HS-SPME) to extract volatile aroma 

components from five varieties of Fenghuang Dancong tea. They combined gas chroma-

tography–mass spectrometry (GC-MS) and gas chromatography–olfactometry (GC-O) 

methods for component detection. The detection results revealed that 116 volatile organic 

compounds (VOCs) were identified through GC-MS, while 26 active VOCs contributing 

to the aroma of tea were detected based on GC-O analysis [15]. Both GC-MS and GC-O 

methods exhibited high accuracy and sensitivity. However, the extraction process is time-

consuming, and the detection process is cumbersome, which limits its application for 

rapid detection at tea processing sites. Moreover, the high cost of detection instruments 

makes it difficult for many tea processing factories to afford them. Therefore, there is a 

need to develop a detection system for rapid assessment of the tea processing status dur-

ing the production process. 

The gas sensors are rapid, nondestructive, and can effectively differentiate between 

different types of tea based on aroma profiles. However, they may lack specificity and 

sensitivity compared to more traditional analytical techniques such as liquid chromatog-

raphy (LC) and gas chromatography (GC). However, their simplicity and speed make 

them suitable for applications where rapid or on-site analysis is needed [16]. Gas sensing 

detection technology, which emerged and developed after the 1990s, utilizes a series of 

gas-sensitive sensors and recognition algorithms to perceive and identify odors. The basic 

principle of this detection technology involves using gas sensors with cross-sensitivity to 

various gases to form a sensor array. This array converts information from mixed gases 

into electrical signals related to components and concentrations. These signals are then 

collected by a signal acquisition circuit. After the collected signals have been analyzed and 

processed by a signal processing module, it becomes possible to classify and identify dif-

ferent gases or determine the proportions of various components in complex mixed gases 

[17]. Tozlu and Okumuş designed a fermentation system equipped with a gas sensor de-

tection system function to detect the aroma during the fermentation process of black tea 

to enhance the production capacity of tea gardens [18]. Tseng et al. successfully differen-

tiated samples with significant grassy odor variations during the Oolong tea oxidation 

process using a gas sensors detection system with metal oxide sensors, demonstrating its 

feasibility [19]. The response of metal oxide sensors to a given gas can vary across different 

sensors. Consequently, it becomes particularly important to identify sensors among mul-

tiple options that exhibit sensitivity to the specific target gas for precise detection [20]. 
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Wang et al. applied correlation analysis, variance analysis, and cluster analysis for sensor 

selection [21]. Lu et al. proposed the sensor array optimization (SAO) method using cor-

relation coefficient and cluster analysis (CA). Subsequent experimental validation using a 

linear discriminant analysis (LDA) method based on averages (LDA-ave) combined with 

the nearest neighbor classifier (NNC) achieved a classification accuracy of nearly 

94.44~100% [22]. These studies provide a basis for the optimization of sensor arrays in gas 

sensors detection systems.  

In particular, multivariate statistical analysis methods have shown remarkable per-

formance in classification and detection tasks using public datasets [23]. Dutta and others 

used E-nose technology coupled with machine learning techniques to analyze five differ-

ent methods of processing black tea, achieving differentiation accuracies of 88% and 89%, 

respectively [24]. Kang et al. utilized a gas sensors detection system to gather aroma in-

formation from tea leaves harvested during different process periods [25]. By integrating 

the detection system with a classic convolutional neural network for tea leaf identification, 

they achieved an accuracy of 97.62%. The combination of a gas sensors detection system 

with multivariate statistical analysis revealed suitability for differentiation gases in tea 

leaves from different harvesting periods. However, the aroma monitoring of Oolong tea 

during oxidation has not been reported for a gas sensors detection system combined with 

multivariate analysis. 

Therefore, our study focused on developing a gas sensors detection system combined 

with multivariate analysis to evaluate aroma quality during the Oolong tea oxidation pro-

cess. We achieved this according to the following steps: (1) selecting an appropriate sensor 

array for online monitoring of the Oolong tea oxidation process based on 13 metal oxide 

semiconductors. (2) examining the relationship between tea aroma data and the oxidation 

state through linear discriminant analysis (LDA), k-nearest neighbors (KNN), a back-

propagation neural network (BP-ANN), LeNet5, and AlexNet. (3) Finally, the proposed 

model was applied for the identification of the oxidation state to monitor the Oolong tea 

oxidation process. 

2. Materials and Methods 

2.1. Oolong Tea Oxidation Process 

This study examines the oxidation process of the tea brand “Iron Goddess of Mercy” 

from Anxi in southern Fujian. Before designing the experiment, we referred to relevant 

literature and conducted on-site investigations at tea processing locations [6,7]. Based on 

documented testing methods and the expertise of tea masters, we determined the pro-

cessing methods and equipment operating parameters for different stages of the oxidation 

process of Oolong tea. To systematically and precisely investigate this process, the study 

monitors two key stages: shaking and fermentation. During the oxidation process of Iron 

Goddess of Mercy tea, three shaking and three fermentation cycles are implemented. Each 

shaking and fermentation process is as follows: the first shaking lasts for 5 min at a fre-

quency of 25 Hz and the first fermentation lasts for 30 min; the second shaking lasts for 14 

min at a frequency of 25 Hz and the second fermentation lasts for 50 min; the third shaking 

lasts between 50 to 70 min at a frequency of 20 Hz and the third fermentation lasts for 8−10 

h. Given that the first two shaking and fermentation cycles have short intervals and indis-

tinct characteristics, traditional timed processing is applied. Aromas are monitored dur-

ing the primary processing stages (the third shaking and third fermentation stages). Tea 

aroma is collected during the third shaking and third fermentation stages, and processing 

states are classified based on the shaking and fermentation nodes assessed by on-site tea 

masters during each evaluation.  

2.2. Sensor Selection 

The signal source of the gas sensors detection system comprises a sensor array, and 

the main compounds present in the aroma and flavor of Oolong tea during fermentation 
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are alcohols, aldehydes, and hydrocarbons [26]. Therefore, when developing a gas sensors 

detection system, it is essential to choose sensor types based on the major compounds in 

the aroma of tea. This strategic selection provides us with the capability to detect nuanced 

changes in aroma throughout the tea processing stages. In this study, we initially selected 

13 metal oxide semiconductor gas sensors with strong stability and sensitivity to VOCs in 

the aroma of tea (Table 1), based on the aroma components during the fermentation pro-

cess of Oolong tea [27]. Among them, the TGS series sensors were sourced from Figaro 

Engineering Inc., Osaka, Japan, while the other sensors were obtained from Zhengzhou 

Winsen Technology Corp., Zhengzhou, China. 

Table 1. Basic information of the selected sensor. 

Sensor Detection Range (ppm) Sensitivity to Gases 

TGS826 30–600 Ammonia gas 

TGS2610 200~10,000 LP and gases containing LP components (propane, butane) 

TGS821 50–1000 Hydrogen gas 

TGS2620 50–5000 Ethanol, organic gas 

MQ135 10–1000 Ammonia gas, sulfides, benzene steam 

TGS816 50–1000 Methane, propane, butane, alkanes 

KQ2801 10–1000 VOC organic gases 

MQ138 5–500 Toluene, acetone, ethanol, formaldehyde, organic vapors 

TGS2611 300~10,000 Methane, alkane gases 

MQ137 5–500 Ammonia gas, organic ammonia gas 

TGS822 50–5000 Organic gases, benzyl alcohol, isobutane, acetone 

TGS2600 1–500 Hydrogen gas, alcohols 

MQ8 100–1000 Hydrogen-containing gas 

2.3. Gas Sensors Detection System Integration 

The gas sensors detection system’s core comprises the sensor circuit and reaction 

chamber, and the stability and reliability of sensor signal readings are determined by the 

design of the test circuit [28]. The reaction chamber serves as the space where gases inter-

act with the array of gas sensors and undergo reactions. The uniform distribution of gases, 

gas flow rates, and the state of gas flow in the reaction chamber directly impact the detec-

tion results of the sensors. The integration of the sensor test circuit with the rational design 

of the reaction chamber significantly affects the stability and reliability of the gas sensors 

detection system’s signal [29]. 

All the sensors listed in Table 1 are metal oxide sensors, which are divided into four-

pin and six-pin sensors based on the structure of the sensor. The circuit diagram of the test 

circuit is shown in Figure S1. The sensor is internally divided into two circuits: a heating 

circuit and a working circuit. The design of the working circuit requires calculating the load 

resistance size for the detection circuit and selecting appropriate circuit components based 

on the sensor’s technical manual and working principle. The device circuit schematic inte-

grates the sensor, microcontroller, and power circuit onto the same printed circuit board in 

Figure S2. This highly integrated design optimizes the circuit layout, reducing electromag-

netic interference and signal transmission losses, thereby ensuring a stable operating envi-

ronment and enhancing signal processing efficiency and reliability [30].  

Simulation of gas transport, diffusion, distribution, and flow patterns within the reac-

tion chamber was conducted using the CFD module of COMSOL Multiphysics 6.0 software 

[31], as shown in Figure 1. The simulation results aided in the optimization of the reaction 

chamber’s design [32]. In order to achieve the ideal flow state of gas in the reaction chamber, 

three draught boards and two septums were added to regulate the gas distribution and 

flow. This effectively prevented the formation of dead zones (areas of gas stagnation) and 

circulating regions, contributing to enhanced sensor performance and sensitivity. 
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Figure 1. Figures (A−F) show the improvement process of the structure of the reaction chamber and 

the velocity flow diagram of each structure. Figure (F) shows the optimal model. 

2.4. System Workflow 

The custom-built gas sensors detection system consists of a gas path, a signal acqui-

sition module, and a signal processing module. The internal structure of the device and 

the schematic diagram of the system detection process are shown in Figure 2.  
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Figure 2. Schematic diagram of internal structure and gas path of gas sensors detection system (A). 

System detection process diagram (B). 

The workflow of this device is as follows. 

(1) Device initialization: The cleaning air path is connected. The gas sensors detection 

system undergoes a 40 min preheating process. Afterward, the air path is switched 

to the sampling path using solenoid valves. The aroma, which is drawn out by the 

air pump, initially enters the filter, where dust particles and water vapor are removed 

to ensure a controlled experimental environment. 

(2) Sampling and detection: The filtered aroma enters the reaction chamber, interacting 

with the sensor array and initiating a 4 min detection cycle (2 min for the reaction 

phase and 2 min for the reduction phase). After each detection cycle, the air path is 

adjusted to the cleaning path to restore the sensor state (Figure 3A) and clear any 

residual tea aroma. 

(3) Signal processing: The signals produced by the sensors are rectified and filtered by 

the sampling circuit, then undergo A/D conversion via the microcontroller’s IO port, 

converting the detected analog signals into digital signals that can be recognized and 

processed by software. These digital signals are then transmitted to the PC via 

USART serial communication for data storage and processing. 

 

Figure 3. Sensor testing and reduction curve (A). Sensor response spectra of 256 samples (B) and 

Four-stages sample line chart (C). H1: third shaking phase, F1: de-greening phase, F2: aroma-pro-

ducing phase, F3: stabilization phase. 
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A typical sample response curve is depicted in Figure 3A, where each curve illus-

trates the variation in response values of different sensors over time as the tea aroma per-

meates the reaction chamber. It can be observed that all sensors exhibit a consistent re-

sponse pattern within a detection cycle, and the peak response values can be identified. 

Subsequent experiments indicated that all collected samples in this study share similar 

characteristics. Therefore, utilizing response values for subsequent feature extraction and 

pattern recognition within a response cycle is reasonable. 

2.5. Sample Acquisition  

The patterns of aroma changes during the third fermentation were identified via re-

peated experiments, including the de-greening phase (transforming and degrading grassy 

compounds in the tea, reducing grassy odor, and gradually producing the tea aroma), the 

aroma-producing phase (characterized by a substantial transformation of internal tea so-

lutes, generating the unique aroma of Oolong tea), and the stabilization phase (in which 

the chemical reactions for aroma substances are nearly complete, and the aroma compo-

sition stabilizes, marking the end of the oxidation process). Thus, we divided the experi-

mental stage into four monitoring zones: the third shaking (H1) and three different stages 

of the third fermentation (F1 de-greening phase, F2 aroma-producing phase, and F3 sta-

bilization phase). The experimental samples were taken from autumn tea leaves, which 

are known for their high yield and quality, and which were collected between October 15 

and 18. The sampling process began at 6 PM each day and ended at 3 AM. Based on the 

different rates of aroma change and processing duration, the sampling frequency varied 

for each stage: the H1 stage was sampled every 4 min, the F1 stage was sampled every 8 

min, the F2 stage was sampled every 15 min, and the F3 stage was sampled every 10 min. 

In total, 256 samples were obtained from 4 batches (Figure 3B). The discriminant analysis 

model was built by integrating experimental data from these different batches.  

2.6. Data Analysis Method 

The signals captured by sensors frequently exhibit diverse noises, and therefore em-

ploying a Butterworth low-pass filter to process the sample data is imperative for elimi-

nating short-term fluctuations or peaks [33]. As the concentration of tea aroma in the sam-

ples decreases during the process, this experiment employs a sliding window method to 

find the peak signal within a sample cycle as the characteristic of the sample, followed by 

zero-centering the data [34]. Principal component analysis (PCA) is used to ascertain the 

contribution rates of the main components and their cumulative contributions from the 

original dataset and extract key information [35]. Before conducting principal component 

analysis (PCA), we standardized the response values in the data matrix to eliminate the 

dimensional influence between different sensors. The application of PCA aims to reduce 

the dimensionality of the data and attempts to reveal the main factors that affect data var-

iability. Through PCA, we identified the principal components with high contribution 

rates and used these components as inputs for subsequent models to discriminate the ox-

idation stages of Oolong tea. Specifically, we selected the first two principal components 

that explained most of the total variance for analysis. Before establishing the discriminant 

models, the samples were randomly sorted and subsequently divided into calibration and 

prediction sets in a 3:2 ratio. As a result, 154 samples make up the calibration set, and 102 

samples make up the prediction set. Subsequently, five different discriminant methods 

were systematically employed to formulate identification models. These methods in-

cluded three classical machine learning methods and two classical CNN deep learning 

methods: linear discriminant analysis (LDA), k-nearest neighbors (KNN), back propaga-

tion neural network (BP-ANN), LeNet5, and AlexNet. These identification models are de-

scribed in detail in the Supplementary Materials. The cross-validation method was ap-

plied to determine the optimal model. The optimal classification model was obtained by 

verifying the classification performance of the model with the predicted samples. In this 
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study, multivariate analysis was conducted using MATLAB R2014a software (MathWorks 

Inc., Natick, MA, USA), PyTorch 1.4.0, and Spyder (Python 3.6). 

2.7. Evaluation Metrics of Results 

In evaluating the effectiveness of classification models, performance metrics such as 

sensitivity, specificity, accuracy, and error rate are commonly used to reflect the actual 

proportions of classified samples. These metrics are usually extracted from the confusion 

matrix and serve as an index to examine the classification model efficiency. Sensitivity 

measures the effectiveness of the model in accurately identifying samples belonging to a 

specific category. Specificity reflects the model’s ability to correctly exclude non-target 

category samples. Accuracy and error rate provide a comprehensive ability of the model’s 

overall proficiency in classifying samples. In the detection process, instances that are cor-

rectly identified are labeled as TP (True Positive), while those that are correctly rejected 

are labeled as TN (True Negative). Instances that are incorrectly identified are labeled as 

FP (False Positive), and those incorrectly rejected are marked as FN (False Negative). 

These performance metrics are defined by Equations (1)–(4) below: 

Sensitivity = TP/(TN + TP) (1) 

Specificity = TN/(TN + TP) (2) 

Accuracy = (TP + TN)/(TN + TP + FP + FN) (3) 

Error rate = 1 - Acc = (FP + FN)/(TN + TP + FP + FN) (4) 

3. Results and Discussion 

3.1. Sample Response Graph Analysis 

Figure 3C illustrates sensor response graphs for samples at four different stages. The 

radar chart in Figure 4 illustrates the aroma detection information of tea leaves at different 

processing stages, with the central axis representing the sensor’s response values. It can 

be observed that each sensor responds to the detected samples, indicating the cross-sen-

sitivity of different sensors to the volatile gas. However, there are differences in the re-

sponse characteristics among different sensors, and their contributions to experimental 

data vary [36]. Therefore, it is necessary to conduct a comprehensive analysis of sensor 

response information to enhance the precision of gas information classification. 
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Figure 4. Radar charts for tea aroma detection at different processing stages: (A) H, (B) F1, (C) F2, 

(D) F3, (E) overall summary of the four samples. 

As indicated by the line graph of samples H and F3, sensors such as TGS826, TGS816, 

TGS822, TGS2610, TGS2611, MQ135, and TGS2600 undergo changes corresponding to the 

odor concentration across all four stages. exhibiting characteristic responses to the entire 

oxidation process’s mixed gases. On the other hand, sensors TGS2620 and MQ8 show a 

pronounced response to grassy odors, with lower sensitivity to aromas generated 

throughout the oxidation process. Sensors, KQ2801, MQ137, TGS821, and MQ138 exhibit 

a significantly improved response to sample F3 compared to sample H. As evident from 

the response curve line graph and the characteristic response gases of sensors in Table 1, 

it can be concluded that tea leaves induce the rapid release of aldehydes and alcohols from 

volatile compounds in green leaves through the shaking process. Fermentation promotes 

the transformation of soluble substances within green leaves, leading to the accumulation 

of characteristic alcohols and olefins [37]. Therefore, a preliminary assessment of the tea 

processing status can be made based on the response curves of characteristic sensors com-

bined with scientific calculation methods. 

3.2. PCA Results 

In the exploration of the oxidation stage of Oolong tea, PCA served as a valuable tool 

for visualizing clustering potential and extracting pertinent information from the original 

dataset [38]. The impact of environmental and other variables may introduce noise to the 

collected data, influencing subsequent model analysis [39]. The application of principal 

component analysis (PCA) can reduce dimensionality, extract feature information from the 

samples, and provide a preliminary assessment of inter-class similarities [40]. Specifically 

focusing on the signals from 13 metal-oxide (MOS) gas sensors, the first ten principal com-

ponents (PCs) were identified as contributors to 99.96% of the overall variance (Table S1). 

Each of these PCs exhibited eigenvalues surpassing 0.005. This shows their signifi-

cance in capturing substantial original information from the MOS signals (Figure 5A). The 

subsequent application of these PCs facilitates monitoring MOS with higher loading val-

ues (Figure 5B). The graphical representation of the first two PCs, PC1 and PC2, in Figure 

5C revealed a discernible clustering pattern within the oxidation stage of Oolong tea. The 

first two principal components were selected for feature analysis by calculating their 
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cumulative variance (Table 1). In the subsequent calculations, the first 10 PCs were used 

as inputs for the model and determined the optimal conditions for model performance 

through cross-validation. PCA was performed on the signal values obtained from each of 

these sensors. This analysis allowed us to reduce the dimensionality of data by identifying 

and selecting PCs that represent the highest variance and contribution rates among the 

signals [41]. These selected components effectively encapsulate the majority of the infor-

mation provided by the 13 sensors, ensuring that no critical data were overlooked during 

our analysis. This approach not only confirms the comprehensive use of all sensors but 

also enhances the robustness and reliability of the sensor selection methodology. 

 
(A) (B) (C) 

Figure 5. Eigenvalue and of the principal components (A). Score plot of sensors (B) and loading plot 

of sensors (C). The numbers 1−13 in Figure B represent the 13 sensors listed in Table 1. H1: third 

shaking phase, F1: de-greening phase, F2: aroma-producing phase, F3: stabilization phase. 

3.3. Recognition Model Results 

The outcomes of the LDA analysis revealed identification rates of 83.77% (calibration 

set) and 83.33% (prediction set) for the oxidation stage of Oolong tea, utilizing six PCs 

(Figure S3A). The majority of identification errors were observed in samples from H and 

F1 stages (Figure S3B and Table S2). Notably, the specificity of the calibration set (Table 

S3) demonstrated a slight improvement, while the sensitivity was comparatively lower. 

The identification rate of the LDA model with different PCs is shown in the calibra-

tion set and prediction set (A). Sample identification of the optimal parameters of PCs was 

achieved by cross-validation based on the calibration set (B). Cross-validation results for 

the prediction set in KNN with varying K values and PCs are depicted in Figure 6A,B. At 

K = 3 and PCs = 3, the largest identification rate of 88.24% (Table S2) in the prediction set 

was attained. The attained values for sensitivity ranged from 0.80 to 1, while the specificity 

ranged from 0.94 to 0.99 in the prediction set (Table S3). These values confirmed the en-

hanced performance of the KNN compared to that of LDA models, particularly for the H, 

F1, and F2 stages. Specifically, the sensitivity ranged from 0.80 to 1, while the specificity 

ranged from 0.94 to 0.99 in the prediction set. 
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Figure 6. The results of KNN models. Identification rate of KNN model by cross-validation in the 

calibration (A) and prediction (B) set according to different PCs and K values. 

This experiment optimized two classic CNN network models, LeNet5 and AlexNet, 

and compared their network performance. The LeNet5 model underwent training for 500 

epochs, as shown in the loss curve (Figure 7A) and model results (Figure 7B). Training 

reached optimal convergence at 190 epochs, achieving recognition rates of 92.86% and 

89.21% for the calibration and prediction sets, respectively (Table S2). The sensitivity and 

specificity for the prediction set (Table S3) were in the ranges of 0.80−0.96 and 0.93−0.99, 

respectively. 

 
Figure 7. Loss curves and confusion matrices for two CNN deep learning networks: (A) Loss curve 

of LeNet5, (B) confusion matrix of LeNet5, (C) loss curve of AlexNet, (D) confusion matrix of 

AlexNet. 
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For the AlexNet network model, training was conducted for 200 epochs, as depicted 

in the loss curve (Figure 7C) and model results (Figure 7D). Optimal convergence was 

reached at 49 epochs, with recognition rates of 94.16% and 91.17% for the calibration and 

prediction sets, respectively (Table S2). The sensitivity and specificity for the prediction 

set (Table S3) were in the ranges of 0.92–1 and 0.94–0.99, respectively. Compared to 

AlexNet, the LeNet5 network has a shallower structure and lower feature extraction ca-

pability, resulting in relatively poorer classification results. The AlexNet network model 

utilized data augmentation and dropout regularization as two methods to prevent over-

fitting, and thus enhanced its ability to fit the data. In situations with a limited number of 

samples, it demonstrated superior performance. 

In Figure 8, the identification rates of the BPANN model for different PCs in the cal-

ibration and prediction sets are presented. The optimal configuration for the BPANN 

model in identifying the oxidation stage of Oolong tea was determined with PCs set to 

three. The corresponding identification rates for the calibration and prediction sets were 

94.16% and 94.11%, respectively (Table S2 and Figure 8A). The model demonstrated a 

four-epoch structure in the hidden layer (Figure 8B), resulting in a final BPANN model 

topology of 3−4−1. Furthermore, six validation checks were conducted during the calibra-

tion process (Figure 8C). The calculated sensitivity values for BPANN ranged from 0.92 

to 0.96, and the specificity ranged from 0.97 to 0.99 (Table S3). 

 

Figure 8. The results of BPANN models. Identification rate of BPANN model with different PCs in 

the calibration set and prediction set (A). Convergence graph of the loss function (B). Validation 

checks for BPANN models (C). 

This investigation systematically examined a developed MOS sensor and employed 

five distinct classification models to enhance the identification of the oxidation stage of 

Oolong tea. Table S3 reveals that the sensitivity and specificity ranges of the prediction set 

for the BPANN model are 0.92 to 0.96 and 0.97 to 1, respectively, and these are superior 

to the LAD and KNN models. The AlexNet network model showed higher sensitivity; 

however, it indicated a lower predictive performance compared to BPANN.  

The comparison of five machine learning models in identifying oxidation stages in 

Oolong tea shows that the BPANN is the most effective, achieving high recognition rates 

and balancing sensitivity and specificity well. In the performance evaluation, the order 

was established as BPANN > AlexNet > LeNet5 > KNN > LDA. As can be seen in Table 

S2, the BPANN model with a 94.11% accuracy in predicting the oxidation stage of Oolong 

tea in the prediction set outperformed the linear model LDA (83.33%), KNN (88.24%), and 

the deep learning models LeNet5 (89.21%) and AlexNet (91.17%). BPANN outperforms 

the other models due to its ability to adapt to complex patterns and efficiently utilize PCs 

to reduce noise and overfitting [42]. AlexNet, while fast, slightly lags behind in accuracy 

[43]; LeNet5, although accurate, requires longer training times [44]. KNN struggles with 

lower identification rates and sensitivity to parameter settings, while LDA suffers from 

high error rates and lower performance metrics, likely due to its assumptions about data 

distribution [45]. Overall, BPANN’s robustness and accuracy make it particularly suitable 

for precise tasks like classifying tea oxidation stages. 
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Therefore, the separation of the oxidation stage of Oolong Tea was complicated, par-

ticularly for samples from the H, F1, and F3 stages. It was observed that the components 

in the oxidation stage of Oolong tea vary and that the trend in change is nonlinear. Models 

characterized by high nonlinearity, supported by strong self-learning and self-adjustment 

capabilities, exhibit optimal performance in addressing complex interactions. The results 

indicate that the BPANN model performs better than other classification models primarily 

attributed to the inherent topological network structure. This structure may appear to be 

potentially more favorable for evaluating the oxidation stage of Oolong tea. 

4. Conclusions 

In this study, we developed a biomimetic olfactory gas sensors detection system for 

monitoring the aroma of Oolong tea leaves during the oxidation process. The gas sensors 

detection system was combined with multivariate analysis to classify different stages of 

Oolong tea oxidation. The obtained data were subjected to five classification models, in-

cluding LDA, KNN, LeNet5, AlexNet, and BPANN. The BPANN model achieved the best 

recognition results, indicating an identification rate of 94.16% for the calibration set and 

94.11% for the prediction set.  

This study provides a scientific and novel approach to enhancing the stability of pro-

duction quality during the Oolong tea oxidation process and for advancing the automa-

tion of this process. However, the current research on guiding the key stages of Oolong 

tea processing for production is still insufficient, and there is room for improvement in 

the long-term detection capability of the equipment. Future studies can further enhance 

the performance of the equipment and utilize the methods proposed to optimize different 

stages of the third Oolong tea fermentation process. This includes exploring methods to 

shorten the oxidation time of Oolong tea and increase the yield of characteristic products.  
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