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Abstract: The increasing popularity of plant-based drinks has led to an expanded consumer mar-
ket. However, available quality control technologies for plant-based drinks are time-consuming
and expensive. Two alternative quality control methods, gas chromatography with ion mobility
spectrometry (GC-IMS) and an electronic nose, were used to assess 111 plant-based drink samples.
Principal component analysis (PCA) and linear discriminant analysis (LDA) were used to compare
58 volatile organic compound areas of GC-IMS gallery plots and 63 peptide sensors of the electronic
nose. PCA results showed that GC-IMS was only able to completely separate one sample, whereas
the electronic nose was able to completely separate seven samples. LDA application to GC-IMS
analyses resulted in classification accuracies ranging from 15.4% to 100%, whereas application to
electronic nose analyses resulted in accuracies ranging from 96.2% to 100%. Both methods were
useful for classification, but each had drawbacks, and the electronic nose performed slightly better
than GC-IMS. This study represents one of the first studies comparing GC-IMS and an electronic nose
for the analysis of plant-based drinks. Further research is necessary to improve these methods and
establish a rapid, cost-effective food quality control system based on volatile organic compounds.

Keywords: plant-based drinks; classification; gas chromatography ion mobility spectrometry;
GC-IMS; electronic nose; e-nose

1. Introduction

Plant-based drinks, which have a consistency similar to milk, are not officially classified
as a novel food. These non-dairy beverages represent appealing alternatives to traditional
dairy products, particularly among consumers who keep a vegetarian or vegan diet and
those who are lactose intolerant or allergic to dairy proteins [1,2]. Plant-based drinks
also have a more favorable environmental impact than dairy milk production, including
reduced greenhouse gas emissions and lower water use. These attributes have led to the
increasing popularity of plant-based drinks, expanding their market share and leading to
the introduction of plant-based drinks in a wide range of flavors [2,3]. Most plant-based
drinks are derived from soy and almond products, but plant-based drinks have been
developed [4] from cereals, legumes, nuts, seeds, and pseudo-cereals [5], with diverse
nutritional qualities and variations in macro- and micronutrients [4,6,7].

The nutritional properties of plant-based drinks are determined by three primary
characteristics: (1) the raw source materials [8]; (2) the formation, which describes the
addition of artificially constructed or isolated oil bodies to simulate the fat globules found
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in dairy milk; and (3) the formulation [9], which refers to the other functional ingredients,
such as coloring and flavoring agents, preservatives, thickeners, stabilizers, minerals,
and vitamins. All of these components determine the nutritional contents of plant-based
drinks [9], and their proportions may vary across brands.

Plant-based drinks intended for human consumption are required to meet food quality
control standards. However, traditional analytical methods used for evaluating food
quality and safety, such as gas chromatography (GC), mass spectrometry (MS), and atomic
absorption spectroscopy, often require pre-concentrated samples, are expensive and time-
consuming, and necessitate a well-equipped laboratory staffed by skilled personnel [10,11].
A new, non-destructive analytical method involves the coupling of spectroscopy with
near-infrared and hyperspectral imaging techniques (NIR spectroscopy), but this approach
remains limited by technical challenges [12].

Intelligent sensory instruments, such as electronic tongues or noses, represent potentially
cost-effective options for gathering information on the chemical composition of a sample.
Thorough chemical analyses can be conducted rapidly by assessing small sample volumes us-
ing these instruments. Such analyses could be used to identify all ingredients in a plant-based
drink, enabling the rapid differentiation of drinks according to ingredients and facilitating
shelf-life estimates, identification of adulterations, and assessments of authenticity [13,14].

Another option for assessing food quality is ion mobility spectrometry (IMS), in which
different compounds within a sample are ionized, and their migration is evaluated [15].
Because mobility depends on the mass, shape, and size of ionized compounds, each sample
will generate a unique chemical or molecular fingerprint that can be used to compare
samples for the purposes of identification, authentication, or fraud detection [15].

We intended to compare an unsupervised and a supervised method to reduce the
number of dimensions. The two most popular methods are principal component analysis
(PCA) and linear discriminant analysis (LDA) [16].

The present study assessed two promising, rapid, efficient, and inexpensive analytical
methods, an electronic nose and GC-IMS, and compared their abilities to differentiate
among and classify multiple plant-based drinks containing different source materials
produced by different brands.

2. Materials and Methods
2.1. Plant-Based Drink Sample Selection

We purchased 111 plant-based drinks from local supermarkets (ALDI, Auchan, DM,
EcoFamily, Penny Market, SPAR, and TESCO in Pécs, Hungary). All samples were stored
at −80 ◦C to maintain their chemical properties until sensory analysis. The investigated
samples were produced by thirteen companies: Adez, Alnatura, Alpro, DMbio, Happy,
Isola, Joya, Koko, My Bio, Natur Aktiv, Plant Pro, Riso Scotti, and The Bridge. The main
ingredients of each sample are listed in Table 1. All plant-based drinks can be classified
into one of seven categories based on their primary source: almond, cashew, coconut, oat,
rice, soy, or spelt.

All samples were categorized as either organic or conventional based on their labeling.
A sample was considered an organic product if the product packaging stated it was gener-
ated from plants grown using organic farming approaches, which forbid the use of artificial
synthetic pesticides, fertilizers, or genetically engineered products [17]. All other samples
were considered conventional products. Samples labeled as intended for commercial use
(by baristas) were grouped into a specific “barista”subgroup. Samples were also classified
according to roasting, which is part of the manufacturing process. Additional information,
such as the addition of sweeteners or calcium, the use of ultra-high temperature (UHT)
pasteurization, and the presence or absence of gluten, were used to categorize the samples.
All essential categories are presented in Table 1.
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Table 1. Description of analyzed samples. UHT, ultra-high temperature pasteurization. The samples
are numbered in the order of purchase (last four columns).

Source Type Brand Additional
Information Main Labeled Ingredients Sample Number

Almond Conventional Adez
almond (2%), sunflower

lecithin, gellan gum, steviol
glycosides, vitamins (B12, D)

10 29 61

Almond Conventional Plant Pro UHT, with added
calcium and minerals

almond (2.75%), sugar,
sunflower oil, calcium

carbonate, salt, sunflower
lecithin, vitamins (A, D, E)

73 111 113

Almond Conventional Happy
almond (1%), calcium

carbonate, guar gum, gellan
gum, lecithins, salt

149 181 199

Almond
(roasted) Conventional Alpro

almond (2%), salt, sugar,
sunflower lecithin, carob flour,

gellan gum, vitamins
(B2, B12, D, E)

89 91 106 124

Almond Conventional
(Barista) Joya almond (2.5%), gellan gum,

maltodextrin, lecithins, salt 144 178 204

Almond Conventional
(Barista) Alpro

almond (2.5%), sugar,
fructose, calcium carbonate,
guar gum, gellan gum, salt

22 46 65

Almond Organic DMbio UHT; natural almond (7%), salt 68 76 114

Almond Organic The Bridge gluten-free Italian almond paste (3%),
cane sugar, carob flour 56 74 103

Almond Organic Happy
almond (1%), calcium

carbonate, guar gum, gellan
gum, lecithins, salt

181 149 199

Cashew Conventional Alpro

cashew (3.1%), sea salt, carob
flour, gellan gum, sunflower

lecithin, vitamins
(B2, B12, D2, E)

11 42 52

Coconut Conventional Adez

coconut extract (4.6%), rice
(3.8%), sunflower lecithin,

gellan gum, guar gum,
vitamins (B12, D)

38 41 53 58

Coconut Conventional Joya UHT, with
added calcium

coconut milk (coconut cream,
water) (5.3%), rice (3.8%),

gellan gum, guar gum,
lecithins, salt, vitamins

(B12, D2)

67 71 79 85

Coconut Conventional Koko dairy-free;
original recipe

coconut milk (8.4%), grape
juice concentrate, fatty

acid–sucrose esters, salt,
carotene, vitamins (B12, D2)

86 102 121

Coconut Conventional Happy new recipe
coconut (2%), rice (3.8%),

gellan gum, guar gum,
lecithins, salt

136 161 172

Coconut Conventional
(Barista) Joya gluten-free coconut milk (coconut cream,

water) (9%), soybean (2.3%) 151 214

Coconut Organic Natur
Aktiv

coconut meat (12%), agave
syrup, guar gum, salt 70 95 123

Coconut Organic DMbio UHT coconut (8%), sea salt 14 27 50 59
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Table 1. Cont.

Source Type Brand Additional
Information Main Labeled Ingredients Sample Number

Oat Organic
(Barista) Riso Scotti oat (16%), sunflower oil, pea

protein, salt 128 185 192

Oat Organic
(Barista) The Bridge oat (14%), sunflower oil,

saffron oil, salt 135 166 184 191

Rice Conventional Auchan rice (14%), sunflower oil, salt 137 145 200

Rice Conventional Alpro

rice (not grown in the
European Union) (12.5%),
sunflower oil, salt, gellan
gum, vitamins (B12, D2)

66 97 109

Rice Conventional Alpro dolce
rice (16%), sunflower oil,

rapeseed lecithin, salt, gellan
gum, vitamins (B2, B12, D)

37 39 64

Rice Conventional Plant Pro rice (15%), sunflower oil, salt 80 99 117

Rice Organic DMbio natural rice (13%), sunflower oil, salt 32 47 49

Rice Organic Happy
rice (12.1%), sunflower oil,
calcium carbonate, gellan

gum, salt
179 180 206

Rice Organic Isola with added calcium rice (17%), sunflower oil,
seaweed, salt 176 188 193

Rice Organic Riso Scotti with added calcium rice (17%), sunflower oil,
seaweed, salt 88 104 112

Rice Organic The Bridge gluten-free, with
added calcium

Italian rice (17%), sunflower
oil, saffron oil, seaweed,

sea salt
83 98 105

Rice Organic The Bridge gluten-free; natural Italian rice (17%), sunflower
oil, saffron oil, sea salt 69 77 100 120

Rice Organic My Bio rice (17%), sunflower oil, salt 159 165 171

Soy Conventional Alpro low sugar
soybean (8%), sugar, gellan

gum, sea salt, vitamins
(B2, B12, D2)

1 7 33

Soy Conventional Alpro sugar-free
shelled soybean (8.7%),

calcium carbonate, salt, gellan
gum, vitamins (B2, B12, D2)

175 186 195

Soy Organic DMbio with added calcium soybean (7%), cane sugar,
seaweed, salt 34 60 62

Soy Organic DMbio natural soybean (8%) 78 94 116

Soy Organic Happy original recipe

soybean (6.9%), sugar,
calcium carbonate, gellan

gum, disodium phosphate,
vitamins (B2, D, B12)

197

Spelt Organic DMbio natural spelt (11%), sunflower oil, salt 87 108 122

2.2. Sample Preparation
2.2.1. Sample Preparation for GC-IMS

All samples were stored at −80 ◦C until analysis. Prior to analysis, samples were
thawed at room temperature until no solid phase was observable, after which they were
carefully shaken. The container was opened for a short time, and the headspace volume in
the original tubes was minimized. A 1 mL volume of each sample was removed from the
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original container and placed in a 20 mL plastic screw-capped vial. Based on the findings
of a prior study [18], 500 mg of sodium chloride was added to each sample to help analytes
move to the headspace.

2.2.2. Sample Preparation for the NeOse Pro Electronic Nose

The ‘Happy’ almond-based sample, which has a neutral taste and smell and contains
only 1% almond product, was used as a control for every electronic nose measurement.
All samples, including the control sample, were stored at −80 ◦C until analysis. Prior to
analysis, all samples were thawed at 4 ◦C. After thawing, 1 mL of each sample was placed
into each of seven labeled vials. Sealed vials were incubated at 95 ◦C for 40 min and then
allowed to cool at room temperature (25 ◦C) for 20 min.

2.3. Analysis
2.3.1. GC-IMS Analysis

The protocols were optimized prior to GC-IMS and electronic nose measurements to
achieve the highest volatile concentration and high instrument sensitivity. The original
manufacturer’s test applied 40 ◦C for the GC column and 45 ◦C for IMS with 20 min
of incubation of samples at 60 ◦C. During the optimization, we tested 40, 60, and 95 ◦C
incubation temperatures and changed the IMS temperature to 70 ◦C because we expected
higher sensitivity. Based on the test results, 40 ◦C for GC, 70 ◦C for IMS, and 95 ◦C
incubation temperatures were chosen. Samples were incubated for 20 min at 95 ◦C. During
the first 10 min, caps were opened slightly to prevent an explosion, and caps were closed
completely for the last 10 min. No controls were included in GC-IMS analyses.

The BreathSpec GC-IMS device (Gesellschaft für Analytische Sensorsysteme, G.A.S.,
GmbH, Dortmund, Germany) consists of a core component (G.A.S, Dortmund, Germany)
equipped with a wide-bore GC column (MXT-WAX 30 m× 0.53 mm, RESTEK, Bellefonte,
PA, USA).

A heated (95 ◦C) 5 mL plastic syringe with a 51 mm needle was used to collect 1 mL
of headspace from each sample, and 200 µL of the collected headspace was injected into a
heated (95 ◦C) splitless injector. After injection, analytes were passed into the GC column for
the first separation. The eluate was transferred to another column for a second separation
using the IMS, which was equipped with a tritium ionizing radioactive source (5000 eV)
and a 9.8 cm long drift tube. The drift gas had a flow rate of 150 mL/min and a pressure of
0.712 kPa. The carrier gas flow rates are shown in Table 2.

Table 2. The BreathSpec GC-IMS carrier gas profile. GC-IMS, gas chromatography with ion mobility
spectrometry; time, the length of the step (minutes:seconds); | indicates open.

Time Carrier Gas Flow Rate [mL/min]

00:00.000 |

00:00.500 5.0

00:09.500 5.0

02:00.000 2.0

10:00.000 2.0

25:00.020 60.0

VOCal software Version 0.1,3 (Gesellschaft für Analytische Sensorsysteme GmbH,
G.A.S.; Dortmund, Germany) was used to select 58 areas from among the measured volatile
compounds and highlight their respective signals in the chromatogram. Area 66, the
reference signal registered by the GC-IMS device, was used to normalize the intensities of
all 58 areas in every sample, and the resulting ratios were used in further analyses.
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2.3.2. Analysis Using the NeOse Pro Electronic Nose System

All samples, including the control sample, underwent comprehensive analysis using
the NeOse Pro electronic nose system (Aryballe Technologies, Grenoble, France), which
consists of an optoelectronic sensor array with 63 non-specific peptides printed on a gold
layer [19]. A dynamic measurement was conducted with the following parameters: a
pump flow rate of 50 mL/min, 25 frames per second, and a core temperature of 32 ◦C. The
time required to measure one sample was approximately 2 min, ensuring a thorough and
high-quality analysis.

A total of six aliquots of every sample were measured. Control samples were measured
once at the beginning, twice during each session, and once at the end, and the control
sample measurements were used as reference points to calibrate the results. The first
two measurement sessions for each sample were necessary to saturate the polytetraflu-
oroethylene membrane (32 mm diameter, 0.45 µm RephiQuick Syringe Filter; RephiLe
Bioscience Ltd., Zhejiang, Shanghai, China) protecting the sensors; therefore, the first two
measurements for each sample were discarded. The operation setting is seen in Figure 1.
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Figure 1. Operation setting of the electronic nose. Tubing is connected to the electronic nose (A) with
a switcher (B). Membrane filters (C) provide filtered air. The headspace of a 20 mL glass vial holding
1 mL sample is taken through a needle; an extra needle provides air to avoid creating a vacuum (D).

2.4. Statistics

The mean control sample value was subtracted from each sample value to correct for
any drift in the electronic nose. The absolute value of the lowest negative value was added
for every value in the corrected results to eliminate the negative values in the dataset.

PCA and LDA were conducted on GC-IMS and electronic nose data to classify each
sample. For the PCA scatterplot, we used ClustVis, a web tool for visualizing the clustering
of multivariate data. A confidence level of 0.95 defines the ellipses [20]. Fisher’s coefficient
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and the Mahalanobis distance with stepwise analysis were utilized for the LDA, using IBM
SPSS Statistics for Windows, Version 28 (IBM, Armonk, NY, USA).

Samples were compared across brands (Alpro: almond, cashew, rice, and sugar-free
soy; DMbio: almond, coconut, oat, rice, soy, and spelt), type (barista: almond, coconut,
and oat), and plant source (almond: roasted, barista, conventional and organic; coconut:
Adez, Joya, Koko, Naturaktiv, and Happy; conventional rice: Alpro traditional, Alpro
sweetened, PlantPro, and Happy; organic rice: Auchan, Isola, Riso Scotti, DMbio, The
Bridge, and MyBio).

The data presented in the figures, illustrating gallery plots or PCA/LDA results, did
not undergo standardization or normalization across samples.

3. Results
3.1. Comparison of PCA Results

Figures 2 and 3 display the PCA results for the data acquired with GC-IMS and
the electronic nose. The PCA results show more overlap and lower separation between
groups when applied to GC-IMS data than when applied to electronic nose data. When
assessing Alpro samples, the GC-IMS approach was able to completely separate sugar-
free soy samples from other Alpro samples, and this approach was also able to separate
cashew-based samples from almond-based samples. However, overlap occurred between
almond-based and rice-based samples and between cashew-based and rice-based samples.
The electronic nose approach was able to completely separate almond-based and cashew-
based samples from other Alpro samples, whereas overlap occurred between rice-based
and sugar-free soy Alpro samples.

Foods 2024, 13, 4086  7  of  18 
 

 

coefficient  and  the Mahalanobis distance with  stepwise  analysis were utilized  for  the 

LDA, using IBM SPSS Statistics for Windows, Version 28 (IBM, Armonk, NY, USA). 

Samples were compared across brands (Alpro: almond, cashew, rice, and sugar-free 

soy; DMbio: almond, coconut, oat, rice, soy, and spelt), type (barista: almond, coconut, 

and oat), and plant source (almond: roasted, barista, conventional and organic; coconut: 

Adez,  Joya, Koko, Naturaktiv,  and Happy;  conventional  rice: Alpro  traditional, Alpro 

sweetened, PlantPro,  and Happy; organic  rice: Auchan,  Isola, Riso Scotti, DMbio, The 

Bridge, and MyBio). 

The data presented in the figures, illustrating gallery plots or PCA/LDA results, did 

not undergo standardization or normalization across samples. 

3. Results 

3.1. Comparison of PCA Results 

Figures 2 and 3 display the PCA results for the data acquired with GC-IMS and the 

electronic nose. The PCA results show more overlap and lower separation between groups 

when applied to GC-IMS data than when applied to electronic nose data. When assessing 

Alpro samples, the GC-IMS approach was able to completely separate sugar-free soy sam-

ples from other Alpro samples, and this approach was also able to separate cashew-based 

samples from almond-based samples. However, overlap occurred between almond-based 

and rice-based samples and between cashew-based and rice-based samples. The electronic 

nose approach was able to completely separate almond-based and cashew-based samples 

from other Alpro samples, whereas overlap occurred between rice-based and sugar-free 

soy Alpro samples. 

When assessing barista samples, the GC-IMS approach was able to separate almond-

based samples from one of two oat-based samples, but no complete separation was pos-

sible when comparing all barista samples using this approach. By contrast, the electronic 

nose  approach was  able  to  completely  separate  coconut-based  samples  from  all other 

barista samples, but overlaps occurred between almond-based samples and the two oat-

based samples. 

 

Foods 2024, 13, 4086  8  of  18 
 

 

 

Figure 2. Principal component analysis results of gas chromatography with ion mobility spectros-

copy  (GC-IMS) and electronic nose measurements of plant-based drinks according  to brand and 

type. 

 

 

Figure 3. Principal component analysis results of gas chromatography with ion mobility spectros-

copy (GC-IMS) and electronic nose measurements of plant-based drinks according to plant sources. 

The GC-IMS approach was not able to completely separate any of the DMbio sam-

ples,  although  some  separation was  observed  between  almond-based  and  rice-based 

Figure 2. Principal component analysis results of gas chromatography with ion mobility spectroscopy
(GC-IMS) and electronic nose measurements of plant-based drinks according to brand and type.
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When assessing barista samples, the GC-IMS approach was able to separate almond-
based samples from one of two oat-based samples, but no complete separation was possible
when comparing all barista samples using this approach. By contrast, the electronic nose
approach was able to completely separate coconut-based samples from all other barista sam-
ples, but overlaps occurred between almond-based samples and the two oat-based samples.

The GC-IMS approach was not able to completely separate any of the DMbio samples,
although some separation was observed between almond-based and rice-based samples.
However, overlaps occurred across all sample types assessed using GC-IMS. The electronic
nose approach was able to separate almond-based samples from every other DMbio sample,
and separation could be observed between rice-based and coconut-based samples; however,
these samples overlapped with every other sample type except almond-based samples.

GC-IMS of almond-based samples was able to separate barista samples from roasted
conventional samples, but no complete separation was possible when all almond-based
samples were analyzed together. The electronic nose analysis of almond-based samples
was able to separate organic and roasted conventional samples from all other almond-based
samples, but an overlap occurred between barista and conventional samples. GC-IMS
analysis of coconut-based samples was unable to completely separate any sample when all
samples were analyzed, but separation was observed between the Adez and Koko samples.
The electronic nose was also unable to completely separate any coconut-based samples
when all samples were analyzed, but separation was observed between the Koko and
Happy samples and between the Koko and Adez samples. GC-IMS analysis of conventional
rice samples was able to completely separate the Happy sample from all other samples,
and separation was observed between the sweetened Alpro and PlantPro samples. The
electronic nose was also able to completely separate Alpro conventional rice samples from
all other samples, but overlap was observed among the sweetened Alpro, Happy, and
PlantPro samples. GC-IMS analysis was able to separate Auchan organic rice samples from
MyBio organic rice samples, but incomplete separation was observed when all organic
rice samples were assessed. The electronic nose was able to separate Auchan organic rice
samples from Riso Scotti and DMbio organic rice samples, but no complete separation was
visible when all organic rice samples were assessed.

Carob flour, vitamin E, sunflower–lecithin, vitamin E, calcium carbonate, and sugar
were among the ingredients in overlapping products measured by GC-IMS but never the
ingredients of overlapping groups measured by electronic nose. This is indirect evidence,
but it is possible that the electronic nose is more sensitive to these products or impurities
belonging to these products than the GC-IMS. It is also possible that other sources were
responsible for the better classification (Table 3).

3.2. Comparison of LDA Results

Table 4 compares the LDA results before and after cross-validation. Figures 4 and 5
show visual comparisons of the LDA results. Detailed classification results are in the
Supplementary Materials (Tables S1–S14).

After cross-validation, the LDA classification results for GC-IMS were less accurate
than those for the electronic nose. Although the lowest accuracy for GC-IMS classification
was 15.4% for Alpro samples, all other accuracy values were 89.5% or higher. However,
higher accuracy values were obtained overall for electronic nose results, with the lowest
observed accuracy at 96.2%.
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Table 3. Summary of product characteristics evaluated by PCA. We listed the main ingredients that overlapping groups shared. The ratios of overlapping groups are
also shown. When we compared the GC-IMS and the electronic nose, we marked the better result with green, the same performance with black, and the worse
result with red. A higher number of red results were seen in GC-IMS results. PCA, principal component analysis; GC-IMS, gas chromatography with ion mobility
spectrometry; conv., conventional; org., organic.

GC-IMS Electronic Nose

Brand Type Rate of
Overlapping Main Overlapping Ingredients Notable Findings Brand Type Rate of

Overlapping
Main Overlapping

Ingredients Notable Findings

Alpro

Almond 1/3 - Carob flour
- Gellan gum
- -Vitamin E
- Sunflower-lecithin
- Vitamin B2
- Vitamin B12
- Vitamin D2
- Vitamin E

Complete separation
of soy samples Alpro

Almond 0/3

- Gellan gum
- Salt
- Vitamin B12
- Vitamin D2

Complete separation of
almond and cashew samples

Cashew 1/3 Cashew 0/3

Rice 2/3 Rice 1/3

Soy (s.f.) 0/3 Soy (s.f.) 1/3

Barista

Almond 2/3

- Salt
- Sunflower oil

Coconut and oat
2 samples are

difficult to
distinguish

Barista

Almond 2/3

- Salt
- Sunflower oil

Complete separation of
coconut samples

Coconut 3/3 Coconut 0/3

Oat 1 2/3 Oat 1 2/3

Oat 2 3/3 Oat 2 2/3

DMbio

Almond 3/5

- Salt
- Sunflower oil

Oat, soy, and spelt
samples are difficult

to distinguish
DMbio

Almond 0/5

- Salt
- Sunflower oil

- Complete separation
of almond samples

- Oat, soy and spelt
samples are difficult
to distinguish

Coconut 4/5 Coconut 3/5

Oat 5/5 Oat 4/5

Rice 4/5 Rice 3/5

Soy 5/5 Soy 4/5

Spelt 5/5 Spelt 4/5

Almond

Barista 2/3 - Almond
- Calcium-carbonate
- Carob flour
- Gellan gum
- Guar gum
- Salt
- Sugar
- Sunflower-lecithin
- Vitamin B12
- Vitamin D
- Vitamin E

Conventional and
organic almond

samples are difficult
to distinguish

Almond

Barista 1/3

- Almond
- Salt

Complete separation of
conventional and roasted
conventional samples

Conventional 3/3 Conventional 0/3

Organic 3/3 Organic 1/3

Roasted (conv.) 2/3 Roasted (conv.) 0/3

Coconut

Adez 3/4 - Coconut
- Gellan gum
- Guar gum
- Salt
- Rice
- -Vitamin B12
- Vitamin D2

Happy, Joya, and
Naturaktiv samples

are difficult
to distinguish

Coconut

Adez 3/4 - Coconut
- Gellan gum
- Guar gum
- Salt
- Rice
- Vitamin B12
- Vitamin D2

Joya and Naturaktiv
samples are difficult
to distinguish

Happy 4/4 Happy 3/4

Joya 4/4 Joya 4/4

Koko 3/4 Koko 2/4

Naturaktiv 4/4 Naturaktiv 4/4
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Table 3. Cont.

GC-IMS Electronic Nose

Brand Type Rate of
Overlapping Main Overlapping Ingredients Notable Findings Brand Type Rate of

Overlapping
Main Overlapping

Ingredients Notable Findings

Rice (conv.)

Alpro 2/3
- Gellan gum
- Rice
- Salt
- Sunflower oil-Vitamin B12

Complete separation
of Happy samples Rice (conv.)

Alpro 0/3
- Gellan gum
- Rice
- Salt
- Sunflower oil

- Complete separation
of Alpro samples

- Alpro (sweet),
Happy and PlantPro
samples are difficult
to distinguish

Alpro (sweet) 1/3 Alpro (sweet) 2/3

Happy 0/3 Happy 2/3

PlantPro 1/3 PlantPro 2/3

Rice (org.)

Auchan 4/5

- Rice
- Salt
- Seaweed
- Sunflower oil

DMbio, Isola, Riso
Scotti, and The

Bridge samples are
difficult to
distinguish

Rice (org.)

Auchan 3/5

- Rice
- Salt
- Seaweed
- Sunflower oil

Isola, MyBio and The Bridge
samples are difficult
to distinguish

DMbio 5/5 DMbio 4/5

Isola 5/5 Isola 5/5

MyBio 4/5 MyBio 5/5

Riso Scotti 5/5 Riso Scotti 4/5

The Bridge 5/5 The Bridge 5/5
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Table 4. The percentages of correct classification by LDA before and after cross-validation.

Examined Group

GC-IMS Electronic Nose

Original Grouped
cases Correctly

Classified

Cross-Validated
Grouped Cases

Correctly Classified

Original Grouped
Cases Correctly

Classified

Cross-Validated
Grouped Cases

Correctly Classified

Alpro 100.0% 15.4% 100.0% 100.0%

Barista 100.0% 92.3% 100.0% 100.0%

DMbio 100.0% 89.5% 100.0% 100.0%

Almond 100.0% 95.0% 100.0% 100.0%

Coconut 100.0% 100.0% 100.0% 96.2%

Rice (convent.) 100.0% 91.7% 100.0% 100.0%

Rice (organic) 100.0% 90.9% 100.0% 100.0%

LDA, linear discrimination analysis; GC-IMS, gas chromatography with ion mobility spectroscopy; convent., conventional.
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4. Discussion

Both GC-IMS and electronic nose approaches are able to precisely and thoroughly
detect volatile organic compounds [21]. Volatile compounds have been successfully used
to identify the primary sources of various plant-based drinks, including rice [22], oat [23],
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almond [24], coconut [25], soy [26], cashew [27], and cereals [28]. Volatile compounds have
also been successfully used to identify additional ingredients in plant-based drinks, such
as sunflower oil [29], pea protein [30], algae [31], grape juice [32], and agave syrup [33].
For example, these approaches have been used to successfully differentiate among room-
temperature yogurt, non-fermented plant-based drinks, and fermented plant-based drinks
made from walnut and purple rice, with complete separation visible when PCA was
applied to electronic nose results and GC-IMS gallery plots [34]. Our comprehensive
study demonstrates that the presence of volatile organic compounds identified using GC-
IMS or electronic nose approaches heavily influences the PCA-based differentiation of
plant-based drinks.

Few studies have explored the analysis of plant-based drinks using GC-IMS or elec-
tronic nose approaches, although one study was able to differentiate among four different
samples of water-boiled salted duck, with PCA of both electronic nose and GC-IMS results
leading to complete separation of all four samples [35]. Another study used GC-IMS and
electronic nose approaches to explore changes in volatile compounds after the fermentation
of traditional Chinese shrimp pastes, and PCA results showed both separation and overlap
among various samples [36]. A study using GC-IMS and electronic nose approaches to
explore changes in aroma characteristics across grass carp mince samples subjected to
different washing processes found that PCA could separate samples completely [37]. These
studies demonstrate that both of these approaches may be able to provide valuable data
for classification purposes. The present study is among the first studies to compare the
use of GC-IMS and electronic nose approaches for differentiating among various plant-
based drink samples. In our study, most almond samples were classified correctly, with
95–100% accuracy. The incorrect classification may result from using a low percentage
of almonds, which ranged between 1% and 7% in our samples. The other reason for
incorrect classification may derive from mixed products. For instance, coconut and rice
or coconut and soybean are used together. Producers may use different protocols and
ingredients, but there are common ingredients and additives, like sunflower oil, gellan
gum, and vitamin B2. Quality control measures are needed to ensure the quality and safety
of plant-based drinks intended for human consumption [10]. One step in the quality control
process applied to food is identifying the origins of the food product [14], which may be
conducted using GC-IMS [10,15,38] and electronic nose [14,39] approaches. However, our
results indicate that in the absence of GC-IMS fingerprint references, GC-IMS was unable
to clearly differentiate among various plant-based drinks. By contrast, the electronic nose
approach was able to differentiate among different plant-based drinks more efficiently than
GC-IMS. In the present study, the electronic nose approach was both more accurate and
quicker than the GC-IMS approach, able to analyze a single sample in 2 min compared
with the 25 min required for GC-IMS. Based on the characteristics of GC-IMS and the
electronic nose tested, we suppose that GC-IMS is more sensitive to apolar molecules while
the electronic nose is more sensitive to polar molecules. The headspace of plant-based
drinks was likely more abundant in polar molecules in our study. The classifiers were
different at the electronic nose and GC-IMS. The GC-IMS provided concentration data of
volatile molecules, while the sensors, binding various molecules, were the variables at the
electronic nose. Our results indicate that the GC-IMS and the electronic nose approaches
should be improved to replace the complex systems currently used to assess food quality
control, such as GC-MS and liquid chromatography–MS. However, both GC-IMS and the
electronic nose approaches could be integrated into more sophisticated systems [40,41] or
be used to conduct preliminary tests when the packaging has no label, is suspected of being
mislabeled, or if fraud or adulterations are suspected.

If improvements in these two approaches lead to high reproducibility and standard-
ization of plant-based drink analyses, these approaches could represent options for rapid
quality monitoring during product manufacture, enabling producers to verify and maintain
quality standards for plant-based drinks. If samples or batches fail to be classified correctly,
they may be flagged for more thorough examinations, helping producers eliminate po-
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tential problems during production, including spoilage, contamination, and the lack of or
addition of excess ingredients. Authorities could use similar systems to evaluate suspected
cases of adulterations or mislabeling.

5. Conclusions

Plant-based drinks are increasingly popular, and drinks are being produced from
multiple plant-based sources. Quality control is essential for plant-based drinks intended
for human consumption, and the development of rapid, reliable, and cost-effective methods
could help producers and authorities detect mislabeling and adulterations before they
cause harm. GC-IMS devices and electronic noses are portable devices, which makes
them desirable for such analyses. In our study, we assessed the accuracy of GC-IMS and
electronic nose analyses for differentiating between plant-based drinks according to source
plant or brand. The electronic nose was more accurate and had a more favorable time–cost
ratio than the GC-IMS approach. Further research is needed to determine the accuracy
and reproducibility of each approach. Better results could lead to standardization and the
establishment of a fast and efficient monitoring system.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/foods13244086/s1, Table S1. Classification results of the LDA analysis
of plant-based drinks by the brand “Alpro”an-alysed with GC-IMS. Table S2. Classification results
of the LDA analysis of plant-based drinks by the type “Barista”analysed with GC-IMS. Table S3.
Classification results of the LDA analysis of plant-based drinks by the brand “DMbio”analysed
with GC-IMS. Table S4. Classification results of the LDA analysis of plant-based almond drinks
analysed with GC-IMS. Table S5. Classification results of the LDA analysis of plant-based coconut
drinks analysed with GC-IMS. Table S6. Classification results of the LDA analysis of conventional
plant-based rice drinks analysed with GC-IMS. Table S7. Classification results of the LDA analysis
of organic plant-based rice drinks analysed with GC-IMS. Table S8. Classification results of the
LDA analysis of plant-based drinks by the brand “Alpro”an-alysed with Electronic nose. Table S9.
Classification results of the LDA analysis of plant-based drinks by the type “Barista”analysed with
Electronic nose. Table S10. Classification results of the LDA analysis of plant-based drinks by the
brand “DMbio”analysed with Electronic nose. Table S11. Classification results of the LDA analysis
of plant-based almond drinks analysed with Electronic nose. Table S12. Classification results of the
LDA analysis of plant-based coconut drinks analysed with Electronic nose. Table S13. Classification
results of the LDA analysis of conventional plant-based rice drinks analysed with Electronic nose.
Table S14. Classification results of the LDA analysis of organic plant-based rice drinks analysed with
Electronic nose.
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