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Abstract: Vaccinium corymbosum is one of the main sources of commercialized blueber-
ries across the world. This species has a large number of distinct cultivars, leading to
significantly different berries characteristics such as size, sweetness, production rate, and
growing season. In this context, accurate cultivar discrimination is of significant relevance,
and currently, it is mostly performed through berries examination. In this work, we de-
veloped a method to discriminate 19 cultivars from the V. corymbosum species through
their leaves’ near-infrared spectra. Spectra were acquired from fresh blueberry leaves
collected from two geographic regions and across three seasons. Machine-learning-based
models, selected from a pool of 10 classifiers based on their discrimination power under a
twofold stratified cross-validation process, were trained/tested with 1 to 20 components
obtained by the application of data dimensionality reduction (DDR) techniques (dictionary
learning, factor analysis, fast individual component analysis, and principal component
analysis) to different near-infrared (NIR) spectra regions’ data, to either analyze a single
spectral region and season or combine spectral regions and/or seasons for each side of
the blueberry leaf. The percentage of correct cultivar discrimination ranged from 52.27
to 100%, with the best spectral results obtained with the adaxial side of the leaves in the
fall (100% Accuracy) and the abaxial side of the leaves in the winter (100% Accuracy); the
fast ICA DDR technique was present in 83.33% of the best analyses (five out of six); and
the LinearSVC was present in 66.67% (four out six best analyses). The results obtained in
this work denote that near-infrared spectroscopy is a suitable and accurate technique for V.
corymbosum cultivar discrimination.

Keywords: blueberries; infrared spectroscopy; cultivar; taxonomy; vaccinium; machine
learning

1. Introduction
The Vaccinium genus from the Ericaceae family encompasses about 450 species,

widespread mostly in the Northern Hemisphere [1–3]. Some of its species are of par-
ticular relevance due to their highly appreciated small berries. V. corymbosum, one of the
main sources of commercialized blueberries, is among them. This species encompasses
a high number of cultivars possessing different characteristics such as production rates
and growing seasons, fruit sweetness, and size, and requires distinct edaphoclimatic condi-
tions for their optimum development (such as temperature, soil pH, and daylight hours),
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among others. Therefore, accurate discrimination of such cultivars is of the utmost rele-
vance either in agricultural practices or in the food industry. Currently, blueberry cultivar
identification is mostly performed by farmers based on visual inspection of the phenotypic
characteristics of the berries [4]. However,due to their high similarity, there is a high
rate of misidentification. Indeed, to the best of our knowledge, only two attempts for
blueberry cultivar identification have been performed: one based on germplasm characteri-
zation [5], and the other on EST-PCR markers [6]. Despite presenting a high potential for
subspecies identification, these techniques are expensive and time-consuming. Therefore, it
is important to find reliable and cost-effective alternative techniques. Spectroscopic-based
techniques, due to their advantages of low cost, speed, absence of sample preparation,
real-time results, and reagent-free operation, could be an interesting alternative and are
gathering strong acceptance in the typing context, mainly at the genus and species lev-
els [7–10]. However, the infra-species level has been barely explored, particularly in plants
with only a few works published [11–17]. Among these, Kim S. et al. [11] demonstrated
that Fourier-transform infrared (FT-IR) spectroscopy combined with multivariate analysis
allows rapid and effective discrimination between commercial strawberry cultivars based
on their metabolic profiles. Similarly, a 2012 study [12] showed that Fourier-transform
mid-infrared (FT-MIR) spectroscopy and chemometric analysis could effectively distin-
guish five Tunisian olive cultivars using the chemical composition of their leaves. Moura
L. et al. [13], in 2015, used spectral reflectance analysis with nonlinear regression and
principal component analysis to automatically classify different lettuce cultivars. That
same year, Li X. et al. [14] demonstrated that near-infrared (NIR) spectroscopy combined
with pattern recognition methods such as backpropagation neural network (BPNN) and
least-squares support vector machines (LS-SVMs) effectively identified various Pummelo
cultivars. More recently, Kasampalis D. et al. [15] used visible/near-infrared (Vis/NIR)
spectral reflectance data from potato tuber skin to assess postharvest freshness and distin-
guish between cultivars. Yilmaz-Düezyaman H. et al. [17] showed that NIRS can predict
oxidative stability and differentiate extra virgin olive oil cultivars, while Difante G. et al. [16]
applied NIR spectroscopy combined with machine-learning (ML) models to differentiate
Panicum maximum cultivars based on leaf spectral reflectance. Despite previous studies, fur-
ther research is necessary as NIR spectroscopy has not yet been applied to the identification
of V. corymbosum cultivars.

The present study explores the potential of NIR spectroscopy combined with ML tools
to discriminate 19 cultivars of V. corymbosum based on the infrared spectra of their fresh
leaves (adaxial and abaxial sides). For that, the spectra were collected from two geographic
regions across three different seasons, and a pool of 10 ML-based approaches are evaluated
for discriminating V. corymbosum blueberry cultivars using NIR spectra across different
seasons and leaf sides (abaxial and adaxial). Thus, the classifiers are fed with NIR data
selected from the ANOVA F-value method (p < 0.05) and reduced to 1 to 20 components
using four data dimensionality reduction (DDR) techniques: dictionary learning (DL), factor
analysis (FA), fast independent component analysis (fast ICA), and principal component
analysis (PCA). It should be noted that we discarded at the beginning the possibility of
using deep-learning models instead of ML models, as they often require large amounts
of labeled data and significant computational resources, and they can be seen as “black
boxes”, making it difficult to interpret the results and understand the underlying decision-
making process.
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2. Materials and Methods
2.1. Vaccinium Cultivar Leaves

Different numbers of adult leaves of V. corymbosum belonging to 19 distinct cultivars,
fully healthy, 3.7 to 7.2 cm long and 1.1 to 2.6 cm wide, and exposed to sunlight, were
collected in 2 distinct regions in the north of Portugal during 3 seasons of 2017:

• Spring: 44 plants—44 leaves, 1 per plant;
• Fall: 22 plants—22 leaves, 1 per plant;
• Winter: 32 plants—32 leaves, 1 per plant.

Leaves from Region 1 (R1) were collected in three seasons: spring, fall, and winter,
while leaves from the second region (R2) were collected only in spring. Details about
the samples are presented in Table 1. Eng. Paulo Lúcio Gomes, an expert on the area
from Bagas de Portugal (https://www.bagasdeportugal.pt/, accessed on 11 April 2025),
identified the species.

Table 1. V. corymbosum leaves collection included in this work.

Species Blueberry Type Cultivar
Spring (30th May) Fall (1st September) Winter (1st December)

R1 R2 R1 R1

V. corymbosum

Northern

Bluecrop 2 2 2 2

Duke 2 2 2 2

Legacy 2 2 2 2

Draper 2 2 2

Chandler 2 2 2 2

Bluejay 2

Goldtraube 2 2 2

Huron 2 2 2

Aurora 2 2 2

Liberty 2 2 2

Elliott 2

Patriot 2

Bluegold 2

Southern

Camellia 2 2 2 2

Misty 2 2 2

O’neal 2 2

Ozarkblue 2 2

Biloxi 2

Star 2 2

2.2. Infrared Spectra Acquisition

NIR spectra were acquired from fresh leaves. Spectra were collected from two distinct
leaves per plant on both the adaxial and abaxial surfaces, in two separate spots. A total of
eight spectra per plant (2 × 2 × 2) were obtained, avoiding rib leaves. The NIR spectra were
acquired using a Fourier-transform near-infrared spectrometer (FTLA 2000, ABB, Québec,

https://www.bagasdeportugal.pt/
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QC, Canada) equipped with an indium–gallium–arsenide (InGaAs) detector in diffuse
reflectance mode. Each spectrum was the result of an average of 64 scans with a resolution
of 8 cm−1, within the wavenumber interval of 10,000 to 4000 cm−1. Bomen-Grams software
(version 7, ABB, Québec, QC, Canada) was used to control the equipment.

2.3. Data Analysis and Prediction

The infrared spectra were imported into Python (version 3.9.21, developed by the
Python Software Foundation, Wilmington, DE, USA) and adjusted by applying the z-
score normalization method. Five different regions (Region I: 9920–7275 cm−1; Region
II: 7274–6314 cm−1, Region III: 6313–5390 cm−1, Region IV: 5389–4924 cm−1, and Region
V: 4923–4073 cm−1) and the whole NIR spectra were evaluated to find information for
maximizing the performance of ML models and to check if there is a region that provides
better information for discrimination. For that, in those regions and in the whole spectrum,
the ANOVA F-value method was applied for feature selection (p < 0.05) to select frequency
bins ranging from 30 to the maximum bins available per region of analysis (687 for Region
I, 249 for Region II, 240 for Region III, 120 for Region IV, 221 for Region V, and 1517 for
whole spectra), with increments of 10 bins, in an iterative process. After that, the models
were trained and tested with varying numbers of components using four DDR: DL, FA,
fast ICA, and PCA, ranging from 1 to 20, with the rest of the hyperparameters being set to
default, to guarantee that the discrimination power to classify the V. corymbosum species
was optimized. In addition to that, 10 pre-designed scikit-learn ML models were used for
the classification task. Table 2 shows the classifiers used and their configuration. The choice
of the best model considered their discrimination power using a 2-fold stratified cross-
validation process (see Figure 1) to ensure the same proportion of class labels per fold and
to maximize the performance of the model [18]. To validate the performance of each model,
the classification report with values of Accuracy, Precision, Recall, F1-score, and area under
the receiver operating characteristic (ROC) curve (AUC) was obtained.

Table 2. 10 Scikit-learn ML classifier configurations.

Classifier Hyperparameters

AdaBoostClassifier (AdaBoost) Default parameters

BaggingClassifier (BaggC) Default parameters

DecisionTreeClassifier (DeTreeC) max_depth: 5

GaussianNB (GauNB) Default parameters

KNearestNeighborsClassifier (KNN) Default parameters

LinearDiscriminantAnalysis (LinDis) Default parameters

LinearSVC (LinSVC) random_state = 0

LogisticRegression (LogReg) solver: “lbfgs”

QuadraticDiscriminantAnalysis (QuadDis) Default parameters

Support-vector Machines (SVC) γ: “auto”, probability = 1

The Accuracy was calculated using the equation below and represents the proportion
of correctly classified classes relative to all cases [19]:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (1)
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where TP, TN, FP, and FN correspond to true positives, true negatives, false positives,
and false negatives, respectively [20].

Precision represents the ratio of correctly classified positive cases to the total cases
predicted as positive [21]:

Precision =
TP

TP + FP
× 100% (2)

Recall represents the ratio of correctly predicted positive cases to the total number of
actual positive cases [21]:

Recall =
TP

TP + FN
× 100% (3)

The F1-score is the harmonic mean of Recall and Precision [22]:

F1-Score =
2 × Precision × Recall

Precision + Recall
× 100% (4)
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Figure 1. The stratified k-fold approach employed for data classification using ML models, per season:
(a) fall, (b) winter, and (c) spring.

AUC evaluates the model’s capability to distinguish between positive and negative
classes by analyzing true positive (TP) and false positive (FP) rates across different thresh-
olds. AUC values range from 0 to 1, where 1 represents a perfect classifier, and 0.5 indicates
random classification [23].

A summary of the data analysis and prediction methodology is illustrated in Figure 2.
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Figure 2. Data processing and prediction workflow.

3. Results
3.1. Spectral Analysis Results

Figure 3a presents the mean NIR spectra of all the samples (cultivars) of the fresh
leaves (adaxial and abaxial sides), and Figure 4a, the corresponding derivatives. The
spectra of both sides are quite similar, with only slight differences. Broad bands at 5200
and 7000 cm−1 are associated with the O–H combination and the first O–H overtones
of water, respectively [24]. Vibration bands around 5800–5650 cm−1, 4900–4500 cm−1,
and 4300–4200 cm−1 were observed. Bands within 5800–5650 cm−1 can be attributed to
C–H vibrations in the first overtone region, connected to cellulose [25]. Bands from 4900 to
4500 cm−1 are associated with N–H and N–H plus C–H combinations, related to starch,
pectin, and cellulose [25]. Bands around 4300–4200 cm−1 are located in the C–H plus C–C
combination band regions, linked to cellulose and proteins [26].

Figure 3. Vaccinium leaves mean NIR spectra (Chandler cultivar) of (a) fresh adaxial (—) and abaxial
(—) surfaces; (b) fresh adaxial and (c) fresh abaxial of: spring (—), fall (– ·), and winter (— —) leaves
from R1 and spring leaves from regions R1 (—) and R2 (— —). Note: Just for illustrative purposes,
we separated the NIR spectra by magnitude to effectively show the differences to the naked eye.
This separation was necessary because the spectral frequency bins significantly overlap along the
wavenumber, making it difficult to distinguish the spectra visually. That is why in the present figure,
NIR spectra of different cultivars exhibit higher values compared to those associated with regions.
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Figure 4. Vaccinium leaves second derivative [SavGol filter (15, 2, 2)] mean NIR spectra (Chandler
cultivar) of (a) fresh adaxial (—) and abaxial (—) surfaces; (b) fresh adaxial and (c) fresh abaxial of:
spring (—), fall (– ·), and winter (— —) leaves from R1 and spring leaves from regions R1 (—) and
R2 (— —). Note: (1) We zoomed into the 6100–4000 cm−1 region as it provided more differences
within the second derivative mean NIR spectra. (2) Just for illustrative purposes, we separated the
NIR spectra by magnitude to effectively show the differences to the naked eye. This separation was
necessary because the spectral frequency bins significantly overlap along the wavenumber, making it
difficult to distinguish the spectra visually. That is why in the present figure, NIR spectra of different
cultivars exhibit higher values compared to those associated with regions.

Figure 3b,c present the mean NIR spectra for the Chandler cultivar (adaxial and
abaxial sides of fresh leaves), and Figure 4b,c, the corresponding derivatives. Spectra of
three different seasons (spring, fall, and winter) obtained from region R1 and spectra from
spring leaves of R2 were presented. Spectra showed great similarity, especially those from
the abaxial side of fresh leaves. Few or no naked-eye differences were observed between
spectra from different seasons except for regions from 5900 to 5300 cm−1 (C–H first overtone,
C=O second overtone vibrations, and O–H combinations associated with lignin, cellulose,
sugars, starch, and proteins [26]), and 4900 to 4200 cm−1 (N–H combinations, N–H + C–H
combinations, C–H + C–H combinations, and C–H + C–C combinations related to starch,
proteins, pectin, and cellulose [25,26]) of the adaxial side spectra. Fall and winter spectra
seem to have slightly more intense vibration bands in these regions. The spring leaves
spectra from R1 and R2 showed slight differences in the region from 4900 to 4200 cm−1.
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3.2. Machine-Learning Classification Results

Figure 5 illustrates the ROC curves derived from the discrimination analysis of
V. corymbosum cultivars, per season and leaf region. The curves were generated from
models trained with NIR data dimensionality reductive by four different techniques: DL,
FA, fast ICA, and PCA.
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Figure 5. AUC ROC curves obtained with different DDR processes for each season and both sides of
the leaves. (a) ROC curve of the adaxial side of the leaf during fall; (b) ROC curve of the abaxial side
of the leaf during fall; (c) ROC curve of the adaxial side of the leaf during winter; (d) ROC curve of
the abaxial side of the leaf during winter; (e) ROC curve of the adaxial side of the leaf during spring;
(f) ROC curve of the abaxial side of the leaf during spring.
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In Table 3, the Accuracy and AUC results for the best models fed with data from
different spectral regions (I: 9920–7275 cm−1, II: 7274–6314 cm−1, III: 6313–5390 cm−1, IV:
5389–4924 cm−1, and V: 4923–4073 cm−1) and from the entire spectrum are presented,
categorized by season and leaf side. Highlighted in green are the best results achieved for
each season and leaf side, based on the highest Accuracy and AUC values.

Table 3. Accuracy and AUC results for each spectra region and for the whole spectrum (per season
and leaves side).

DDR I (9920–7275 cm−1) II (7274–6314 cm−1) III (6313–5390 cm−1) IV (5389–4924 cm−1) V (4923–4073 cm−1) All Spectrum (9920–4073 cm−1)
Process AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy

Adaxial_Fall Fast ICA 0.8 81.82 0.975 77.28 1 100 1 68.19 1 90.9 1 81.82
Adaxial_Spring DL 0.5833 40.91 0.9524 43.18 0.6429 50 0.619 40.91 0.5714 45.45 0.619 52.27
Adaxial_Winter Fast ICA 0.9833 75 0.9833 84.38 1 93.75 0.9833 78.13 1 96.88 0.96667 84.38

Abaxial_Fall Fast ICA 0.9 77.27 0.5 77.27 1 95.45 0.725 81.82 1 86.36 0.975 90.91
Abaxial_Spring Fast ICA 0.9524 34.09 1 52.27 1 70.45 0.9881 50 1 59.09 0.9881 54.55
Abaxial_Winter Fast ICA 1 71.88 1 84.38 1 93.75 0.75 87.5 1 100 1 87.5

Note: Highlighted in green are the best results achieved per season and leaf side, based on the highest Accuracy and AUC values.

Table 4 provides a summary of the overall best model’s performance results high-
lighted in green in Table 3 per season, and adaxial–abaxial leaf face. This summary includes
Accuracy, Precision, Recall, F1-score, and AUC, considering the number of components
and the number of frequency bins (features).

Table 4. Best overall results for the best region highlighted in Table 3.

Spectral Region DDR Process # of Components # of Features Classifier Accuracy Precision Recall F1-Score AUC

Adaxial_Fall III Fast ICA 12 140 LinSVC 100 100 100 100 1
Adaxial_Spring All Spectrum DL 15 330 LinSVC 52.27 38.54 48.44 40.63 0.619
Adaxial_Winter V Fast ICA 14 120 LogReg 96.88 95.31 96.88 95.83 1

Abaxial_Fall III Fast ICA 10 110 LogReg 95.45 93.18 95.45 93.94 1
Abaxial_Spring III Fast ICA 13 190 LinSVC 70.45 61.46 70.31 64.69 1
Abaxial_Winter V Fast ICA 15 190 LinSVC 100 100 100 100 1

Considering the best overall results, the confusion matrices for the discrimination
process of V. corymbosum cultivar are presented in Figures 6–8, per season and leaf side.
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Figure 6. Cont.
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Figure 6. Confusion matrices with prediction Accuracy in percentage (%) for the best overall results
during fall. (a) Adaxial side of the leaf. (b) Abaxial side of the leaf.
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Figure 7. Cont.
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Figure 7. Confusion matrices with prediction Accuracy in percentage (%) for the best overall results
during winter. (a) Adaxial side of the leaf. (b) Abaxial side of the leaf.
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Figure 8. Confusion matrices with prediction Accuracy in percentage (%) for the best overall results
during spring. (a) Adaxial side of the leaf. (b) Abaxial side of the leaf.

4. Discussion
Near- and mid-infrared spectroscopy are being used for plant typing at different

taxonomic levels [7,11–14], disease detection [27], antioxidant properties [28], and storage
duration estimations [29], among others. Of the different plant constituents commonly ex-
plored, leaves are the ones that yield the best results. Despite the success of these techniques
for typing purposes, their ability for cultivar discrimination has barely been explored, with
few published studies [11,14], and has never been tested to discriminate blueberry cultivars.
In this context, this work aimed to evaluate the ability of NIR spectroscopy to discriminate
V. corymbosum cultivars from two different geographical regions and different seasons.

4.1. Choosing the Best DDR Method for Each Season and Leaf Side Using the AUC ROC Curves

Looking at the results presented in Figure 5, it can be seen that the fast ICA was the
best overall DDR process, with 83.33% (five out of six) figures indicating an AUC of 1.
The DL and the FA reached an AUC value of 1 in 50% (three out of six) of the cases. Lastly,
the PCA DDR process achieved an AUC of 1 in 16.67% (one out of six) of the possible cases.
With these results in mind, we see that the fast ICA is the best DDR technique choice for the
majority of the cases, except when classifying the leaves’ adaxial side in spring, where DL
proved to be a superior technique for DDR. This can be explained due to our data probably
following a non-Gaussian distribution in which fast ICA performs better. In the case of
PCA and FA, these techniques have an advantage in Gaussian distributions [30]. The DL
possibly did not show a better result because it requires careful fine-tuning [31].

4.2. Choosing the Best Spectral Region for Each Season and Leaf Side Using AUC and Accuracy

In Table 3, we present the best spectral region results for the optimal DDR process,
categorized by season and leaf side. The selection of the best region was based on the AUC
and Accuracy metrics. In the fall, when we used the leaves’ adaxial side, we can see that
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the best results came from the spectral region III, with the AUC and Accuracy obtaining
the results of 1 and 100%, respectively. In the case of the leaves’ abaxial side for the same
season, the best region was region III, with an AUC of 1 and an Accuracy of 95.45. For
the spring, the best results for the leaves’ abaxial side came from the all spectrum region,
with an AUC of 0.619 and an Accuracy of 52.27%. The best results from the abaxial leaves
in spring came from region III, with an AUC and Accuracy of 1 and 70.45%, respectively.
In the case of the winter season, the adaxial of the leaves obtained the best results in region
V, reaching 1 of AUC and a 96.88% Accuracy. For the abaxial of the leaves in the case of the
winter season, the best results were 1 of AUC, and 100% of Accuracy illustrated in region
V, as well. Globally, we can see a clear dominance of region III, corresponding to 50% (three
out of six) of the cases, followed by region V with 33.33% (two out of six), and last was
region II, which represented 16.67% (1 out of 6).

4.3. Analysis of the Best Overall Results

In Table 4, we see that the fall and winter seasons yielded the best results. The Adax-
ial_Fall and Abaxial_Winter achieved 100% in Accuracy, Precision, Recall, and F1-score,
with the AUC reaching 1. The Adaxial_Spring had an Accuracy of 52.27%, a Precision of
38.54%, a Recall of 48.44%, an F1-score of 40.63%, and an AUC of 0.619.

The Adaxial_Winter achieved an Accuracy, Precision, Recall, F1-score, and AUC of
96.88%, 95.31%, 96.88%, 95.83%, and 1, respectively. The Abaxial_Fall demonstrated an
Accuracy of 95.45%, a Precision of 93.18%, a Recall of 95.45%, an F1-score of 93.94%, and an
AUC of 1. The Abaxial_Spring had an Accuracy of 70.45%, a Precision of 61.46%, a Recall of
70.31%, an F1-score of 64.69%, and an AUC of 1.

The best classifier was the LinearSVC, representing 66.67% (four out of six) of the
models. A possible reason why a simple classifier, such as LinearSVC, achieves the best
results in most comparison groups is the size of the dataset. More complex classifiers tend
to introduce higher variance, which is disadvantageous for small datasets [32].

Globally, better results were achieved with fall and winter leaves. Spring leaves
yielded poorer cultivar identification rates, which could be related to their higher water
and chlorophyll contents. Water and chlorophyll are, particularly in spring leaves, major
components and could mask spectra, making other components (discriminant ones) less
visible to the infrared light [33].

4.4. Analysis of Confusion Matrices Related to the Best Overall Results

Figure 6 shows the confusion matrices for the leaves’ sides in the fall. We can see
that the adaxial side did not have any difficulty discriminating between classes. However,
on the abaxial side, there is a slight difficulty with the Aurora and Huran classes.

Figure 7 illustrates the confusion matrices for the leaves’ sides in winter. The adaxial
side presented some difficulty in correctly discriminating the Elliott class, which was often
predicted as the Duke class. In contrast, the abaxial side showed clear discrimination
between all classes.

Figure 8 presents the confusion matrices for the leaves’ sides in spring. The adaxial
side shows a significant difficulty in correctly discriminating the classes, with only the
Bluecrop, Legacy, Huron, and Star classes being correctly classified. On the abaxial side, there
is a small improvement compared to the adaxial side in the same season. However, there is
still some difficulty in correctly classifying the O’neal, Bluegold, Bluejay, Chandler, Legacy,
Duke, and Bluecrop classes. Overall, the cultivar discrimination success cannot be linked to
a specific leaf side (adaxial or abaxial). The best results seem to be randomly achieved with
one leaf side.
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5. Conclusions
Overall, this study demonstrated the potential of NIR spectroscopy for infra-species

typing and established a reliable method for blueberry cultivar identification, addressing
a clear gap in the literature. The proposal model’s discrimination Accuracy of cultivars
with air-dried and fresh leaf spectra ranged from 52.27% to 100%, with the highest spectral
performance achieved using the adaxial side of the leaves in fall and winter, both with
100% Accuracy in spectral regions III and V, respectively. It is important to highlight the
higher number of cultivars tested (19 different cultivars) correctly classified with a low
number of LVs. To the best of our knowledge, no prior studies have reported spectral
recognition results for V. corymbosum leaves that are optimized in fall and winter; therefore,
a comparison between studies was not possible. This aspect should be explored in future
research to better understand how seasonal factors influence model performance.

Additionally, our proposed methodological approach showed that a calibration model
must be used to carefully identify cultivars from different geographic regions or seasons,
enabling an accurate identification of blueberry cultivars without the need for berries on
the plant. Based on these findings, a calibrated and validated portable NIR device can
allow farmers to conduct on-site cultivar identification and real-time decision making
without the need for expert support. To enhance the current study, future research will
focus on optimizing the hyperparameters of classifiers and DDR techniques. Additionally,
the incorporation of more samples will facilitate the application of advanced deep-learning-
based data analysis, thereby improving the generalizability of the results.
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