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Abstract: To elucidate the regional flavor characteristics of sun-dried green tea (SDT)
and their underlying influencing factors, a comprehensive analysis was conducted using
metabolomics and flavoromics approaches. This study systematically examined SDT
samples and their corresponding tea garden soils from 13 distinct regions in Yunnan
Province. The results revealed that the SDT samples could be classified into two distinct
groups based on their flavor profiles. Compared to the regions of Pa Sha (PS), Bang Dong
(BD), Dong Ban Shan (DBS), Dong Guo (DG), Su Hu (SH), Gua Feng Zhai (GFZ), and Wu
Liang Shan (WLS), the regions of Xin Nong (XN), Ba Ka Nuan (BKN), Mang Ang (MA), Man
Nuan (MN), Bing Dao (BDao), and Bin Shan (BS) exhibited a significant upregulation of the
tea polyphenols (TP)/free amino acids (FAA) ratio. The former group was characterized by
a sweet mellow taste, while the latter displayed a stronger taste profile. Furthermore, the
analysis of volatile compounds demonstrated that geraniol and linalool were significantly
upregulated in the PS, BD, DBS, DG, BS, and BDao regions, which were associated with
tender and floral aromas. In contrast, isophorone, 2-pentyl furan, 1-octanol, D-limonene,
and benzaldehyde were markedly enriched in the XN, BKN, MA, MN, SH, GFZ, and WLS
regions, contributing to sweet and honey-like aromatic profiles. Altitude and mineral
element phosphorus are potential key factors affecting the regional flavor differences in
SDT. Specifically, SDT cultivated at higher altitudes and in soils with elevated available
phosphorus content exhibited a greater likelihood of accumulating sweet mellow and floral
compounds. This study provides scientific evidence for understanding the characteristic
flavor profiles of SDT across different regions, offering valuable insights into the factors
contributing to regional flavor differentiation in tea production.

Keywords: sun-dried green tea; flavor characteristic; different regions; tea garden soil

1. Introduction
Yunnan’s favorable geography and climate have given rise to Pu-erh tea [1]. In recent

years, Pu-erh tea has become increasingly popular with consumers because of its unique
health benefits and distinctive flavor [2]. As the foundation of Pu-erh tea’s characteristic
flavor, the Yunnan large-leaf variety of SDT plays a crucial role in determining the final
product quality. Therefore, comprehensive research on the terroir-specific quality attributes
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of the Yunnan large-leaf variety of SDT is essential for establishing effective quality control
measures throughout Pu-erh tea production processes. This investigation is particularly
critical for maintaining the unique regional characteristics and ensuring consistent quality
in Pu-erh tea manufacturing.

Volatile organic compounds (VOCs) constitute essential components that significantly
contribute to the complex flavor profile of SDT. Extensive research has identified alcohols,
ketones, and hydrocarbons as the predominant classes of volatile compounds in SDT [3,4].
The samples from each producing area had their own characteristic volatile components [5],
such as different townships in Menghai County, where the SDT aroma is dominated by
fruity, floral, and woody flavor profiles [6]. Advanced analytical techniques, including
headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-
GC-MS), gas chromatography-ion mobility spectrometry (GC-IMS), and electronic nose
analysis, have proven effective in discriminating SDT aroma profiles across different Yun-
nan tea-growing regions [4,5,7]. However, the specific key flavor compounds underlying
these regional variations remain to be fully elucidated.

Research on SDT has revealed significant differences in the chemical composition of
tea from different production regions. For instance, SDT from Bulang Mountain has the
highest water extracts (WE) and TP content, while the FAA content is lower than that of
SDT from Nannuo Mountain [8]. Sensory evaluation coupled with biochemical analysis
has demonstrated that SDT from the Yiwu tea region consistently surpasses that from
the Linxiang region in overall quality metrics [9]. Furthermore, altitudinal influences on
SDT composition have been identified, with low-altitude SDT from Wuliang Mountain
containing elevated TP levels, contributing to a more pronounced bitter and astringent
taste profile [10]. Conversely, high-altitude SDT exhibits increased FAA content, resulting
in enhanced freshness and briskness. Seasonal variations have also been observed, with
spring tea containing the highest FAA levels, summer tea being rich in total catechins, and
autumn tea being characterized by elevated TP content [11].

The environmental conditions surrounding tea cultivation areas, including soil, light,
temperature, and altitude, can create unique microclimates [12]. These microclimates
contribute to the unique “local flavor” of Yunnan SDT. Soil, as the basis for the survival
and growth of the tea tree, along with its physical and chemical properties, and fertility,
are the main factors affecting the growth of tea trees and the quality of tea [13]. FAA in
tea are precursors for the production of volatile compounds [14], and the accumulation of
FAA is affected by the nitrogen content in the soil. Appropriate application of nitrogen
fertilizer can promote the formation of amino acid flavor substances, but excessive applica-
tion of nitrogen fertilizer may lead to an increase in grassy flavor and reduce the aroma of
tea [15,16]. In addition, phosphorus and magnesium can improve tea quality by affecting
the synthesis of aromatic substances and promoting the Maillard reaction [16]. Phospho-
rus fertilization increases the content of TP, while potash application increases the total
amount of catechins [17,18]. Application of large amounts of phosphorus and potassium
in tea gardens promotes malic acid metabolism in tea buds and induces redistribution of
photosynthetic products and carbohydrates in favor of the catechin pathway, which further
affects tea quality [19]. Differences in SDT quality are closely linked to the environmental
conditions around the tea-producing areas; therefore, the key components responsible for
these differences require further investigation.

Given the established correlation between SDT quality variations and the environmen-
tal conditions of tea-producing regions, further investigation is warranted to elucidate the
key components responsible for these qualitative differences. This research direction would
provide valuable insights into the complex interactions between environmental factors and
tea quality parameters.
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2. Materials and Methods
2.1. Preparation of Tea Samples

The SDT samples in this study came from 13 origins in the Digital Tea Plantation Base
established by China Tea (Yunnan) Co. Ltd. (Kunming, China) and Yunnan Agricultural
University which were named after the respective townships. Tea samples were collected
from five randomly selected sampling points at each tea plantation, with each sampling
point having the same depth (rhizosphere, 20 cm). Approximately 1 kg of soil, consisting
of a mixture of soil samples, were collected from each sampling point [20]. The specific
details of the sample collection sites are provided in Table 1.

Table 1. Information on where the samples were collected.

Number Origin Number Region Altitude Longitude and
Latitude

1 Ba Ka Nuan (BKN)

Banzhang Village, Brown Mountain
Township, Menghai County,

Xishuangbanna Prefecture, Yunnan
Province, China

1650 m E 100◦20′, N 21◦40′

2 Man Nuan (MN)

Mananan Village, Brown Mountain
Township, Menghai County,

Xishuangbanna Prefecture, Yunnan
Province, China

1300 m E 100◦16′, N 21◦37′

3 Mang Aang (MA)

Menghuang Village, Brown Mountain
Township, Menghai County,

Xishuangbanna Prefecture, Yunnan
Province, China

1600 m E 100◦22′, N 21◦35′

4 Xin Nong (XN)

Xinlong Village, Brown Mountain
Township, Menghai County,

Xishuangbanna Prefecture, Yunnan
Province, China

1300 m E 100◦16′, N 21◦37′

5 Su Hu (SH)
Suhu Village, Gelanghe Township, Menghai
County, Xishuangbanna Prefecture, Yunnan

Province, China
1650 m E 100◦45′, N 21◦97′

6 Pa Sha (PS)
Pasha Village, Gelanghe Township,
Menghai County, Xishuangbanna

Prefecture, Yunnan Province, China
1700 m E 100◦45′, N 21◦97′

7 Gua Feng Zhai (GFZ)
Mahe Village, Yiwu Township, Mengla

County, Xishuangbanna Prefecture, Yunnan
Province, China

1200 m E 101◦21′, N 21◦51′

8 Bing Dao (BDao)
Bingdao Laozhai, Mengku Town,

Shuangjiang County, Lincang City, Yunnan
Province, China

1900 m E 99◦90′, N 23◦27′

9 Dong Guo (DG)
Dongguo Mengku Township, Shuangjiang

County, Lincang City, Yunnan Province,
China

1750 m E 99◦90′, N 23◦20′

10 Dong Ban Shan (DBS)
Nasjiao Village, Mengku Town,

Shuangjiang County, Lincang City, Yunnan
Province, China

1800 m E 100◦09′, N 23◦90′

11 Bing Shan (BS)
Bingshan Village, Mengku Town,

Shuangjiang County, Lincang City, Yunnan
Province, China

1700 m E 99◦82′, N 23◦65′

12 Bang Dong (BD)
Hexin Village, Bangdong Township,

Linxiang District, Lincang City, Yunnan
Province, China

2000 m E 100◦21′, N 23◦56′

13 Wu Liang Shan (WLS)
Shanchong Village, Jingping Town,

Jingdong County, Pu’er City, Yunnan
Province, China

1900 m E 100◦62′, N 24◦09′
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2.2. Sensory Evaluation

The sensory review refers to GB/T23776-2018 (“Tea sensory review method”) [21].
Among these, the sensory quantitative descriptive analysis method collects sensory primi-
tives related to the aroma and taste of SDT, combines the flavor and quality characteristics
of Yunnan large-leaf variety of SDT, and comprehensively formulates the SDT sensory quan-
titative evaluation table. The aroma evaluation record table has 11 evaluation dimensions:
pure and normal, strong and rich, high and upward, lasting, clean and refreshing, flowery
aroma, honey aroma, sweet aroma, tender aroma, and grass odor. The taste evaluation
record table has 10 evaluation dimensions–strong, thick, mellow, pure, sweet, smooth,
sweet aftertaste, fresh and brisk, bitter, and astringent. The quantitative evaluation of
sensory characteristics is based on a scale of 0–5 to rate their intensity (0 for none, 5 for the
strongest intensity) [22].

2.3. Analysis of Nonvolatile Compounds

Referring to GB/T8305-2013 (“Determination of water extracts of tea”) [23],
GB/T8314-2013 (“Determination of total free amino acids of tea”) [24], and GB/T8313-2018
(“Detection methods for tea polyphenols and catechins in tea”) [25], the water extracts
(WE), total free amino acids (FAA), and tea polyphenols (TP) were determined, respectively.
The anthrone sulfuric acid method was used to determine soluble sugars (SS) [26].

The determination of catechin, flavonoid, and purine alkaloid fractions was carried
out by high-performance liquid chromatography (HPLC) following the method described
by Yang [27]. The instrument used in this study is a 1200 high-speed liquid chromatograph
equipped with a C18 column (4.6 mm × 100 mm, 2.7 µm, Agilent (Santa Clara, CA, USA)).
This method employed a mobile phase A consisting of 0.261% phosphoric acid and 5%
acetonitrile and a mobile phase B of 80% methanol. The elution gradient proceeded as
follows: mobile phase B increased linearly from 10% to 45% between 0 and 16 min; from
16 to 22 min, mobile phase B increased linearly from 45% to 65%; mobile phase B was
held constant at 65% from 22 to 25.9 min; from 25.9 to 29 min, mobile phase B increased
linearly to 100%; and mobile phase B was maintained at 100% from 29 to 30 min. The
column temperature was maintained at 35 ◦C. Each sample was extracted and analyzed
in triplicate.

2.4. Determination of Volatile Components

Electronic nose determination was performed according to the test method of
Wu Shanshan et al. [7]. Each tea sample was repeated 3 times.

Headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-
mass spectrometry (GC-MS) was utilized to separate and identify the volatile compounds
of sun-dried green tea in different regions of Yunnan. The instruments used in this study
include a 7890A-5975C headspace solid-phase microextraction GC-MS (Agilent, USA), a
DB-WAX column (30 m × 0.25 mm × 0.25 µm, Agilent, USA), and a 65 µm solid-phase
microextraction head (PDMS/DVB, Supelco (Bellefonte, PA, USA)). The headspace solid-
phase microextraction process was as follows: 1 g of tea sample was placed in a 20 mL
headspace vial. A total of 1 µg of ethyl acetate (decanoic acid ethyl ester) was added as
the internal standard, followed by the addition of 6 mL of boiling water. The mouth of
the vial was then sealed. The CTC autosampler was set with the following conditions:
60 ◦C, stabilized for 10 min; 65 µm polydimethylsiloxane/divinylbenzene (PDMS/DVB)
extraction head; extraction at 60 ◦C for 30 min with a rotational speed of 250 rpm. For gas
chromatography-mass spectrometry (GC-MS) coupled detection, the inlet port temperature
was set to 230 ◦C and the desorption time was 5 min.
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GC conditions were as follows: column, DB-WAX (30 m × 0.25 mm × 0.25 µm);
carrier gas, He; oven, 50 ◦C (5 min) to 230 ◦C (7 min) at 6 ◦C/min; column temperature,
50 ◦C (5 min) to 230 ◦C (7 min); temperature rising rate, 6 ◦C/min; split ration, no split;
MS conditions, mass spectrometry conditions; ion source, EI; gas interface temperature,
280 ◦C; ion source temperature, 230 ◦C; quadrupole temperature, 150 ◦C. Qualitative
and quantitative techniques were employed to identify and measure volatile compounds
following the approach outlined by Deng et al. [28,29].

For the calculation of relative odor activity value (ROAV), the component with the
highest contribution to the flavor of the sample has a ROAVmax of 100.00, while the ROAV
values of other components are calculated using Formula (1) [30]:

ROAVi =
Ci

Cmax
× Tmax

Ti
× 100 (1)

where Ci is the relative content of each volatile component, %; Ti is the sensory threshold of
each volatile component, mg/kg; Cmax is the relative content corresponding to the volatile
component that contributes the most to the aroma of the tea sample; and Tmax is the sensory
threshold corresponding to the volatile component that contributes the most to the aroma
of the tea sample.

2.5. Determination of Soil Nutrient Content

For the soil agrochemical analysis, the soil pH was determined using the glass com-
posite electrode method with a soil-to-water ratio of 1:2.5 (m/m). Soil organic matter
(SOM) was measured by the potassium dichromate oxidation-external heating method.
Total nitrogen (TN) was analyzed using the Kjeldahl method, and alkaline nitrogen (AN)
was determined by the alkaline dissolution diffusion method. Total phosphorus (TP) was
quantified by the alkali fusion-molybdenum antimony (AMA) colorimetric method, while
available phosphorus (AP) was measured using the molybdenum antimony colorimetric
method with HCl-NH4F leachate. Total potassium (TK) was analyzed by the alkali fusion
flame photometric method, and available potassium (AK) was determined by the flame
photometric method with NH4Ac leachate. Additionally, cation exchange capacity (CEC)
was measured using the ammonium acetate exchange method.

According to the national environmental technical conditions for tea origin
(NY/T853-2004) [31], the fertility grading standards for tea garden soil and the soil nutri-
tion diagnostic indexes for high-quality, high-efficiency, and high-yield tea gardens [32],
the soil nutrients of tea gardens were graded.

2.6. Statistical Analysis

Excel 2021 was used to process the raw data, MetaboAnalyst (https://www.metaboanalyst.ca/)
was used for orthogonal partial least squares discriminant analysis, and Origin2022 and
Chiplot (https://www.chiplot.online/) were used for visual representation of the data.

3. Results and Discussion
3.1. Sensory Flavor Differences in SDT Across Different Regions

Based on the comprehensive analysis of the review results, a flavor wheel (Figure 1A)
and corresponding aroma and taste radar charts (Figure 1B,C) for the Yunnan large-leaf va-
riety of SDT were developed. The analytical results revealed significant regional variations
in the color, aroma, and taste profiles of SDT across the 13 investigated regions in Yunnan
Province. Regarding chromatic characteristics, the dry tea leaves exhibited a predominant
coloration spectrum ranging from dark green to brownish-green, with tightly rolled and
substantial leaf morphology. The tea infusion demonstrated a characteristic bright yellow

https://www.metaboanalyst.ca/
https://www.chiplot.online/
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to orange hue, while the brewed leaves displayed a yellowish-green to brownish-green
coloration with a soft and lustrous appearance. In the context of tea quality assessment,
flavor and aroma profiles emerged as critical evaluation parameters, constituting primary
determinants in the comprehensive quality evaluation system of SDT. These sensory at-
tributes were found to play a predominant role in the overall quality assessment framework,
underscoring their significance in the organoleptic evaluation of SDT.
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In terms of the taste of the tea, the BDao, GFZ, BKN, SH, MA, MN, and XN samples
exhibited heavy and thick attributes, of which the BDao, GFZ, and BKN samples had a
strong sweet aftertaste, the MA, MN, and XN samples had an obvious or stronger bitterness
and astringency, and the SH sample had a more astringent taste. The BS, PS, WLS, BD, DBS,
and DG samples exhibited sweet and mellow attributes, with a strong sweet aftertaste.
Among these, BS and PS had a sweet, mellow, and slippery taste with some astringency;
BD, DBS, and DG had a sweet and smooth taste, with BD and DBS being more mellow
and brisk.

In terms of the aroma of the tea, the WLS, MA, and MN samples predominantly exhib-
ited clean sweetness and a honey aroma. The GFZ and PS samples predominantly exhibited
clean sweetness, along with floral and honey aromas. The BKN sample predominantly
exhibited a clean and refreshing aroma, while SH and XN were mainly characterized by
sweet and honey aromas. The BD and DBS samples predominantly exhibited sweet, floral,
and honey aromas, while BS had a mainly clean sweetness. The DG and BDao samples
predominantly exhibited sweet and tender aromas.

3.2. Regional Differences in Non-Volatile Compounds of SDT

The taste properties of tea result from the comprehensive effect of water-soluble
substances in the tea infusion on human taste receptors. These are mainly affected by
the content and ratio of taste substances, such as polyphenols, alkaloids, amino acids,
sugars, and organic acids [33]. Quantitative analysis revealed substantial variation in the
concentration ranges of water extract (WE), total polyphenols (TP), free amino acids (FAA),
soluble sugars (SS), caffeine (CA), gallic acid (GA), and epigallocatechin gallate (EGCG)
across SDT samples from 13 distinct regions. Specifically, the measured ranges were as
follows: WE (49.79–52.86%), TP (20.45–26.49%), FAA (1.52–2.87%), SS (4.11–6.10%), CA
(36.94–77.12 mg/g), GA (0.48–7.98 mg/g), and EGCG (65.54–85.26 mg/g).

The total polyphenol (TP) content in SDT exhibited significant regional variation
across the 13 studied areas, with the MN group demonstrating the highest concentration
(26.49 ± 0.27%), followed by the MA group (26.02 ± 0.98%). Conversely, the free amino
acid (FAA) content was lowest in the MN group (1.52 ± 0.33%), with the MA group showing
the second-lowest concentration (1.67 ± 0.14%). Consequently, the TP/FAA ratio reached
its maximum in the MN group (18.09 ± 4.35), followed by the MA group (15.84 ± 1.29).

Samples from GFZ and SH regions were characterized by pronounced bitterness
and astringency, accompanied by a distinct heavy and thick mouthfeel. Notably, the
TP/FAA ratios in the WLS, PS, DG, DBS, SH, GFZ, and BD groups were consistently
below 10, with the GFZ group exhibiting the lowest ratio (7.51 ± 0.90), followed by the
SH group (7.82 ± 0.75). The SH group simultaneously displayed the highest FAA content
(2.87 ± 0.28%) among all the samples. Interestingly, despite their initial bitterness, the GFZ
and SH samples developed a noticeable sweet aftertaste.

The WLS group exhibited unique chemical characteristics, including the lowest
flavonoid (FN) content (3.69 ± 0.31%), which correlated with reduced bitterness per-
ception. This group also demonstrated the highest concentrations of total catechins
(235.94 ± 0.85 mg/g), gallocatechin gallate (GCG) (18.92 ± 0.48 mg/g), and catechin (CA)
(77.12 ± 0.98 mg/g), resulting in a predominantly sweet and mellow flavor profile with a
persistent sweet aftertaste. This sensory characteristic may be attributed to the formation
of hydrogen bonds between alkaloids and catechins in the tea infusion, with the resulting
hydrogen bond complexes potentially enhancing the mellow and fresh characteristics of
the tea infusion.

Cluster analysis revealed that the SDT samples from 13 distinct regions could be
categorized into two primary groups based on their chemical composition profiles. The first
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group (designated as L1) comprised tea samples from the PS, BD, DBS, DG, SH, GFZ, and
WLS regions, while the second group (L2) included samples from the XN, BKN, MA, MN,
BDao, and BS regions (Figure 2A). Quantitative analysis demonstrated that the TP/FAA
(total polyphenols to free amino acids) ratio in L1 group samples was consistently below 10,
correlating with a predominantly sweet and mellow flavor profile. In contrast, L2 group
samples exhibited TP/FAA ratios exceeding 10, corresponding to a heavier and thicker
flavor characteristic.
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Orthogonal partial least squares discriminant analysis (OPLS-DA) was subsequently
conducted to identify key differential metabolites between the L1 and L2 groups. The
model demonstrated satisfactory goodness of fit, with parameter values of R2X:0.745,
R2Y:0.931, and Q2:0.892. According to established validation criteria in multivariate analy-
sis, both R2 (coefficient of determination) and Q2 (cross-validated predictive ability) values
exceeding the threshold of 0.5 indicate acceptable model performance in both explanatory
and predictive capacities. This analysis identified six significant non-volatile metabolites
meeting the criteria of fold change (FC) > 1.5 or <0.8, variable importance in projection
(VIP) > 1, and p-value < 0.05 (Figure 2B,C). Comparative analysis revealed significant
upregulation of TP/FAA and catechin (C) content in the L2 group samples relative to the
L1 group. Conversely, FAA, myricetin, GCG, and CA were significantly down regulated
in L2 samples. These differential metabolites are potentially responsible for the observed
regional variations in SDT taste profiles, providing valuable insights into the chemical basis
of regional flavor differentiation in sun-dried tea products.

3.3. Regional Differences in Volatile Compounds of SDT

The aromatic profiles of tea leaves exhibit significant regional variation, playing a piv-
otal role in determining the flavor quality of SDT [12]. To characterize the volatile organic
compounds (VOCs) in SDT, this study employed headspace solid-phase microextraction-
gas chromatography-mass spectrometry (HS-SPME-GC-MS). This analytical approach iden-
tified 463 distinct volatile compounds, which were systematically classified into 12 chem-
ical categories: 78 alkenes, 66 alcohols, 67 esters, 70 alkanes, 47 ketones, 42 aldehydes,
22 nitrogen-containing compounds, 21 heterocyclic oxygen compounds, 18 carboxylic acids,
10 phenols, 18 aromatic compounds, and 4 miscellaneous compounds (Figure 3). Quantita-
tive analysis revealed substantial variation in volatile composition across different regions.
The PS group exhibited the highest diversity of volatile compounds (133 compounds) and
the greatest total mass concentration (14.13 mg/g). In contrast, the DG and BS groups
demonstrated the lowest compound diversity, each containing 97 volatile compounds.
Notably, linalool emerged as the predominant volatile compound across all 13 regional sam-
ples, with its relative mass concentration ranging from 0.67 mg/g (XN group) to 26.69 mg/g
(DG group).
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Although numerous volatile compounds have been identified in tea, only a limited
subset significantly contributes to its sensory profile [34]. These influential volatile com-
pounds, which substantially impact the aromatic characteristics of tea, are scientifically
defined as “key aroma substances” [35]. Through comprehensive analysis incorporating
aroma threshold values and sensory characterization, 118 aroma-active compounds were
identified. Subsequent calculation of their relative odor activity values (ROAV) enabled the
selection of 36 key aroma-active compounds with ROAV ≥ 1.00 (Table 2). Cluster analy-
sis of these 36 key aroma-active compounds (Figure 4A) demonstrated distinct regional
differentiation, classifying the 13 studied regions into two primary groups. Group C1
comprised PS, BD, DBS, DG, BS, and BDao regions, characterized by predominant tender
and floral aroma profiles. Group C2 included XN, BKN, MA, MN, SH, GFZ, and WLS
regions, exhibiting distinctive clean-sweet and honey-like aromatic characteristics. This
classification pattern exhibited remarkable consistency with the cluster analysis results
obtained from electronic nose detection data (Figure 4B).
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Table 2. Key active aroma for taxa C1 and C2.

No. VM RI CAS Class Odor Description OT (ug/g)
RMC (ug/g) ROAV

FC p VIP
C1 C2 C1 C2

1 1-Octanol 1280 111-87-5 alcohols pungent 0.0220 - 2.27 - 2.79 0.00 0.00 1.89
2 Linalool 1269 78-70-6 alcohols floral, lily of the valley or magnolia scent 0.0060 11.90 1.42 100 100 8.35 0.01 1.82
3 Jasmone 1623 488-10-8 ketones floral, jasmine, and celery seed aroma 0.0003 15.85 5.91 15.85 6.80 2.68 0.21 1.67
4 Isophorone 1139 78-59-1 ketones Saussurea costus 0.0110 0.18 1.53 - 1.89 0.12 0.01 1.63
5 Geraniol 1537 106-24-1 alcohols rose, geranium 0.0066 3.95 - 4.29 - 438.53 0.01 1.54
6 D-Limonene 936 5989-27-5 alkenes Fruity, sweet fruity (lemon, citrus peel) 0.0340 0.47 2.79 1.16 3.44 0.17 0.01 1.48
7 Benzaldehyde 1245 100-52-7 aldehydes Fruity, sweet 0.0300 - 1.14 - 1.43 0.01 0.01 1.48

8 (E)-2-Heptenal 1066 2548-87-0 aldehydes methylphenidate (stimulant drug used in
treating asthma) 0.0030 - 2.53 - 3.73 0.00 0.06 1.26

9 Dodecanoic acid 2171 143-07-7 acids fruity 0.0072 1.44 3.19 2.13 3.85 0.45 0.23 1.25
10 2-pentyl furan 978 3777-69-3 heterozoa caramel 0.0060 0.19 3.39 1.05 4.37 0.06 0.01 1.15
11 p-Cymene 1007 99-87-6 alkanes solvent, gasoline, citrus 0.0114 - 0.75 - 1.47 0.01 0.08 1.08
12 Hexanal 953 66-25-1 aldehydes Fresh and fruity 0.0050 - 0.65 - 1.31 0.01 0.08 1.02

13 β-cyclocitral 1106 432-25-7 aldehydes Fruity (almond, mango), light, sweet, floral
(rose) 0.0050 4.17 4.05 4.34 15.00 1.03 0.98 0.98

14 2,2,4-Trimethyl-1,3-pentanediol diisobutyrate 1560 6846-50-0 esters - 0.0140 - 0.51 - 1.36 0.02 0.18 0.93

15 1-Methyl-naphthalene 1567 90-12-0 aromatic
compounds Camphoraceous notes, aged; stimulating 0.0080 - 0.36 - 1.10 0.02 0.18 0.82

16 2,2,6-trimethyl-Cyclohexanone 1052 2408-37-9 ketones Honey scented, lemon scented 0.1000 - 0.31 - 1.24 0.03 0.33 0.81
17 1-Octen-3-one 1045 4312-99-6 ketones Metallic Aroma 0.0050 - 1.12 - 1.85 0.01 0.20 0.78
18 Octadecane 1754 127-41-3 ketones floral (violet), woody 0.0016 - 11.42 - 12.16 0.00 0.19 0.78
19 (1R)-2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene 1325 7785-70-8 alkenes sandalwood 0.0053 - 0.84 - 1.58 0.01 0.24 0.78

20 Naphthalene 1434 91-20-3 aromatic
compounds Tar, camphor breath 0.0500 - 0.21 - 1.15 0.04 0.34 0.77

21 Octanal 1022 124-13-0 aldehydes fat, soap, lemon, green 0.0007 0.44 - 1.314 - 49.27 0.30 0.68
22 (E)-2-Octenal 1162 593-45-3 alkanes Chemical odors 0.0200 - 1.54 - 2.46 0.01 0.38 0.66
23 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-3-buten-2-one 1618 14901-07-6 ketones floral 0.0070 0.22 - 1.08 - 24.02 0.30 0.64
24 Delta-Cadinene 1446 483-76-1 alkenes Medicinal and woody 0.0015 0.56 - 1.42 - 62.04 0.30 0.63
25 Beta-Myrcene 918 123-35-3 alkenes fruity 0.0150 - 0.011 - 1.07 0.83 0.38 0.59
26 Methyl salicylate 1466 119-36-8 esters floral, Fruity 0.0400 0.56 1.02 1.25 1.65 0.55 0.40 0.56
27 (E)-2-Hexenal 975 6728-26-3 aldehydes green, leaf 0.0031 - 0.21 - 1.09 0.04 0.38 0.56
28 Nonanal 1115 124-19-6 aldehydes Sweet rose-like floral scent 0.0035 6.83 12.75 6.83 18.68 0.54 0.34 0.56
29 Styrene 1001 100-42-5 alkenes balsamic, gasoline 0.0036 - 0.55 - 1.44 0.02 0.38 0.56
30 (Z)-3,7-dimethyl-1,3,6-Octatriene 977 3338-55-4 alkenes floral, Herbal 0.0340 - 0.19 - 1.08 0.05 0.38 0.56
31 Benzeneacetaldehyde 1350 122-78-1 aldehydes Fresh and sweet 0.0063 - 1.06 - 1.94 0.01 0.38 0.50
32 alpha-Ionone 1537 18829-55-5 aldehydes pungent 0.0130 - 0.254 - 1.14 0.04 0.38 0.50

33 1,2-dihydro-1,1,6-trimethyl-Naphthalene 1441 30364-38-6 aromatic
compounds Fruity (citrus, lemon) 0.0025 - 0.63 - 1.52 0.01 0.38 0.45

34 1-Nonanol 1370 143-08-8 alcohols Fresh, floral, fatty. 0.0053 0.66 2.58 1.18 3.76 0.26 0.15 0.42
35 Safranal 1356 116-26-7 aldehydes Saffron, Herbal Woody Fragrance 0.0030 2.46 13.23 2.64 16.86 0.19 0.07 0.36

36 Copaene 1206 3856-25-5 alkenes Lemon-scented woody, earthy, and piney
aroma 0.0060 0.19 0.98 1.05 1.87 0.19 0.47 0.09

- Not identified. VM, volatile metabolites; RI, retention index; class, chemical classification originates from (https://www.chemsrc.com/casindex/, accessed on 7 June 2024); odor
description, odor description found in the literature with the database (https://www.flavornet.org/flavornet.html, accessed on 6 January 2025; https://www.thegoodscentscompany.
com/search2.html, accessed on 7 January 2025); OT, odor thresholds in water; threshold query using https://www.vcf-online.nl/VcfHome.cfm (accessed on 8 June 2024), References:
[6,12,22,28,29,34,35]; RMC, relative mass concentration; ROAV, relative odor activity value; FC, fold change; VIP, variable importance in projection.

https://www.chemsrc.com/casindex/
https://www.flavornet.org/flavornet.html
https://www.thegoodscentscompany.com/search2.html
https://www.thegoodscentscompany.com/search2.html
https://www.vcf-online.nl/VcfHome.cfm
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Orthogonal partial least squares discriminant analysis (OPLS-DA) provides a robust
statistical approach for the systematic classification of distinct sample groups. To elucidate
the critical volatile compounds contributing to regional differentiation in SDT aroma
profiles, OPLS-DA was employed to analyze the volatile organic compounds (VOCs)
between C1 and C2 groups. The model demonstrated satisfactory goodness of fit, with
parameter values of R2X = 0.726, R2Y = 0.996, and Q2 = 0.993. According to established
validation criteria in multivariate analysis, both R2 (coefficient of determination) and Q2
(cross-validated predictive ability) values exceeding the threshold of 0.5 indicate acceptable
model performance in both explanatory and predictive capacities. Through this analysis,
seven key differential aroma-active compounds were identified based on stringent selection
criteria (FC > 1.5 or < 0.8, VIP > 1, and p-value < 0.05) (Figure 4C–E).

Comparative analysis revealed significant upregulation of five compounds in the C2
group relative to C1: isophorone (woody), 2-pentyl furan (caramel), 1-octanol (fatty), D-
limonene (fruity), and benzaldehyde (fruity). Conversely, two floral compounds, geraniol
and linalool, were significantly downregulated in the C2 group. These identified volatile
compounds represent the primary chemical determinants underlying the regional differen-
tiation in SDT aroma characteristics across production areas. The aroma and flavor profiles
of green teas are largely determined by their processing methods. Sun-dried green tea, char-
acterized by its unique “sunlight” aroma, retains a higher concentration of volatile alcohols
such as linalool and geraniol, which contribute to its balanced and complex aroma profile.
By employing geranyl pyrophosphate as the precursor substrate, geraniol and linalool were
synthesized via the catalysis of geraniol synthase and linalool synthase, respectively [36].
These aroma compounds are particularly advantageous for Pu-erh tea fermentation, as the
oxidation of linalool enhances the formation of woody aroma compounds, enriching the
sensory qualities of Pu-erh tea [37].

3.4. Regional Differences in Soil Nutrients

The soil nutrient analysis results (Figure 5) revealed distinct characteristics across the
13 tea garden regions. The soil pH values ranged from 4.45 to 5.16, with 92.31% of the
tea gardens meeting the criteria for high-quality fertility tea gardens, indicating optimal
conditions for tea tree growth. Notably, the XN tea garden exhibited a pH of 4.45, which is
below the threshold of 4.50, suggesting potential soil acidification issues. Total nitrogen
(TN) content varied between 0.78 and 6.10 g/kg, with 84.61% of the tea gardens conforming
to high-quality fertility standards. However, the MN and MA tea gardens exhibited
TN levels classified as grade III. Available nitrogen (AN) content ranged from 54.67 to
214.67 mg/kg, with 61.54% of the tea gardens meeting high-quality fertility standards.
The remaining gardens were distributed as follows: BKN, XN, and BS at grade II, and
MN and MA at grade III, indicating generally sufficient soil nitrogen content across all
sites. Total phosphorus (TP) and available phosphorus (AP) contents were measured at
0.13–0.77 g/kg and 0.83–6.75 mg/kg, respectively, with both parameters falling within
grade II to III levels. Total potassium (TK) content ranged from 0.61 to 2.58 g/kg, with
69.23% of the tea gardens meeting high-quality fertility standards. The remaining gardens
BKN, XN, PS, and WLS exhibited TK levels at grade II, accounting for 30.77% of the total.
Available potassium (AK) content varied between 33.33 and 403.67 mg/kg, with 61.54%
of the tea gardens conforming to high-quality fertility standards. The remaining gardens
were distributed as follows: BKN, GFZ, and DBS at grade II, and BDao and BD at grade III.
Soil organic matter (SOM) content ranged from 18.4 to 94.9 g/kg, with 84.62% of the tea
gardens meeting high-quality fertility standards. The MN and MA tea gardens exhibited
SOM levels at grade II, accounting for 15.38% of the total sample.
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Figure 5. Map of soil nutrient differences.

Cluster analysis of soil nutrient profiles revealed distinct groupings among the sam-
pling sites. Specifically, SH, BD, DBS, DG, BS, and BDao were classified into the T1
group, while XN, BKN, MA, MN, PS, GFZ, and WLS formed the T2 group (Figure 6A).
Statistical analysis demonstrated significantly higher soil AP content in the T1 group
(3.94–6.75 mg/kg) compared to the T2 group (0.69–3.00 mg/kg). OPLS-DA was subse-
quently conducted to identify key differentiating factors between the two groups. The
model demonstrated satisfactory goodness of fit, with parameter values of R2X:0.621,
R2Y:0.878, and Q2:0.827. According to established validation criteria in multivariate analy-
sis, both R2 (coefficient of determination) and Q2 (cross-validated predictive ability) values
exceeding the threshold of 0.5 indicate acceptable model performance in both explanatory
and predictive capacities. This analysis identified five mineral elements meeting the follow-
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ing criteria: FC > 1.5 or <0.8, VIP > 1, p < 0.05. These elements were determined to be the
principal mineral components contributing to the intergroup differentiation (Figure 6B,C).
Comparative analysis revealed significant upregulation of multiple soil parameters in the
T1 group relative to the T2 group, including TP, AP, TN, SOM, and TK. These findings
suggest that these soil characteristics may serve as key indicators for the observed grouping
patterns and potentially influence the regional differentiation in tea quality parameters.
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3.5. Factors Affecting SDT Quality Differences Across Regions

The biosynthesis of aroma and flavor compounds in SDT is significantly influenced
by regional altitudinal variations and soil nutrient composition. Empirical evidence from
previous studies, corroborated by the current investigation, has demonstrated substantial
heterogeneity in soil nutrient profiles across different regions of Yunnan Province [13,38].
Furthermore, the enhancement of tea quality has been established as a critical factor in
improving the economic value of tea products [39]. To systematically investigate the
environmental determinants underlying regional quality variations in SDT, this study
employed Pearson correlation analysis and interactive Mantel tests to examine the relation-
ships between soil nutrient content, altitudinal factors, and tea quality components across
13 distinct regions.

The analytical results demonstrated significant positive correlations between soil pH
and several biochemical components in SDT, including total polyphenols (TP), myricetin,
quercetin, protein content, kaempferol, and GA. Soil parameters, particularly SOM, TN, and
AN, exhibited positive correlations with FAA, SS, rutin, EC, and CA in SDT, while showing
negative correlations with total polyphenols (TP). Furthermore, SOM, total phosphorus
(TP), and AP were positively correlated with rutin, EC, CA, and ECG, but negatively
correlated with EGCG (Figure 7A). These findings partially diverge from previous research
by Yang [38], which reported positive correlations between SOM, TN, AN and FAA, positive
correlations with total polyphenols (TP), and negative correlations with pH and total
phosphorus (TP) in Pu’er tea gardens.

Altitude demonstrated significant positive correlations with rutin, myricetin, kaempferol,
CA, and EC in SDT, while exhibiting a negative correlation with bitter-tasting EGCG.
Analysis of non-volatile compounds revealed distinct taste profiles between sample groups:
L1 group samples (TP/FAA < 10) were characterized by a sweet and mellow taste, whereas
L2 group samples (TP/FAA > 10) exhibited a heavier and thicker taste profile. Notably,
with the exception of GFZ and BDao, L1 group samples were predominantly from higher
altitudes compared to L2 group samples, suggesting altitude as a critical environmental
factor influencing SDT taste characteristics. Specifically, high-altitude samples tended to
demonstrate sweeter and mellower profiles, while low-altitude samples exhibited heavier
and thicker taste characteristics.

These variations are potentially attributable to the synergistic effects of light intensity
and temperature on tea plant metabolism at different altitudes [12]. The photodegradation
of theanine into ethylamine and glutamic acid, which serve as precursors for catechin
synthesis [40], combined with reduced light intensity and duration in high-altitude regions
due to increased cloud cover and precipitation, may contribute to lower TP/FAA ratios in
tea leaves. Given the established role of TP/FAA ratio in determining the balance between
heavy/thick and sweet/aftertaste characteristics of tea infusion [41,42], the observed lower
TP content and higher theanine levels in L1 group samples likely account for their sweeter
and mellower taste profile compared to L2 group samples.

The mineral element phosphorus (P) and altitude emerged as the most signifi-
cant factors influencing the differentiation in aroma-active substances in SDT. Statistical
analysis revealed significant positive correlations between phosphorus content/altitude
and floral compounds, specifically geraniol and linalool, while demonstrating nega-
tive correlations with isophorone (woody), 2-pentyl furan (caramel), 1-octanol (fatty),
D-limonene (fruity), and benzaldehyde (fruity) (Figure 7B). Comparative analysis be-
tween groups showed significant upregulation of geraniol and jasmone in C1 relative to
C2, whereas isophorone, 2-pentyl-furan, 1-octanol, D-limonene, and benzaldehyde were
significantly downregulated.
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The clustering analysis of soil nutrients and volatile compounds, excluding the PS
and SH regions, demonstrated consistent patterns. The T1 group exhibited higher soil
available phosphorus (AP) content compared to T2, while the T1 and C1 groups generally
showed higher altitude levels than their T2 and C2 counterparts, with the exception of the
WLS region. These findings suggest that soil phosphorus content and altitude serve as
potential key markers influencing the floral, woody, caramel, fatty, and fruity characteristics
of SDT. Specifically, regions characterized by elevated AP content and higher altitudes
demonstrated a greater propensity for the accumulation of floral compounds.

These results align with previous research demonstrating that high-altitude tea sam-
ples contain elevated levels of alcohols with floral and fruity characteristics, while low-
altitude regions, such as those producing Xinyangmaojian, exhibit a higher proportion
of woody compounds [10,43]. The consistency of these findings across different studies
reinforces the significance of edaphic and altitudinal factors in shaping the aromatic profile
of tea products.

The results of interaction analysis also verified the above conclusions (Figure 7C).
This may be due to the long-term growth of tea trees in acidic soil environments. The
available phosphorus content in acidic soils is usually at a low level [44]. In order to
adapt to this low phosphorus condition, tea trees will promote the synthesis of secondary
metabolites, and these secondary metabolites play a positive role in assisting the synthesis
of tea flavor substances in the subsequent process. Tea aroma serves as a critical deter-
minant of sensory evaluation and quality attributes. Its formation mechanisms involve
stress responses during both pre-harvest natural growth and post-harvest processing of tea
plants (Camellia sinensis). Stressors enhance the biosynthesis, accumulation, and emission
of aroma compounds by activating metabolic pathways, exerting dual functionality: im-
proving tea aroma quality and strengthening stress adaptation through chemical defense
mechanisms [45]. Previous studies have shown that the enrichment of phosphorus con-
tributes to the formation of terpenes, aliphatic compounds, and aromatic alcohols such
as linalool. Phosphorus can effectively promote the formation of flavonoids in tea and
the increase of TP, FAA, and caffeine content, thereby improving the nutritional value
and aroma intensity of tea [46,47]; however, the phosphorus content needs to be within a
certain range, and high concentrations of phosphorus content are negatively correlated
with tea quality [48]. In a related study conducted by Liu et al. [49], in Wuyi Mountain tea
plantations, tea plants were subjected to two fertilization treatments: high phosphorus (HP,
112.5 kg P2O5/ha) and low phosphorus (LP, 60 kg P2O5/ha). The findings indicated that
excessive phosphorus application (112.5 kg P2O5/ha) significantly reduced the accumula-
tion of key aroma metabolites, such as 3-octen-2-ol, 4,8-dimethyl-1,7-nonadien-4-ol, and
3-ethyl-4-methylpyrrole-2,5-dione, in the high-mountain Shuixian tea variety, highlighting
the importance of balanced phosphorus management for optimizing tea quality. The aroma
characteristics of SDT ‘local flavor’ can be regulated to a certain extent by regulating the
application amount of phosphate fertilizer.

4. Conclusions
This study revealed significant regional variations in the quality of SDT. Cluster

analysis of non-volatile compounds categorized the samples from 13 regions into two
distinct groups—L1 (SH, GFZ, WLS, BD, DBS, DG, and PS) and L2 (BDao, XN, MA, MN,
BKN, and BS)—characterized by sweet mellow and strong taste profiles, respectively.
Notably, the TP/FAA ratio was significantly upregulated in the L2 group compared to the
L1 group. Similarly, cluster analysis of key volatile aroma-active compounds classified the
samples into C1 (PS, BD, DBS, BS, BDao, and DG) and C2 (XN, BKN, SH, GFZ, WLS, MA,
and MN) groups. The C1 group exhibited dominant tender and floral aromas, whereas
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the C2 group was characterized by clean-sweet and honey-like aromas. Comparative
analysis demonstrated significant upregulation of floral compounds, specifically geraniol
and jasmone, in the C1 group, while the C2 group showed significant downregulation of
isophorone (woody), 2-pentyl furan (caramel), 1-octanol (fatty), D-limonene (fruity), and
benzaldehyde (fruity).

Correlation analysis identified altitude and soil phosphorus content as key factors
influencing regional differences in SDT flavor quality. Altitude and available phospho-
rus (AP) content exhibited positive correlations with floral compounds, as well as with
rutin, myricetin, kaempferol, CA, and EC in SDT. Conversely, negative correlations were
observed with woody, caramel, fatty, and fruity characteristics, as well as with the bitter
and astringent compound EGCG. SDT cultivated in high-altitude regions with elevated AP
content demonstrated enhanced sweet mellow characteristics and greater enrichment of
floral aroma compounds.

These findings provide scientific data supporting the study of regional flavor charac-
teristics in Yunnan SDT. Phosphorus content plays a critical role in regulating SDT aroma
compounds, although its underlying mechanisms require further investigation. Future
research should focus on achieving targeted regulation of SDT’s regional flavor profiles
through controlled variable experiments and multi-omics approaches. This study con-
tributes to a deeper understanding of the factors influencing SDT quality and offers a
foundation for optimizing cultivation practices enhancing flavor characteristics.
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