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Abstract: Allostery is a fundamental biological phenomenon that occurs when a molecule
binds to a protein’s allosteric site, triggering conformational changes that regulate the
protein’s activity. However, allostery in antibodies remains largely unexplored, and only a
few reports have focused on allostery from antigen-binding fragments (Fab) to crystallizable
fragments (Fc). But this study, using anti-phenobarbital antibodies—which are widely
applied for detecting the potential health food adulterant phenobarbital—as a model
and employing multiple computational methods, is the first to identify a cyclopeptide
(cyclo[Link-M-WFRHY-K]) that induces allostery from Fc to Fab in antibody and elucidates
the underlying antibody allostery mechanism. The combination of molecular docking
and multiple allosteric site prediction algorithms in these methods identified that the
cyclopeptide binds to the interface of heavy chain region-1 (CH1) in antibody Fab and
heavy chain region-2 (CH2) in antibody Fc. Meanwhile, molecular dynamics simulations
combined with other analytical methods demonstrated that cyclopeptide induces global
conformational shifts in the antibody, which ultimately alter the Fab domain and enhance
its antigen-binding activity from Fc to Fab. This result will enable cyclopeptides as a
potential Fab-targeted allosteric modulator to provide a new strategy for the regulation
of antigen-binding activity and contribute to the construction of novel immunoassays
for food safety and other applications using allosteric antibodies as the core technology.
Furthermore, graph theory analysis further revealed a common allosteric signaling pathway
within the antibody, involving residues Q123, S207, S326, C455, A558, Q778, D838, R975,
R1102, P1146, V1200, and K1286, which will be very important for the engineering design
of the anti-phenobarbital antibodies and other highly homologous antibodies. Finally, the
non-covalent interaction analysis showed that allostery from Fc to Fab primarily involves
residue signal transduction driven by hydrogen bonds and hydrophobic interactions.

Keywords: cyclopeptide; antibody; allostery; phenobarbital; food adulterant

1. Introduction
Allostery is a widespread intramolecular effect that plays a crucial role in regulating

protein function and biological activity [1]. This effect involves ligand binding at distal
allosteric sites through covalent modifications (e.g., nitration) or non-covalent interactions
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(e.g., ion coordination), triggering conformational rearrangements that precisely regulate
functionality [2–6]. Owing to this property, allostery is involved in various biological
processes, including signal transduction, enzyme catalysis, cell metabolism, and gene
regulation [7]. Hence, it is often referred to as the “second secret of life”, following the
genetic code [8]. The continuous development of structural and computational biology has
led to the identification of an increasing number of allosteric proteins. Some researchers
have boldly predicted that, except for fibrin, which lacks flexibility, allostery is a universal
intrinsic property of most proteins [9]. However, as an immunoglobulin, studies on
antibody allostery remain largely unexplored.

As a class of proteins with specific recognition characteristics for antigens, antibodies
play a vital role in biomedical applications, such as immunoassays and precision therapy,
and in food safety research as core technologies [10–12]. Classical theory holds that Im-
munoglobulin G (IgG) antibodies (Figure 1) are mediated by two domains, including the
fragment of antigen binding (Fab) and the crystallizable fragment (Fc) [13]. The variable
region of the Fab is the primary site for antigen binding, which determines recognition speci-
ficity, while the Fc binds to cell surface Fc receptors (FcRs) to mediate antibody-dependent
cell-mediated cytotoxicity (ADCC) [14–17].
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Figure 1. Schematic diagram of antibody structure and cyclopeptide-induced Fc to Fab (Fc→Fab)
antibody allostery. Note: (i) Fab—fragment of antigen binding. (ii) Fc—crystallizable fragment.
(iii) VH—variable heavy chain region. (iv) VL—variable light chain region. (v) CH—constant heavy
chain region. (vi) CL, constant light chain region.

Traditionally, regulating antibody antigen specificity is primarily focused on the vari-
able region of Fab (e.g., antigen design, molecular modification) [13], which has limitations,
including complexity and high cost. But allostery in protein offers novel opportunities
for regulating antibody Fab activity. However, as mentioned above, current research on
antibody allostery is still limited and primarily focuses on antibody allostery from antigen-
binding fragments (Fab) to crystallizable fragments (Fc), where the Fab variable region
changes the Fc functional activity under covalent or non-covalent interaction modifica-
tion [13]. For instance, Sun et al. [18] found that antigen modification enhances crystallizable
fragment–Fc receptor (Fc-FcR) affinity, Xin et al. [19] found that amino acid differences in
Fab affect Fc activity, and Zhao et al. [20] demonstrated that antigen allostery strengthens
interactions between the Fc and Fc receptor. However, whether the Fc region can regulate
Fab functional activity through simple ligand binding remains unknown. To date, the
concept of allostery from Fc to Fab in antibodies has not been explored.

Phenobarbital is a sedative commonly used to treat epilepsy and anxiety. However,
excessive intake can lead to severe adverse effects, including respiratory depression and
an increased risk of cancer [21]. Additionally, it is prone to adulteration in traditional
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Chinese medicinal products, such as quick-acting herbal pills. Consequently, China has
classified it as a prohibited substance in health foods and has established corresponding
detection standards and analytical methods [22]. Among these methods, anti-phenobarbital
antibodies serve as the core technology for developing immunoassay-based phenobarbital
detection [23]. As one of the earliest studied antibody types, it provides crucial reference
and a readily available template for designing other antibodies.

This study utilized an anti-phenobarbital antibody as a model and integrated multiple
computational approaches to first identify an Fc-binding cyclopeptide (cyclo[Link-M-
WFRHY-K]). This cyclopeptide induces conformational transitions from Fc to Fab, thereby
improving antigen-binding activity in the Fab domain. To investigate the mechanism
of antibody allostery from Fc to Fab induced by cyclopeptide, we first identified the cy-
clopeptide’s binding site (allosteric site) on the Fc region of antibody. This was achieved
by integrating molecular docking and multiple allosteric site prediction algorithms. Based
on the docking results and control experiments, we established six antibody complex
simulation systems incorporating endogenous glycans, antigens, and cyclopeptides. Inte-
grated analysis of structural fluctuations, conformational changes, and residue correlation
revealed allostery from Fc to Fab that influences the Fab domain and antigen binding
activity by the cyclopeptide. Furthermore, graph theoretical analysis uncovered a common
allosteric pathway across the antibody architectures. Comprehensive non-covalent interac-
tion analysis delineated the core drivers governing allosteric signal initiation, propagation,
and functional output in antibody systems. These studies will establish a new paradigm
for antibody allostery from Fc to Fab and offer novel insights into immunoassays for the
analysis of food safety.

2. Materials and Methods
In this study, the anti-phenobarbital antibody (PDBID: 1IGY) structure was obtained

from the RCSB Protein Database [24], while the antigen (phenobarbital) and cyclopeptide
(cyclo[Link-M-WFRHY-K]) structures were, respectively, obtained from the PubChem
database and Menegatti et al. [25].

2.1. Molecular Docking

To identify potential allosteric sites on the antibody, we first applied various predictive al-
gorithms to the anti-phenobarbital Immunoglobulin G-1 (IgG1) antibody, including Passer [26],
CavityPlus [27], and Allosite [28] from the ASD database. We then used the AutoDock Vina
1.2.0 docking program to validate the predicted allosteric sites [29]. By aligning the predicted
allosteric and ligand binding sites, we defined the docking box size and position along the
XYZ axes to obtain docking results. The docking boxes for cyclopeptide–antibody interactions
at different predicted sites were defined based on their center coordinates (in nm) within
the spatial coordinate system: (i) (1.0, −2.8, 6.6), (ii) (−0.2, −1.9, 6.6), (iii) (−0.8, 0.8, 2.6),
and (iv) (1.9, 2.0, 4.4). Meanwhile, the docking box for the allosteric site was uniformly
defined as a cubic box with dimensions of 3.08 × 3.08 × 3.08 nm. The default scoring
function of the docking software evaluated the binding strength between the antibody and
cyclopeptide at predicted site. Visualization of cyclopeptide–antibody docking complexes
at different sites in Discovery Studio Visualizer 2019 software confirmed the validity of
the allosteric sites [30]. To ensure experimental completeness, the antigen substrate and
endogenous glycans were molecularly docked with the antibody Fab and Fc, respectively,
according to the docking boxes of the same size mentioned above. The ligand–antibody
complex structures (cyclopeptide, antigen substrate, and endogenous glycans) generated
by molecular docking will serve as input files for molecular dynamics simulations.
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2.2. System Construction and Molecular Dynamics Simulations

Based on molecular docking results, the optimal binding site and conformation of the
ligand–antibody complex (cyclopeptide, antigen, and glycans) were identified. Six simu-
lation systems were then constructed: (i) non-glycosylated antibody; (ii) non-glycosylated
antibody–cyclopeptide; (iii) glycosylated antibody; (iv) glycosylated antibody–cyclopeptide;
(v) glycosylated antibody–antigen; (vi) glycosylated antibody–cyclopeptide–antigen. Molecu-
lar dynamics simulations were then conducted using GROMACS 2021.3 [31].

The Amber-99SB-ILDN force field was chosen for antibody topology parameterization
due to its strong performance in modeling protein and nucleic acid systems. GAFF force
fields and topology parameters for glycans, cyclopeptides, and antigens were generated us-
ing the Antechamber Python script in AmberTools 23 [32–35], ensuring compatibility with
Amber force fields and accurate ligand description. Due to the higher dynamic flexibility of
the antigen compared to the cyclopeptide and glycans, the Restrained Electrostatic Potential
(RESP) method was used to calculate antigen charges, while Bond Charge Correction (BCC)
charges were assigned to glycans and cyclopeptide.

System construction followed the GROMACS official tutorial for protein–ligand com-
plex setup in molecular dynamics simulations. Complex systems were placed in cubic
simulation boxes with a minimum boundary of 1 nm in each XYZ direction to ensure
sufficient spacing. Meanwhile, each antibody complex system was built in a simulation box
at the central coordinate position of the antibody structure (−0.5, −0.5, 4.2), and the box
size was 16.94 × 16.94 × 16.94 nm. TIP3P water molecules were introduced to mimic the
solvent environment of antibody–ligand complexes. Sodium or chloride ions were added
to neutralize the systems, ensuring an electrically neutral environment that closely mimics
physiological conditions. Energy minimization was performed using the steepest descent
(SD) and conjugate gradient (CG) algorithms to remove unfavorable atomic interactions.
The systems were then equilibrated under constant temperature and pressure (NPT) using
a velocity rescale thermostat and a Berendsen barostat. The LINCS algorithm was used to
constrain hydrogen bonds, refining complex–water interactions and preventing excessive
interactions caused by harmonic potentials. Short-range non-bonded interactions and van
der Waals forces were computed with a 10 Å cutoff, while electrostatic interactions were
calculated using the Particle Mesh Ewald (PME) algorithm. Each system was simulated for
300 ns, with trajectories recorded every 10 ps for subsequent analysis.

2.3. Analytical Metrics
2.3.1. Analysis of Antibody Backbone Structural Fluctuation (RMSD, RMSF, Rg)

The “rms”, “rmsf”, and “gyrate” modules provided by GROMACS 2021.3 software
were used to obtain the above-mentioned antibody backbone and structural fluctuation
parameters (root mean square deviation (RMSD), radius of gyration (Rg), and root mean
square fluctuation (RMSF)) from the molecular dynamics simulation systems of each
antibody complex.

2.3.2. Analysis of Antibody Dynamic Conformational Ensembles (PCA and FEL)

The bio3d 2.5 [36] package in the R platform was used to select protein Cα atoms
for structural alignment based on the initial structure of the antibody and the trajectory
after removing translation and rotational motion, so as to intuitively analyze the principal
component analysis (PCA) of the antibody conformational ensemble [37–39]. Additionally,
the “gmx covar” command was used in conjunction with the “gmx aneig” command
module to calculate the characteristic eigenvectors (covariance matrix) and eigenvalues
of Cα atoms in the antibody trajectories based on Cartesian coordinates. FEL maps were
constructed based on the proportions of PC in each system. The trajectory was projected
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onto the primary component plot of the eigenvectors, and then free energy landscape (FEL)
was plotted using PC1 and PC2, where the free energy is expressed as

G = −kT + lnP (1)

Here, k is the Boltzmann constant, T is the simulation system temperature, and P
represents the density of probabilities for various conformation [40–42].

2.3.3. Analysis of Antibody Residue Correlation (DCCM and RCM)

The covariance matrix was obtained from the translationally and rotationally elimi-
nated trajectories and the initial antibody structure using the “gmx covar” command, and
the dynamic cross-correlation matrix (DCCM) of the motions between the Cα atoms of the
residue backbone was calculated based on the covariance information in this matrix [43–46].
The calculation of covariance is given by

c(i, j) =< ∆ri.∆rj > (2)

where ∆r represents the displacement vector of atoms, i and j represent different residues,
and the normalized covariance (cross-correlation) calculation is

C(i, j) =
c(i, j)

[c(i, i)c(i, j)]1/2 =
< ∆ri.∆rj > .

< ∆r2
i >1/2 . < ∆r2

j >1/2
(3)

The thickness of the diagonal in the matrix represents changes in the α-helix structures
of the four antibody peptide chains (heavy chain and light chain), while lines parallel
or orthogonal to the diagonal represent β-sheet structures. RCM was obtained by using
the “gmx mdmat” command module combined with ConAn [47] residue contact analysis
software, based on the antibody structure and trajectory, by selecting the residue range and
defining the cutoff distance for residue contacts [48,49].

2.3.4. Analysis of the Allosteric Transduction Pathway Within Antibody

We employed the residue distance cross-correlation matrix (RDCM) to investigate the
signaling mechanisms triggered by conformational change. RDCM is a weighted node
matrix formed by the fusion of RCM and DCCM, where nodes represent residues and edge
weights correspond to matrix values. This approach provides a RDCM-based representation
of the antibody’s conformational signaling network. Using the Dijkstra shortest path
algorithm, we identified the shortest signal transmission pathways by traversing all nodes
(residues) within the matrix network. After normalizing the relevant edges, significant
contribution residues (based on a defined threshold) were extracted using the shortest
path graph (SPM) script developed by Sílvia Osuna’s team and mapped onto the antibody
structure to identify the allosteric transduction pathways for each system [50,51].

2.3.5. Analysis of Non-Covalent Interactions Within Antibody

We combined various force analysis modules in the MDanalysis [52] software program
with the DuIvyProcedures 1.0.0 [53] analysis tool to analyze and visualize the temporal
changes in different non-covalent interactions (such as hydrogen bonding interactions,
hydrophobic interactions,π–cation interactions, π–π interactions, etc.) occurring at the
antibody–antigen binding site, antibody–cyclopeptide binding site, and throughout the
entire antibody structure. In this analysis, the existence of hydrogen-bonding interac-
tions was determined based on the following geometric criteria: the distance between
the hydrogen-donating atom (donor) and the hydrogen-accepting atom (acceptor) within
adjacent residues or between a residue and a ligand was less than 3 Å, and the angle formed
by the hydrogen donor–acceptor was greater than 150 degrees [54,55]. Furthermore, we
considered the existence of hydrophobic interactions if the distance between Cα atoms of
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adjacent residues was less than 4 Å [56]. Finally, the following criteria were employed to
define electrostatic interactions: Cation–π interactions were deemed to be present when the
distance between aromatic ring atoms and positively charged nitrogen atoms in adjacent
residues (or residue–ligand) was less than 6 Å. Meanwhile, π–π interactions were consid-
ered to exist when the distance between the centroids of aromatic ring functional groups in
neighboring residues was less than 5 Å [57].

3. Results and Discussion
3.1. Identification of Antibody Allosteric Site

The accurate prediction of an allosteric site represents a critical step in elucidating
antibody allosteric mechanisms. In this study, we define the ligand-binding region of
the antibody structure other than the Fab active site as the potential allosteric site of the
antibody. Integration of antibody structural analysis with multiple prediction algorithms
identified more than a dozen potential allosteric sites. Computational predictions localized
four major allosteric hotspots (Figure 2A).
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Figure 2. Allosteric site algorithm and molecular docking results: (A) cyclopeptide–antibody binding
site predicted by allosteric site algorithm; (B) cyclopeptide–antibody binding site validated by
molecular docking. Note: (i) the lower, yellow-marked region of the Fab domain’s variable region;
(ii) the black-marked region of the upper hinge region; (iii) the blue-marked region between the Fc
domain’s heavy chain constant regions-2 (CH2) and -3 (CH3); (iv) the red-marked region between
the Fab domain’s heavy chain constant regions-1 (CH1) and the Fc domain’s heavy chain constant
region-2 (CH2).

The binding sites were further identified using a molecular docking model of the
cyclopeptide–antibody system. The cyclopeptide (Figure 3A) exhibited a higher docking
affinity (−7.124 kcal/mol) at the interface between CH1 of the Fab domain and CH2 of
the Fc domain (red region in Figure 2B). Other predicted allosteric sites (red-marked
outer regions in Figure 2A) exhibited an average docking affinity of −5 to −6 kcal/mol.
Furthermore, we analyzed the docking interactions at the CH1-CH2 interface (Figure 3B); the
cyclopeptide’s benzene ring, indole ring, and hydroxyl group formed conventional hydrogen
bonds and van der Waals interactions with C213, L125, and E122 of light chain A and F312
of heavy chain D in antibody. Additionally, P238 of heavy chain B and Q311 of heavy chain
D interacted with the guanidinium and phenolic benzene rings of the cyclopeptide’s side
chain via π–cation and salt bridge interactions. Meanwhile, C213 and F311 also participate in
weak interactions with the cyclopeptide, including carbon–hydrogen bonding and π–sigma.
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The abundance of functional residues and non-covalent interactions at this site, compared
to other predicted sites, suggests that the CH1-CH2 interface serves as the key allosteric
site where the cyclopeptide binds and induces antibody allostery from Fc to Fab. This
finding also provides theoretical support for the precise localization of the Fc fragment in
the cyclopeptide–antibody complex, as reported by Menegatti et al. [25].
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bindings site (the interface between CH1 of the Fab domain and CH2 of the Fc domain).

3.2. Influence of Cyclopeptide on Antibody Backbone Structure

To investigate the influence of cyclopeptide on the overall antibody structural stability
from the perspective of the antibody backbone structure, we calculated the root mean
square deviation (RMSD), radius of gyration (Rg), and root mean square fluctuation (RMSF)
of the antibody in each complex system. Moreover, the study by Ikeuchi et al. demonstrated
that a moderate balance between structural stability and flexibility of antibodies contributes
to improved antigen-binding affinity [58].

Root mean square deviation (RMSD) measures the deviation of the protein backbone
from its initial conformation and serves as a key indicator of whether the system has reached
dynamic equilibrium, as well as the extent to which cyclopeptides influence antibody
structure stability [59]. The temporal variations in antibody RMSD are shown in Figure 4A.
The curve trend comparison between systems with (red, green, and yellow curves) and
without cyclopeptides (black, blue, and purple curves) found that cyclopeptides markedly
alter the antibody RMSD value. Meanwhile, cyclopeptides influenced the time required for
each system to reach dynamic equilibrium. These findings suggest that the cyclopeptide
induces global structural changes in the antibody, progressively transmitting from the Fc
to the Fab region, thereby indirectly altering the Fab domain and its structural stability,
ultimately leading to improved antigen binding. In addition, comparing the RMSD curves
of antibody in complex systems with and without endogenous glycans (black and blue
curves) shows that endogenous glycans reduce RMSD fluctuations, confirming glycan’s
stabilizing effect, as reported by Pawlowski et al. [60]. Furthermore, comparing the RMSD
curves of antibody in complex systems with and without antigen (blue and purple curves)
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shows that antigen binding increases RMSD, consistent with Zhao et al.’s [20] description
of antigen-induced allostery.
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Figure 4. Root mean square deviation (RMSD) curves (A) and radius of gyration (Rg) curves
(B) of all antibody complex systems. Note: (i) nGAb (black)—non-glycosylated antibody system.
(ii) nGab-pep (red)—non-glycosylated antibody cyclopeptide system. (iii) Gab (blue)—glycosylated
antibody system. (iv) Gab-pep (green)—glycosylated antibody cyclopeptide system. (v) Gab-Ag
(purple)—glycosylated antibody antigen system. (vi) Gab-Ag-pep (yellow)—glycosylated antibody
cyclopeptide antigen system.

As a powerful tool to describe the compactness of proteins in solution, radius of
gyration (Rg) is another important parameter for assessing the structural stability of anti-
bodies [61]. As illustrated in Figure 4B, the antibody Rg values increase with cyclopeptide
binding (red, green, and yellow curves) compared to those without cyclopeptides (black,
blue, and purple curves), suggesting a more relaxed antibody structure. The relaxed struc-
ture further indirectly changes the stability of the Fab domain’s structure from Fc to Fab in
the form of overall structural changes, consistent the results in RMSD.

Root mean square fluctuation (RMSF) quantifies the average fluctuation amplitude of
residues in each antibody chain and serves as a crucial indicator of ligand binding specificity
and its impact on flexibility [62]. Figure 5 depicts the RMSF profiles of four antibody chains
(light chains A and C; heavy chains B and D). Comparing RMSF fluctuations of antibody in
the systems with and without cyclopeptides (Figure 5A–D) shows that the cyclopeptide
alters the RMSF values of the four antibody chains in each system. This indicates that the
cyclopeptide has a clear overall impact on the antibody structure. In addition, the RMSF
fluctuation trend of the Fab region (residues 0–214 of the light and heavy chains) differs
between the system with cyclopeptides (red, green, and yellow curves) and the system
without cyclopeptides (black, blue, and purple curves). This phenomenon indicates that
the cyclopeptide exerts an Fc to Fab allosteric effect on the Fab domain and its structural
stability in both antigen-bound and unbound states, thereby promoting enhanced antigen-
binding activity. Similarly, the RMSF fluctuation trend in the Fc region (residues 214–400 of
the heavy chain) shows distinct differences between systems with cyclopeptide (red, green,
and yellow curves) and those without (black, blue, and purple curves), demonstrating the
effective binding of cyclopeptide to Fc and it allosteric influence on its structure.

Therefore, the backbone structural parameters—including root mean RMSF, RMSD,
and Rg—on the antibody suggest that cyclopeptides could serve as a novel Fab positive
allosteric modulator for immunoassay methods centered on antigen–antibody interactions.
Additionally, residues with high RMSF fluctuation values may offer critical insights for
optimizing the design of anti-phenobarbital antibodies.
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light chains) of all antibody complex systems. (A) RMSF of light chain A. (B) RMSF of heavy chain B.
(C) RMSF of light chain C. (D) RMSF of heavy chain D. Note: (i) nGAb (black)—non-glycosylated
antibody system. (ii) nGab-pep (red)—non-glycosylated antibody cyclopeptide system. (iii) Gab
(blue)—glycosylated antibody system. (iv) Gab-pep (green)—glycosylated antibody cyclopeptide
system. (v) Gab-Ag (purple)—glycosylated antibody antigen system. (vi) Gab-Ag-pep (yellow)—
glycosylated antibody cyclopeptide antigen system.

3.3. Influence of Cyclopeptide on Antibody Dynamic Conformational Ensembles

To clarify the impact of cyclopeptide on antibody dynamic conformational ensem-
bles, principal component analysis (PCA) and free energy landscape (FEL) analysis were
conducted on the frame-by-frame conformations of antibodies in each complex system
throughout the entire trajectory. Moreover, the study by Ma et al. revealed that relatively com-
pact and low-energy protein conformational ensembles facilitate effective binding between the
protein and ligand at the orthosteric site [63]. Therefore, the analysis of conformation ensemble
parameters will closely align with the previous structural parameter results, providing strong
evidence for cyclopeptide-induced allosteric modulation of antibodies from Fc to Fab, which
enhances antigen-binding activity. This also lays a theoretical foundation for the innovation of
immune detection methods based on antigen–antibody specificity.

Principal component analysis (PCA) clusters similar antibody structures throughout
the molecular dynamics trajectory and serves as a key indicator of antibody conformational
changes. As shown in Figure 6, the cumulative proportions of the first two principal
components (PCs) in the single antibody system with cyclopeptides are 50.94% (Figure 6B)
and 70.36% (Figure 6D), respectively. These values are notably lower than those of the non-
glycosylated (71.51%, Figure 6A) and glycosylated antibody systems without cyclopeptides
(79.5%, Figure 6C). These findings suggest that cyclopeptides decrease structural clustering
in antibodies, significantly altering their conformation and ultimately affecting fab domain.
Similarly, the cumulative proportions of the first two principal components (PCs) in the
antigen-bound (71.01%, Figure 6E) and glycosylated antibody systems (79.5%, Figure 6C)
highlight the impact of antigen binding on antibody structural aggregation, demonstrat-
ing that antigen binding induces conformational changes, in line with the findings of
Zhao et al. [20]. In contrast, in the antigen–cyclopeptide binding antibody system (72.01%,
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Figure 6F), the cumulative proportions of the first two PCs were similar to those observed
in the single antigen- or cyclopeptide-binding systems. This suggests that the cyclopeptide
counteracts the antigen-induced allostery through an inhibition mechanism from Fc to
Fab, thereby promoting more compact conformational ensembles in the Fab domain and
enhancing its antigen-binding ability.
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tems. (A) Non-glycosylated antibody system. (B) Non-glycosylated antibody–cyclopeptide system.
(C) Glycosylated antibody system. (D) Glycosylated antibody–cyclopeptide system. (E) Glycosylated
antibody–antigen system. (F) Glycosylated antibody–cyclopeptide–antigen system.

Free energy landscape (FEL) is a crucial metric for assessing antibody conformational
changes from an energy perspective. As shown in Figure 7, the single antibody system
bound to the cyclopeptide (Figure 7B,D) exhibits more metastable, high-energy confor-
mations than the unbound system (Figure 7A,C). This suggests that cyclopeptide binding
induces a high-energy, unstable conformational state in the antibody, which significantly
affects the Fab domain in manner from Fc to Fab, consistent with the PCA results. In the
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antigen-binding system (Figure 7E), antigen binding was found to increase the distribution
of high-energy antibody conformations. This further supports the findings of Zhao et al.
regarding the allostery of the antigen. However, the increase in metastable conformational
states in the cyclopeptide–antigen-binding system (Figure 7F) suggests that cyclopeptide
binding counteracts the antigen-induced allostery from Fc to Fab, ultimately promoting
the transition of low-energy conformational ensembles in the Fab domain and enhancing
antigen binding in a manner consistent with the trends observed in the PCA results.
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Figure 7. Free energy landscape (FEL) of dynamic conformations in all antibody systems. (A) Non-
glycosylated antibody system. (B) Non-glycosylated antibody–cyclopeptide system. (C) Glycosylated
antibody system. (D) Glycosylated antibody–cyclopeptide system. (E) Glycosylated antibody–antigen
system. (F) Glycosylated antibody–cyclopeptide–antigen system.

3.4. Influence of Cyclopeptide on Antibody Residue Correlation

A dynamic cross-correlation matrix (DCCM) is a powerful tool for describing the dy-
namic motions within antibody structures and between residues, providing deeper insights
into antibody allostery. As shown in Figure 8, the DCCM represents highly positively corre-
lated regions in red and negatively correlated regions in blue. The color intensity indicates
the degree of correlated motion between antibody residues. Black-marked regions denote
the overall antibody structure, while green represents Fc domain residues (including both
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left and right heavy chain Fc ends) and yellow represents Fab domain residues (covering
both left and right light chains as well as heavy chain Fab ends). The data indicate that
in both glycan-containing and glycan-free systems (Figure 8A,C), cyclopeptides induce
negatively correlated motion changes (blue) in the entire antibody structure and Fc do-
main (Figure 8B,D). Furthermore, Fab also exhibits noticeable negative correlated changes
(Figure 8E,F). These results suggest that: (i) cyclopeptides bind effectively to antibody and
induce allostery; (ii) cyclopeptides also inhibit antigen-induced conformational changes,
thereby promoting intradomain residue correlation movements within the antibody Fab
region and enhancing antigen recognition capability. Moreover, our structural analysis
corroborates the stabilizing role of glycans and the allostery of antigens, as reported by
Pawlowski et al. [60] and Zhao et al. [20].
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Figure 8. Dynamic cross-correlation matrix (DCCM) of antibody residues in all systems. (A) Non-
glycosylated antibody system. (B) Non-glycosylated antibody–cyclopeptide system. (C) Glycosylated
antibody system. (D) Glycosylated antibody–cyclopeptide system. (E) Glycosylated antibody–antigen
system. (F) Glycosylated antibody–cyclopeptide–antigen system.

The residue contact matrix (RCM) encodes residue distance information based on
predefined residue ranges and distance cutoffs, capturing structural dynamics within
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antibodies. Compared to a DCCM based on atomic coordinates, the RCM emphasizes the
correlation in residue contact distances and provides a clearer representation of antibody
structural changes. As shown in Figure 9, the α-helix structures of the four main chains
in the antibody exhibit minimal changes in RCM across different systems. The irregular
orientation of antibody chains prevents the formation of a complete β-sheet structure;
instead, the chains are connected by curved peptide segments. The black-bordered sections
illustrate overall structural changes, showing that in antibody systems with and without
glycans (Figure 9A,C), cyclopeptide addition induces residue distance changes similar to
those observed in DCCM, though to a lesser extent (Figure 9B,D). Additionally, Fab (yellow
border) and Fc (green border) region distances were compared in the presence and absence
of cyclopeptides. The cyclopeptide significantly reduces the distance between residues in
the antigen-binding region through allostery from Fc to Fab, distinct from that induced by
the antigen, thus promoting stronger correlation interactions and tighter antigen-binding
activity (Figure 9E,F).
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Figure 9. Residue contact matrix (RCM) of antibody residues in all systems. (A) Non-glycosylated
antibody system. (B) Non-glycosylated antibody–cyclopeptide system. (C) Glycosylated antibody
system. (D) Glycosylated antibody–cyclopeptide system. (E) Glycosylated antibody–antigen system.
(F) Glycosylated antibody–cyclopeptide–antigen system.
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DCCM and RCM analyses revealed that the cyclopeptide promotes the overall anti-
body structure and residue correlations within the Fab region. According to the relevant
study by Chong et al., enhanced residue correlation serves as a direct indicator of increased
binding affinity between the antibody Fab domain and the ligand antigen [64]. Addi-
tionally, compared with the indirect effects observed in previous structural parameter
analyses, such residue correlations more directly characterize the intramolecular structural
changes in the antibody induced by cyclopeptide binding. Collectively, these findings, in
conjunction with previous analyses of conformational ensembles and backbone structural
parameters, provide further validation of the cyclopeptide-induced Fc to Fab allosteric mod-
ulation theory and suggest promising avenues for innovatively regulating antigen–antibody
binding interactions.

3.5. Allosteric Pathways of Antibody

The allosteric mechanism of antibodies is closely associated with signal transduction.
To investigate this transmission mechanism, we identified allosteric pathways in antibod-
ies by analyzing key hotspot residues across antibodies from different complex systems.
This was achieved using the residue distance correlation matrix (RDCM) in combination
with the Dijkstra shortest path and shortest path graph (SPM) algorithms. The RDCM
integrates the dynamic cross-correlation matrix (DCCM) and the residue contact matrix
(RCM). These key residues were identified by iteratively parsing high-weight threshold
nodes from the RDCM fusion matrix using the Dijkstra algorithm combined with the
SPM method, which exhibit significantly higher weight thresholds compared to other
residue nodes. Simultaneously, to clarify the sequential arrangement of the residues, we
implemented a systematic renumbering scheme for the antibody’s four polypeptide chains,
following an alternating light–heavy chain pattern (L-H-L’-H’) to reflect its characteristic
domain organization.

The statistical results are presented in Table 1. We found that all allosteric pathways
pass through the key binding regions of antibody, including the Fab, Fc, and hinge regions,
with the hinge region serving as the central hub of transmission. Moreover, the intro-
duction of the cyclopeptide altered the key residues involved in the allosteric pathways
of antibody in these systems. By analyzing the common residues across antibody of all
systems conformational pathways, we identified an intramolecular signaling pathway
within the antibody (Figure 10), comprising residues Q123, S207, S326, C455, A558, Q778,
D838, R975, R1102, P1146, V1200, and K1286. This pathway is the primary route through
which cyclopeptides exert allostery on the entire antibody structure and influence the Fab
domain’s structure. Additionally, we found that the hotspot residues in this pathway are
closely associated with functional residues in the cyclopeptide binding site, such as residue
Q123, which was adjacent to residues S122 and L125. This indicates that Q123 is a key site
for the transmission of the cyclopeptide’s allostery to the Fab domain.

Additionally, we observed that each functional domain of the antibody (Fab and Fc)
increases the density of hotspot residues in the pathway due to the separate binding of
antigen substrates, endogenous glycans, and the cyclopeptide. However, when all three
ligands bind simultaneously, the residue distribution in the pathway reaches a delicate
balance. These findings indicate that cyclopeptide binding produces intramolecular effects
opposite to those of endogenous glycans and antigen substrates. Interestingly, we found
that the signaling pathways involved with cyclopeptides not only display hotspot residues
near the allosteric site but also at the lower end of the Fc domain. This suggests that
cyclopeptides may exert potential allostery on Fc-Fc receptor interactions.

Therefore, this study on the antibody allosteric pathway, using the anti-phenobarbital
antibody as a model, enhances the understanding of allostery theory from Fc to Fab
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and provides novel insights into the allostery-based antibody engineering design of anti-
phenobarbital and its homologous antibodies.

Table 1. Signal transduction pathway of each antibody system.

Antibody System Signal Transduction Pathway

nGAb

T113, Q123, Y185, A223, Y305, T321, S333, M350, Y360,
C455, P483, V512, R554, KG633, N779, F824, Y896, T952,
C970, N1007, T1036, G1057, V1070, V1102, V1151, E1201,

K1286

nGAb-pep
A4, S12, T20, V30, K45, R61, K106, Y139, S170, S200, A226,

A327, G359, S410, T480, S659, F759, I831, T1057, G1070,
I1154

GAb
C133, P203, S207, R210, T323, L356, C455, S557, D640, F759,

G777, A817, L838, A971, G1005, R1102, T1108, S1152,
N1199, K1286

GAb-pep F98, I105, F134, T171, E186, N209, V406, A558, V766, S840,
D857, R973, G1007, S1152, E1201, K1286

GAb-Ag S14, R107, T113, K206, A230, V324, L353, C453, Q525, E662,
S722, Q778, S818, G839, E872, R975, W1004, T1108, P1146

GAb-Ag-pep Q123, K182, R210, S333, I540, E729, Y780, V820, L838,
R1102, S1153, K1286

Common residues Q123, S207, S326, C455, A558, Q778, D838, R975, R1102,
P1146, V1200, K1286

nGAb: non-glycosylated antibody system. nGAb-pep: non-glycosylated antibody–cyclopeptide system. GAb:
glycosylated antibody system. GAb-pep: glycosylated antibody–cyclopeptide system. GAb-Ag: glycosylated
antibody–antigen system. GAb-Ag-pep: glycosylated antibody–cyclopeptide–antigen system.
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3.6. Key Drivers of Antibody Allostery

To elucidate the key drivers of antibody allostery from Fc to Fab, we calculated the non-
covalent interaction occupancy of the antibody throughout the entire simulation for three
key aspects: the origin, transmission, and final impact of allostery. As shown in Table 2,
the occupancy of hydrogen bond interactions in the antigen-binding region (orthosteric
site) was 16.7% with cyclopeptide binding and 4.5% without. The hydrophobic interaction
occupancy was 22.2% with cyclopeptide binding and 23.3% without. Meanwhile, the
occupancy of hydrogen bond interactions in the cyclopeptide binding region (allosteric
site) was 17.5% with antigen binding and 67.1% without. The hydrophobic interaction
occupancy was 35.8% with antigen binding and 46.8% without. These changes suggest
that cyclopeptide binding stabilizes non-covalent interactions at the antigen binding site
and enhances antigen binding. The allostery from Fc to Fab is typically bidirectional, and
antigen binding also promotes the binding of the cyclopeptide to the antibody. Additionally,
the statistics of non-covalent interactions across the overall antibody structure in each
system (Table 3) show that hydrogen bonding (200–220) and hydrophobic interactions
(40,500–41,300) are the primary driving forces behind allosteric transmission mediated by
cyclopeptide binding.

Table 2. Interaction occupancy analysis at the ligand binding site.

Ligand Bind Site Interaction Type Antibody System Occupancy (%)

Antigen binding
site (orthosteric site)

Hydrogen bond GAb-Ag 4.5
GAb-Ag-pep 16.7

Hydrophobic Gab-Ag 23.7
Gab-Ag-pep 22.2

Cyclopeptide
binding site

(allosteric site)

Hydrogen bond GAb-pep 17.5
GAb-Ag-pep 67.1

Hydrophobic GAb-pep 35.8
GAb-Ag-pep 46.8

Table 3. Interaction count analysis within the entire antibody structure of all systems.

Interaction Type Antibody System Min Max Average

Hydrogen bond count
(pair)

nGAb 146 249 208
NGAb-pep 162 245 208

GAb 169 252 213
Gab-pep 158 260 212
Gab-Ag 153 251 206

GAb-Ag-pep 159 248 209

Hydrophobic count
(pair)

nGAb 40,544 41,530 41,096
nGAb-pep 40,604 41,588 41,153

GAb 40,588 41,590 41,144
GAb-pep 40,650 41,800 41,256
GAb-Ag 40,568 41,660 41,126

GAb-Ag-pep 40,632 41,616 41,142
nGAb: non-glycosylated antibody system. nGAb-pep: non-glycosylated antibody–cyclopeptide system. GAb:
glycosylated antibody system. GAb-pep: glycosylated antibody–cyclopeptide system. GAb-Ag: glycosylated
antibody–antigen system. GAb-Ag-pep: glycosylated antibody–cyclopeptide–antigen system.

In the analysis of electrostatic interactions, it was found that the antigen lacks an aro-
matic ring structure, which prevents the formation of stable π–π and π–cation interactions.
Moreover, the cyclopeptide-binding region near the hinge of the Fc domain lacks stable
π interactions and salt bridges due to the irregular bending of the hinge region. Analysis
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of the temporal occupancy of electrostatic interactions across the overall antibody struc-
ture in each complex system revealed no significant change, suggesting that electrostatic
interactions are not the primary drivers of the allostery.

Briefly, hydrogen bonding and hydrophobic interactions are the primary drivers of
the three allosteric processes (initiation, transmission, and final impact) in cyclopeptide-
induced antibody allostery.

4. Conclusions
In this study, using the antibody against phenobarbital as the model, antibody allostery

from Fc to Fab induced by the cyclopeptide (cyclo[Link-M-WFRHY-K]) was investigated
through in silico analysis for the first time: (i) The cyclopeptide binding site (allosteric
site) is located between the CH1 region of the Fab domain and the CH2 region of the Fc
domain in the antibody to phenobarbital. (ii) Cyclopeptide binding induces progressive
changes in the antibody backbone, overall conformation, and residue correlations, leading
to structural instability from Fc to Fab, which may influence Fab domain function and
antigen binding. (iii) A conserved allosteric signaling pathway was identified within the
antibody, particularly spanning residues Q123, S207, S326, C455, A558, Q778, D838, R975,
R1102, P1146, V1200, and K128. (iv) The core mechanism of allostery from Fc to Fab
in antibodies is governed by residue interactions primarily driven by hydrophobic and
hydrogen bonding.

In summary, this study provides a valuable approach for designing Fab-targeted
allosteric modulators. It also offers a novel strategy for modulating antigen-binding activity
within the Fab domain. Future research could build on these findings through experimental
validation to establish allosteric immunoassay methods for applications in food safety,
environmental monitoring, therapeutic analysis, etc.
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