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Abstract: To investigate the impact of tea polyphenols on the thermodynamic properties,
gelatinization properties, rheological properties, and digestion characteristics of starch after
ball milling, canna starch and tea polyphenols were mixed at a 10:1 ratio (w/w) in an
experiment and processed with different ball milling times. After ball milling for 3 h, the tea
polyphenols and starch fragments formed complexes. Compared with the unmilled mixture,
the solubility increased by 199.4%; the shear stress decreased by 89.48%; and the storage
modulus and loss modulus decreased. The content of resistant starch first decreased and
then increased. Infrared results revealed that ball milling led to a non-covalent interaction
between the tea polyphenols and starch. Molecular dynamics simulations were used to
study the interaction between the starch and tea polyphenols. The binding free energy of
the main component, epigallocatechin gallate (EGCG), in tea polyphenols with starch was
reduced from −23.20 kcal/mol to −26.73 kcal/mol. This experiment can provide a reference
for the development of functional starch with high resistant starch content.

Keywords: ball milling; tea polyphenols; interactions; digestibility; molecular dynam-
ics simulations

1. Introduction
Starch, an important daily source of carbohydrates, is closely related to an increase

in blood sugar levels after meals [1]. As an important source of nutrients, starchy foods
are hydrolyzed by enzymes and converted into small glucose molecules to enter the blood-
stream and supply energy for the human body [2], but a rapid increase in the blood
glucose concentration greatly increases the risk of obesity and diabetes. The development
of starch products with low digestibility has the potential to thereby significantly atten-
uate the postprandial glycemic response and promote the formation of resistant starch
(RS) [3]. RS can undergo fermentation by the gut microbiome, leading to the production of
health-promoting metabolites such as short-chain fatty acids (SCFAs), which contribute to
gastrointestinal well-being [4,5]. In addition, the digestibility of starch can be diminished
by modifying the structure of starch or other food constituents, impeding the interaction
between starch and enzymes or inhibiting amylase activity. Starch with higher content of
short and medium amylose chains exhibits lower digestibility after cooking [6]. Therefore,
this study focused on ensuring the nutritional properties of starch and increasing the con-
tent of RS by altering the structure of starch and adding other food components, thereby
enhancing the resistance to digestion.
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Tea polyphenols (TPs) are a group of polyphenolic compounds present in tea. They
slow down the rate of enzymatic degradation of starch by limiting the functioning of amylase
and glucosidase enzymes [7]. Moreover, tea polyphenols can influence the physicochemical
characteristics of starch through interaction with it [8]. Phenolic compounds can interact
with starch to form a V-type amylose inclusion complex or a non-inclusive complex, mainly
formed through hydrogen bonds [9]. Research shows that tea polyphenols can inhibit starch
retrogradation, and, during gelatinization, the phenolic polyhydroxy structure interacts
with random helical starch chains with the aid of hydrogen bonding [10]. Furthermore, tea
polyphenols also decrease the hydrolysis of starch [11]. Catechins constitute 70–80% of all
tea polyphenols. Epigallocatechin gallate (EGCG) is the predominant compound among
TPs, constituting about 59% of the overall content [12]. EGCG has multiple hydroxyl groups,
which allow it to firmly attach to the active centers of α-amylase and α-glucosidase and to
compete with starch [13]. Consequently, this leads to a reduction in starch digestibility and
controls the postprandial blood glucose levels [14]. Research on the influence of tea polyphe-
nols on starch digestibility has attracted increasing attention from experts and scholars.
Although a wealth of literature focuses on how tea polyphenols inhibit starch hydrolysis
and alter its physicochemical properties, few studies have analyzed their physicochemical
properties or determined their digestibility after grinding with starch at different times.

Ball milling (BM) is an environmentally friendly processing technique that can alter
the morphology and structure of starch granules through mechanical forces and friction.
Studies have shown that starch chains can be broken under mechanical stress, resulting
in a significant number of linear short chains [15]. Furthermore, ball milling has been
demonstrated to facilitate the binding of starch with bioactive polysaccharides [7]. Thus,
ball milling could be a potential method for the production of low-digestibility functional
foods. Additionally, research on the preparation of complexes with anti-digestive properties
using ball milling remains limited.

Therefore, we chose canna starch (CS), which has lower digestibility and is a potential
raw material for the preparation of RS [16], and employed ball milling to modify the struc-
ture and properties of starch granules and promote its binding with tea polyphenols, thereby
altering its physicochemical properties and enhancing its digestion resistance. Molecular
dynamics (MD) simulation, as a computer simulation of molecular motion, has been applied
in the study of the interactions of straight-chain starch with lipids, polyphenols, etc. [17].
While other substances of tea polyphenols may also interact with starch, we selected EGCG,
the predominant component in tea polyphenols, as a model for MD simulations to investi-
gate the interaction mechanisms between tea polyphenols and starch, as well as the effects
of ball milling on these interactions. In this study, we systematically analyzed the effects
of varying durations of ball milling treatment on the physicochemical properties of canna
starch/tea polyphenol complexes, including their solubility, gelatinization characteristics,
rheological properties, and thermodynamic properties. Additionally, we characterized the
structural aspects of these complexes and explored the interactions between the starch and
tea polyphenols with MD simulations. Exploring the interaction mechanisms between tea
polyphenols and starch after ball milling provides a theoretical basis for the control of the
content of resistant starch and the development of functional types of starch.

2. Materials and Methods
2.1. Materials and Instruments

Canna starch (with an amylose/amylopectin ratio of 0.72 ± 0.03 and granule size of
1217.9 ± 220.1 nm) was purchased from Guizhou Meirenyu Agricultural Development Co.,
Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, Guizhou Province, China. Tea
polyphenols (purity: 99.5%) were purchased from Shandong Yousuo Chemical Co., Ltd.,
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Lanshan District, Linyi City, Shandong Province, China. All other chemicals used were of
analytical grade, and deionized (DI) water was used throughout the experiment.

2.2. Preparation of Samples

Canna starch and tea polyphenols were weighed out in a 10:1 (w/w) ratio and evenly
mixed to obtain a dry canna starch/tea polyphenol mixture. The mixture and steel balls
were then placed into a ball mill (Grinder Corporation, Changping District, Beijing, China)
at a weight ratio of 1:6 and ground for 1 h, 1.5 h, 2 h, 2.5 h, or 3 h at a grinding speed of
350 r/min. The samples were then sieved through a 100-mesh screen and set aside.

2.3. Determination of Solubility and Swelling Power

The determination was performed in accordance with the approach of Xie et al. [18],
with minor modifications. A 0.5 g sample (m) awaiting testing was placed in a centrifuge
tube, mixed with 30 mL of pure water, and heated in a water bath at 90 ◦C for 30 min
with continuous stirring. The fully gelatinized sample was then centrifuged at 5000 rpm
in a centrifuge for 30 min (Centrifuge, Eppendorf Corporation, Hamburg, Germany); the
weight of the precipitate after centrifugation was the mass of swollen starch (m1). The
supernatant obtained from centrifugation was transferred to a constant-weight aluminum
box and dried to a constant weight at 105 ◦C. The mass of water-soluble starch was m2.

Solubility S (%) = (m2/m) × 100% (1)

Swelling power SP(g/g) = m1/(m − m2) (2)

(m: the weight of the sample/g; m1: the weight of the swollen starch/g; m2: the weight of
the water-soluble starch/g).

2.4. Particle Size Analysis and Complex Particle Size Determination

Referring to the approach of Sun et al. [19], with minor modifications, the sample to
be tested was crushed in a mortar and passed through a 100-mesh sieve. A 0.01 g amount
of the sample was dispersed in 10 mL of pure water, shaken evenly, and then placed in
a particle size analyzer (Zetasizer Nano ZS, Malvern Instruments Ltd., Enigma Business
Park, Grovewood Road, Malvern, Worcestershire, UK) for analysis and determination.

2.5. Thermogravimetric Analysis (TGA)

According to the method of Kathyayani et al. [20], with some modifications, we dried
the sample awaiting testing in a vacuum drying oven for 24 h for later use. Before the test,
we turned on the nitrogen for about 30 min and waited for the flow rate to stabilize. We
weighed 10–12 mg of the sample into a platinum crucible. The settings were as follows:
starting temperature 25 ◦C, ending temperature 600 ◦C, heating rate 10 ◦C/min, nitrogen
flow rate 25 mL/min (TGA55 Thermogravimetric Analyzer, TA Company, New Castle,
DE, USA).

2.6. Determination of Starch Gelatinization Properties

The pasting properties were determined with reference to the method of Pang et al. [21].
We weighed 3.00 g starch, added 25 mL deionized water, mixed it in an aluminum box,
and stirred thoroughly; we used a rapid viscosity analyzer (RVA Fast Viscosity Analyzer,
Perten Company, Warriewood, New South Wales, Australia) to determine the gelatinization
properties. The following parameters were set: held at 50 ◦C for 2 min, heated to 95 ◦C at a
rate of 12 ◦C/min, held for 2.5 min, reduced to 50 ◦C at the same rate, held for 2 min. The
stirring rate was 960 r/min in the first 10 s and 160 r/min in the latter.
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2.7. Rheological Properties
2.7.1. Measurement of Static Rheological Properties

The rheological properties were determined with the slight modification of the method
of Xie et al. [22]. We chose a plate with a diameter of 25 mm and set the parameters as
follows: 25 ◦C, a gap of 1000 µm, and a shear rate of 0~300 s−1, using the freshly gelatinized
sample in RVA for measurement. We used the power law (power law model) to regress the
data together.

(Power law τ = KγN: τ is the shear stress/Pa; K is the consistency coefficient/(Pa·sn);
γ is the shear rate/s−1; N is the fluid index; correlation coefficient r2).

2.7.2. Determination of Dynamic Viscoelastic Properties

We chose a plate with a diameter of 25 mm and set the parameters as follows: gap
1000 µm, 25 ◦C, sweep strain value 1%, and oscillation frequency 0.1–10 Hz. We used the
freshly gelatinized sample in RVA to determine the storage modulus (G′) and loss modulus
(G′′) changes with an angular frequency.

2.8. Fourier Transform Infrared (FT-IR) Spectra Collection

A Fourier transform infrared analyzer (Vector-22, PerkinElmer Spectrum100,
PerkinElmer Inc., Waltham, MA, USA) was used for infrared spectroscopy analysis. The
methodology referenced and was modified from Pourfarzad et al. [23]. We weighed 1 mg of
the sample awaiting testing and 100 mg of potassium bromide into an agate mortar, evenly
mixed the sample and potassium bromide, and then pressed the tablet. After measuring
the background path, the sample was started. The signal was accumulated by scanning it
60 times, and the scanning range was 450–4000 cm−1.

2.9. X-Ray Diffraction (XRD)

Wide-angle X-ray diffraction patterns of the samples were obtained using an X-ray
diffractometer (X’Pert3 Powder, PANalytical B.V., Almelo, The Netherlands). The patterns
were recorded at 2θ values ranging from 3◦ to 40◦, with a step size of 0.02◦ and a scanning
rate of 4◦ per minute, all at room temperature.

2.10. Scanning Electron Microscopy (SEM)

We dispersed the dried sample on black conductive glue on a metal copper plate, blew
off the excess sample particles, coated it with gold, and started the test [24]. We observed
and took pictures at 500 and 1500 magnification under an acceleration voltage of 15 kV
(S-3000N scanning electron microscope, Olympus, Tokyo, Japan).

2.11. MD Simulation

MD simulations were used to predict how the starch would bind to the tea polyphe-
nols and to explain their interactions. The long-chain amylose (LCA) model, modeled by
the Carbohydrate Builder tool (Woods Group. 2005–2023 GLYCAM Web. Complex Car-
bohydrate Research Center, University of Georgia, Athens, GA, USA; http://glycam.org
accessed on 29 August 2023), was composed of 30 glucose residues, while short-chain
amylose (SCA) was composed of 15 glucose residues per lefthanded helix that consisted of
6 glucose residues. EGCG was constructed using the Avogadro software (version 1.2.0) [25]
and further optimized with the GAFF force field. The MD simulation was performed using
GROMACS (version 2023.02) and the results were visualized using PyMOL (The PyMOL
Molecular Graphics System, version 2.6.0a0 open-source, Schrödinger, LLC, New York, NY,
USA). Firstly, structure and topology files for amylose chains were created using the Am-
berTools23 program with the LEaP and parameters from the GLYCAM_06j-1 force field [26].
Meanwhile, the GAFF force field was applied to generate topology and coordinate files

http://glycam.org
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for EGCG. Secondly, the EGCG was incorporated into a cubic box comprising one LCA
and two SCAs, respectively, to simulate the process of ball milling for amylose disruption.
The resulting systems were named LCA@EGCG and SCA1-SCA2@EGCG, and relevant
controls, including free LCA and free SCA1-SCA2, were included in the study. In each
system, the box was filled with TIP3P water, and the total charges were neutralized. Thirdly,
each system was energy-minimized with a conjugate gradient method of 5000 steps and
pre-equilibrated using the leapfrog algorithm under NVP and NPT conditions of 1 ns,
respectively. Finally, all systems were simulated with a time step of 2 fs for 100 ns.

2.12. In Vitro Digestibility Determination

The evaluation of the experimental in vitro digestibility mainly referred to Englyst’s
method [27], with slight modifications. The specific operation steps were as follows. A
200 mg sample and 15 mL pH 6.8 phosphate buffer solution were placed in an Erlenmeyer
flask, equilibrated on a constant-temperature shaker at 37 ◦C and 120 r/min for 5 min, and
then poured into a dialysis bag, while 10 mL α-amylase (280 U/mL) and 1 mL glucoamylase
(2500 U/mL) were hydrolyzed for 0, 20, and 120 min. In addition, 1 mL was sampled to
determine the glucose content based on the DNS method. The experiment was repeated
3 times and the average value was calculated. The content of fast digestion starch (RDS),
slow digestion starch (SDS), and resistant starch (RS) was calculated according to the
following formulas:

RDS (%) = (G20 − FG) × 0.9/TG (3)

SDS (%) = (G120 − G20) × 0.9/TG (4)

RS (%) = (1 − RDS − SDS) × 100 (5)

(In the formulas, G20 is the glucose released after 20 min of enzymolysis, mg; G120 is the
glucose released after 120 min of enzymatic hydrolysis, mg; FG is free glucose, mg; TG is the
weight of total starch, mg; 0.9 is the coefficient of the conversion of glucose into starch).

2.13. Statistical Analysis

A minimum of three replicates were performed for all experiments. The results were
expressed as the mean ± standard deviation (SD). Means were compared using one-way
analysis of variance (ANOVA) and Duncan’s test (p < 0.05) as a post-hoc test using the SPSS
software version 26.0 (SPSS Inc., Evanston, IL, USA).

3. Results and Discussion
3.1. Solubility and Swelling Power

As can be seen from Figure 1, there was no significant difference in the solubility
of the complex milled for 1 h compared to the mixture. When the milling time was
further extended, the solubility of the complex significantly increased (p < 0.05). After BM
treatment for 3 h, its solubility increased by 199.4% compared to the untreated mixture.
The main reason for this phenomenon under this condition may be that the mechanical
force generated by the ball mill can destroy the crystalline structure of starch. At this time,
the microcrystalline bundles of starch began to loosen, the polar groups were exposed,
and the strong, water-soluble TPs formed a complex with the starch; thus, the solubility
of the ball-milled modified TP–CS complex increased significantly [28]. Differing from
the solubility, the swelling force of the TP–CS complex increased with the BM treatment
time from 1 to 2 h. Beyond 2 h, however, the swelling force of the complex decreased.
This is likely because, during the 1–2 h treatment period, the granular structure of the
complex remained intact, and BM reduced the particle size of the complex, promoting water
absorption and thereby enhancing the swelling force. When the BM treatment exceeded
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2 h, the starch granule structure was disrupted. As the BM time increased, the particle
fragmentation intensified, and the crystalline structure of the complex was progressively
damaged, leading to a decrease in the complex’s swelling force.
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Figure 1. The solubility and swelling power of the TP–CS mixture without BM treatment (Mixture)
and TP–CS complexes after BM treatment (1H, 1.5H, 2H, 2.5H, 3H).

3.2. Particle Size Determination of Complexes

Figure 2A shows the particle sizes of the complexes with different BM times. After
the starch granules were mechanically damaged, their particle size changed significantly.
Theoretically, as the milling time lengthens, the large starch granules should gradually
decrease and the small granules should increase. However, the experimentally measured
particle size of the compound after ball milling decreased significantly within 0–1.5 h of
ball milling, and it began to increase after 2 h, as ball milling damaged the canna starch
particles and caused them to produce more agglomerates with TPs. This observation aligns
with the phenomenon observed under scanning electron microscopy, suggesting that the
mechanical effect of ball milling on starch represents a dynamic equilibrium process during
which material refinement and complexation occur concurrently.
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3.3. TGA

Endothermic volatilization during the thermal process caused changes in the weight of
the TP–CS complexes [29]. After 250 ◦C, the weight loss of the compound mainly resulted
from the thermal degradation of the TP–CS complex. Elevated temperatures can disrupt
the chemical bonds within compounds, thereby compromising their structures. Aerobic
conditions result in a small organic compound forming during decomposition, molecular
evaporation, and sublimation [30]. The TP–CS complex exhibited two weight loss stages
after 60–150 ◦C and 250–300 ◦C (Figure 2B). The initial weight loss (before 150 ◦C) was due
to the evaporation of water, and the second stage was primarily due to the pyrolysis of
starch, as starch constituted the majority (90.91%) of the complex, and the molecular weight
of tea polyphenols is relatively small, resulting in an inconspicuous pyrolysis effect [31].

A comparison of the weight loss rates of the TP–CS complexes at 550 ◦C revealed
that BM treatment could significantly improve the thermal stability of the complexes. The
thermal stability of the complex with 1 h was the highest, while that at 1.5 h was the lowest.
At 1 h, the CS structure remained intact, and extrusion promoted the partial combination
of the starch and tea polyphenols, giving the complex higher thermal stability. When the
BM time was increased to 1.5 h, the starch particles broke and exposed more hydroxyl
groups, leading to greater weight loss during the heating process due to the evaporation
of water resulting from the condensation of the hydroxyl groups. The 1.5–3 h group’s
thermal stability increased; this may have been due to the further enhancement of the
hydrogen bond interactions between the TPs and CS, which led to a reduction in the
number of hydroxyl groups within the molecular structure. As a result, fewer hydroxyl
groups were involved in condensation reactions during the thermal process, which in turn
promoted the thermal stability of the complex, consistent with the results of the particle size
determination shown in Figure 2A. Therefore, after the co-milling treatment, the thermal
stability of the ball-milled starch with TP improved, likely due to the interaction between
the starch and TPs during ball milling.

3.4. Gelatinization Characteristics

The changes in the gelatinization characteristics are given in Table 1. Compared to
the original mixture, the peak viscosity, valley viscosity, and final viscosity of the TP–CS
complex after BM treatment at different times were reduced, with the reductions positively
correlating with the milling time. After ball milling for 3 h, these three parameters of the
TP–CS complex decreased by 97.15%, 94.78%, and 93.01%, respectively. Furthermore, it
is worth noting that, after BM treatment for 3 h, the complex disintegration value and
retrogradation value decreased by 99.49% and 73.97%, respectively. The decrease in the
pasting viscosity with the increase in the ball milling time was in line with the results
presented by Shen et al. [32]. This suggests that mechanical forces such as impact and shear
resulting from BM can destroy the original crystal structure of the complex by breaking
the covalent bond and amorphizing it, thereby reducing its flow resistance. The reduced
disintegration value indicates a decrease in the shear resistance of the TP–CS complex
and an increase in the thermal paste. The significant decrease in the retrogradation value
indicates that BM treatment degrades canna starch amylopectin into linear chains, and
it also destroys the hydrogen bonds between amylose and amylopectin, increasing the
content of RS in canna starch.
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Table 1. Effects of ball milling treatment on the gelatinization properties of TP–CS complexes a.

Sample PV (cP) TV (cP) BD (cP) FV (cP) SB (cP)

Mixture 5738.3 ± 17.2 a 3012.5 ± 26.0 a 2661.7 ± 24.9 a 3122.3 ± 25.2 b 110.7 ± 1.5 c

1H 3608.2 ± 16.2 b 2473.3 ± 8.6 b 1129.3 ± 8.5 b 3218.0 ± 17.0 a 748.7 ± 21.5 a

1.5H 1661.3 ± 16.9 c 1234.3 ± 12.9 c 427.0 ± 12.5 c 1751.0 ± 14.7 c 526.7 ± 22.3 b

2H 892.7 ± 13.7 d 780.3 ± 10.9 d 115.3 ± 9.0 d 1105.7 ± 11.1 d 335.3 ± 19.1 c

2.5H 289.3 ± 9.1 e 270.0 ± 7.0 e 28.3 ± 1.5 e 402.3 ± 8.0 e 136.0 ± 4.6 d

3H 163.3 ± 8.0 f 157.3 ± 6.8 f 13.7 ± 2.4 e 218.3 ± 5.6 f 88.7 ± 6.1 e

a Values are expressed as means ± standard deviation (n = 3). Values in the same column denoted with different
superscripts are significantly different (p ≤ 0.05). (PV, peak viscosity; TV, valley viscosity; BD, disintegration
value; FV, final viscosity; SB, regeneration value).

3.5. Static Rheological Analysis

After BM treatment, the paste rheological curve of the TP–CS complex changed
significantly, as shown in Figure 3. With the increasing shear rate, the shear stress rose
rapidly in its early stage and flattened in its later stage, indicating a pseudo-plastic fluid
characteristic. When the shear rate was 300 s−1, compared with the original complex,
after 1 h, 1.5 h, 2 h, 2.5 h, and 3 h of BM treatment, the complex shear rate decreased by
3.64%, 25.52%, 51.71%, 80.01%, and 89.48%, respectively. The results show that the shear
stress at 1.5 h–2.5 h BM changed dramatically, but, after 2.5 h, the effect weakened, and
the ball milling time did not linearly correlate with the TP–CS complex. Similar trends of
change were also observed in starch that had been treated with high hydrostatic pressure
under different pressures and numbers of cycles. BM treatment disrupts the hydrogen
bonds of amylose, reduces the internal entanglement points, loosens the structure, and
reduces the viscosity resistance, which in turn reduces the degree of shear thinning [33].
Furthermore, with increased processing time, the stronger mechanical force led to the
greater micronization of the TP–CS complex, decreased its flow resistance, and lowered the
shear stress.

The power law τ = KγN was used to perform regression fitting on the data. The param-
eters are shown in Table 2. Among them, r2 was between 0.989 and 0.999, indicating that
the power law could fit the TP–CS complex’s logistics curve appropriately. Furthermore,
N fluctuated at around 0.432, which shows that the TP–CS complexes before and after
treatment were pseudo-plastic fluids [34]. Meanwhile, K decreased as the homogeneous
pressure increased, which was the combined effect of collision and shear resulting from
ball milling. As the ball milling time increased, the probability that the particles would
be subjected to mechanical forces increased. After ball milling for 2.5 h, the decrease in
the viscosity coefficient was no longer significantly correlated with the change in the ball
milling time.

Table 2. Fitting parameters of ball milling treatment to TP–CS complex’s flow characteristics a.

Sample K (Pa·sn) N r2

Mixture 112.93 ± 4.51 b 0.35 ± 0.03 d 0.967
1H 133.49 ± 3.28 a 0.31 ± 0.01 c 0.995

1.5H 47.97 ± 4.58 c 0.45 ± 0.02 b 0.997
2H 28.67 ± 0.90 d 0.45 ± 0.04 b 0.983

2.5H 10.64 ± 1.13 e 0.49 ± 0.01 a 0.996
3H 6.90 ± 0.99 e 0.47 ± 0.02 ab 0.988

a Values are expressed as means ± standard deviation (n = 3). Values in the same column denoted with different
superscripts are significantly different (p ≤ 0.05).
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Figure 3. The flow characteristics of the TP–CS mixture without BM treatment (Mixture) and TP–CS
complexes after BM treatment (1H, 1.5H, 2H, 2.5H, 3H).

3.6. State of Viscoelastic Properties Analysis

Measuring the viscoelastic index of the gelatinized TP–CS complex in dynamic low-
frequency scanning via the storage modulus (G′) and loss modulus (G′′) and comparing
their values served to provide frequency-related viscoelastic properties. As illustrated in
Figure 4, G′ was greater than G′′ under all treatment conditions, indicating that the TP–CS
complex system was mainly elastic. There was no crossover between G′ and G′′, which
indicates that the TP–CS complex paste before and after treatment was in a weak gel state,
consistent with the characteristics of a viscoelastic fluid.
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Figure 4. The storage modulus (A), loss modulus (B), and viscosity (C) of the TP–CS mixture without
BM treatment (Mixture) and TP–CS complexes after BM treatment (1H, 1.5H, 2H, 2.5H, 3H).

After the ball milling treatment, as the ball milling time increased, G′ and G′′ both
decreased, indicating that ball milling reduced the elastic and viscous components in
the TP–CS complex [35]. After the treatment, the elasticity of the TP–CS complex was
weakened during deformation, the ability to restore the original state was reduced, and
G′ was reduced. The increase in the ball milling time also reduced the viscosity of the
starch paste (Figure 4C), and the flowability was enhanced. This may have been due to
the ball milling treatment breaking the hydrogen bonds of the linear molecules in the
canna starch, which is verified by the narrowing of the O/H characteristic band of the
FT-IR spectrum in Figure 5A. As the ball milling time increased, the G′ and G′′ of the



Foods 2025, 14, 208 10 of 17

CS–TP complex decreased, the crystal and helical structures of the starch were continuously
destroyed, the intermolecular and intramolecular interactions of the starch were weakened,
and the gel network structure was loosened. This structure was weak and its viscoelasticity
was reduced.
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Figure 5. The FT-IR spectrum (A) and the short-range ordered degree (R1045/1022, R1022/995)
(B) of native canna starch (NCS), the TP–CS mixture without BM treatment (Mixture), and the TP–CS
complexes after BM treatment (1H, 1.5H, 2H, 2.5H, 3H).

3.7. FT-IR Spectroscopy

The FT-IR spectra of the TP–CS complexes treated with different milling times are
shown in Figure 5A. The characteristic band at 3421 cm−1 is attributed to the stretching
vibration of -OH and related to the intra- and intermolecular hydrogen bonds; as the milling
time increased, the broad absorption band was narrowed, indicating that the content of
hydroxyl groups decreased [36]. Near the wavenumber of 2974 cm−1 is the absorption
shock band produced by -CH2. In the samples with added TPs, the absorption band at
1560 cm−1 can be attributed to the C=O stretching of tea polyphenols [37], while this band
is not present in native canna starch. In addition, 997 cm−1 is the bending shock absorption
band of the hydroxyl group, while 701 cm−1 and 755 cm−1 are the characteristic bands
of monosubstituted benzene (C-H out-of-plane bending) [38]. The changes in the above
characteristic bands indicate that, during ball milling, the TPs interacted with the canna
starch; ball milling destroyed the crystal structure of the starch granules (as shown in
Figure 6), which increased the exposure of the hydroxyl groups in the starch chain. TPs
may be sandwiched between starch chains through hydrogen bonds; the conjecture about
this binding mode was verified in the prediction of the conformations from the molecular
dynamics simulations.

The characteristic bands in the 800~1200 cm−1 segment were deconvoluted, and
absorbance ratios of 1047/1022 cm−1 (R1047/1022) and 1022/995 cm−1 (R1022/995) were
observed, as shown in Figure 5B. R1047/1022 and R1022/995 are associated with the
short-range ordered structure of starch samples. The former is positively correlated with its
degree of ordering, while the latter is negatively correlated with its degree of ordering. The
R1047/1022 of the TP–CS complexes treated with 1, 1.5, 2, 2.5, and 3 h of ball milling were
1.62, 1.48, 1.34, 1.16, and 1.12, respectively, which were lower than that of the untreated BM
mixture (2.49). Moreover, the values of R1047/1022 decreased gradually with the increase
in the ball milling time. In addition, R1022/995 increased with a prolonged ball milling
time, which could be attributed to the fact that the impact, shear, and friction generated
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by ball milling disrupted the double helix structure of the starch molecules, thus reducing
their short-range ordered structure.
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Figure 6. X-ray diffraction spectra of native canna starch (NCS), the TP–CS mixture without BM
treatment (Mixture), and the TP–CS complexes after BM treatment (1H, 1.5H, 2H, 2.5H, 3H).

3.8. XRD

In the XRD patterns, as depicted in Figure 6, native canna starch exhibited a char-
acteristic B-type crystalline structure, with a distinct peak at 2θ ≈ 5◦ and a strong peak
at 17◦, which is in agreement with previous reports [39]. Compared to the native canna
starch, the crystalline peak values of starch mixed with tea polyphenols remain essentially
unchanged. However, the crystalline peaks of the starch subjected to ball milling treatment
are significantly reduced, with the double peaks at 2θ = 22◦ and 24◦ nearly vanishing,
and the intensity of the peaks associated with crystallinity decreases with prolonged ball
milling. The degree of crystallinity index was calculated for each sample analyzed and is
presented in Figure 6. The crystallinity of the starch–tea polyphenol mixture (43.58%) is
slightly lower than that of native canna starch (NCS, 45.51%), and, as the ball milling time
increases, the crystallinity of the starch decreases to a minimum of 30.43%. This indicates
that the crystalline regions of the starch are more severely disrupted, and the interaction
between the tea polyphenols and starch inhibits the aggregation of the starch molecules.
This result is consistent with the trend of changes in the gelatinization viscosity with the
ball milling time.

3.9. SEM

Figure 7 shows the SEM images of the TP–CS complex after different milling times.
Canna starch exhibits a smooth, oval shape, while tea polyphenols appear as irregularly
shaped small molecules. The general morphological characteristics of the TP–CS complex
closely resemble those of CS. After BM for 1 h, the surface of CS becomes rough but main-
tains its original structure. After 1.5 h, with increased BM time, the particle shapes gradually
become irregular and fragmented, with the small TP molecules becoming embedded with
the CS particles; after 2 h of BM, small mixed particles start to aggregate around the CS
particles; and as the BM treatment reaches 3 h, the particles develop more numerous and
deeper cracks. At this point, the small molecules of tea polyphenols form complexes with
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the canna starch fragments. The figure shows that the ball-milled modified starch features
a rough surface and exhibits significant deformation, including the formation of cracks and
surface depressions. This deformation significantly increases the specific surface area of
the starch, thereby greatly enhancing the adsorption capacity of the starch modified by
ball milling.
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Figure 7. The SEM images (×500 on the left and ×1500 on the right) of the TP–CS mixture without
BM treatment (Mixture) and TP–CS complexes after BM treatment (1H, 1.5H, 2H, 2.5H, 3H).

3.10. Structural Stability Analysis

A system containing one LCA or two SCAs was employed to simulate the interactions
between starch and tea polyphenols before and after the ball milling process. The root
mean square deviation (RMSD) values were calculated for the free LCA, free SCA1-SCA2,
LCA@EGCG, and SCA1-SCA2@EGCG complexes to assess their structural stability during
the simulation. As depicted in Figure 8A, the RMSD values of the free LCA, free SCA1-
SCA2, LCA@EGCG, and SCA1-SCA2@EGCG complexes rose to approximately 0.90 nm,
1.62 nm, 1.36 nm, and 1.18 nm, respectively, within the first 15 ns. Thereafter, the RMSD
value of LCA fluctuated significantly due to its long molecular chain flexibility. The RMSD
value of the SCA1-SCA2@EGCG complex fluctuated within a range of 2 Å, averaging
1.21 ± 0.08 nm, which was lower than that of the LCA@EGCG complex (1.30 ± 0.17 nm),
indicating that BM treatment caused amylose breakage, thereby facilitating starch binding
with EGCG. The RMSD value of the SCA1-SCA2@EGCG complex was also lower than that
of the free SCA1-SCA2 system (1.49 ± 0.07 nm), suggesting that EGCG could enhance the
stability in this system. Therefore, the results indicate that the MD simulation trajectory
can be used for subsequent analysis after equilibration.
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Figure 8. The RMSD (A), the number of hydrogen bonds (B), and the conformational changes and
snapshots (C) of the free LCA, free SCA1-SCA2, LCA@EGCG, and SCA1-SCA2@EGCG complexes
(representative MD trajectories for the LCA@EGCG and SCA1-SCA2@EGCG systems at 15 and 85 ns
are shown in the graph (A), the red and blue stick models represent amylose, while the white and red
ball models represent EGCG in the graph (C)).

3.11. Hydrogen Bond Dynamics

The number of hydrogen bonds formed between long-/short-chain amylose and
EGCG is shown in Figure 8B. Once stability is achieved, the LCA-EGCG complex exhibits
interchain hydrogen bonds fluctuating between 0 and 6, whereas the SCA-EGCG complex
shows a range of 0–8. Notably, the significant increase in the frame number with hydrogen
bond numbers > 6 indicates that the BM-induced breakage of amylose results in more
short-chain amylose forming additional hydrogen bonds with EGCG, which aligns with the
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findings of the FTIR analysis. Furthermore, we also calculated the number of intramolecular
hydrogen bonds within amylose in various systems, including free LCA, free SCA1-SCA2,
LCA@EGCG, and SCA1-SCA2@EGCG. In the free LCA system, intramolecular hydrogen
bonds ranged from 0 to 13. However, in the presence of EGCG, these fluctuations extended
from 2 to 20, attributed to EGCG’s ability to reduce the pitch length of LCA and promote
intramolecular hydrogen bond formation, as observed in Figure 8C, where the EGCG
molecule is encapsulated within the spiral structure of amylose. Without the involvement
of EGCG, the amylose chains in the free SCA1-SCA2 system intertwine with each other to
form a double helix structure, with the number of intramolecular hydrogen bonds varying
between 3 and 19. The SCA1-SCA2@EGCG system shows a decrease in the number of
hydrogen bonds within SCA molecules, fluctuating within the range of 3–17.

3.12. Energy Contribution Analysis

Figure 9 illustrates the breakdown of the energy contributions. The binding energies
of the LCA@EGCG and SCA1-SCA2@EGCG complexes are negative (−23.20 ± 3.77 and
−26.73 ± 3.67 kcal/mol, respectively), which is beneficial for the formation of the complex.
The SCA1-SCA2@EGCG complex has a lower binding energy, indicating a more robust
interaction between EGCG and SCA1-SCA2. Moreover, the van der Waals energy signif-
icantly contributes to the binding energy, highlighting the pivotal role of van der Waals
forces in maintaining the stability of the complex. The Coulomb electrostatic energy also
plays a significant role in the binding energy. Based on the MD simulation results, the
hydrogen bond is primarily electrostatic in nature. Furthermore, the decrease in the absorp-
tion peak area corresponding to the stretching vibration of hydroxyl groups in the FTIR
spectrum with increasing ball milling time suggests a strong hydrogen bond interaction
between the components.
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3.13. In Vitro Digestibility of TP–CS Complex

The variation in the in vitro digestibility of the TP–CS complexes with the ball milling
time is shown in Figure 10. The incorporation of TPs significantly enhanced the RS content
in the starch compared to natural canna starch (NCS) by 226.84% to 283.21%. With an
increased ball milling treatment time, the RDS content of the TP–CS compound initially
increased and then decreased, while the RS content first decreased and then increased.
This is attributed to the micronization effect of ball milling and the complexation of TPs.



Foods 2025, 14, 208 15 of 17

Ball milling disrupts the original crystalline structure of the complex, transforming it into
an amorphous state, thereby increasing the interaction sites of enzymes and starch [40],
making the post-ball milling starch easier to digest than native starch.
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Figure 10. The digestion characteristics of the TP–CS mixture without BM treatment (Mixture) and
TP–CS complexes after BM treatment (1H, 1.5H, 2H, 2.5H, 3H) (RDS, rapidly digestible starch; SDS,
slowly digestible starch; RS, resistant starch).

Simultaneously, the ball milling treatment disrupted the spatial arrangement of the
starch and destroyed the crystallization area of the starch granules, which can contribute
to the formation of complexes between starch and TPs. Furthermore, the formation of
starch–tea polyphenol complexes mediated by hydrogen bonds can promote the aggrega-
tion of starch, leading to reduced substrate exposure to enzymes, and starch exhibits the
characteristics of slow digestion. Zhang et al. [41] showed that the digestion of starch was
mainly influenced by digestive enzyme activity. TPs can inhibit the digestibility of starch
since hydrogen bonds form between its hydroxyl groups and digestive enzymes; under the
combined action of hydrophobic interactions and hydrogen bonds, TPs form complexes
with digestive enzymes, thereby reducing the catalytic activity of the enzymes.

4. Conclusions
An extended ball milling time alters the original particle structure and morphology of

TP–CS complexes, intensifying the degree of fragmentation. This results in increased surface
energy, significantly enhancing the interactions between canna starch and tea polyphenols.
Ball milling conditions cause the starch microcrystal bundles to loosen and amylopectin
to degrade into amylose, increasing the content of slow-digested starch. MD simulations
demonstrate a molecular mechanism for the interaction between tea polyphenols and starch.
The simulations indicate that ball milling leads to starch fragmentation, consequently
strengthening the interaction between EGCG and amylose. The primary site of interaction
with amylose is the B ring of EGCG. Under the combined effect of van der Waals forces and
hydrogen bonding, tea polyphenols form complexes with starch, inhibiting interactions
between starch. This modifies the physicochemical properties of starch and enhances the
anti-digestibility of starch. In summary, canna starch and tea polyphenols after ball milling
exhibit excellent physicochemical properties and display good anti-digestive properties.
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