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Abstract: This paper focuses on forecasting the price of Bitcoin, motivated by its market growth and
the recent interest of market participants and academics. We deploy six machine learning algorithms
(e.g., Artificial Neural Network, Support Vector Machine, Random Forest, k-Nearest Neighbours,
AdaBoost, Ridge regression), without deciding a priori which one is the ‘best’ model. The main
contribution is to use these data analytics techniques with great caution in the parameterization,
instead of classical parametric modelings (AR), to disentangle the non-stationary behavior of the data.
As soon as Bitcoin is also used for diversification in portfolios, we need to investigate its interactions
with stocks, bonds, foreign exchange, and commodities. We identify that other cryptocurrencies
convey enough information to explain the daily variation of Bitcoin’s spot and futures prices. Fore-
casting results point to the segmentation of Bitcoin concerning alternative assets. Finally, trading
strategies are implemented.

Keywords: forecasting; Bitcoin; machine learning; trading strategies

1. Introduction

Artificial intelligence (AI) is the simulation of human intelligence by computers.
Misheva et al. [1] underline that AI offers great opportunities for enhancing the customer
experience, democratizing financial services, ensure consumer protection and significantly
improve risk management. In this field, Bussmann et al. [2] argue that Artificial Intelligence
models can be used in credit risk management and, in particular, in measuring the risks that
arise when credit is borrowed employing peer to peer lending platforms. Islam et al. [3]
recall that a fundamental challenge for A.I.-based prediction models is the extent to which
the internal working mechanisms of an AI system can be explained in human terms.

Machine learning (ML) is a branch of AI where algorithms are used to learn from
data to make future decisions or predictions. Naturally, forecasting research stands at
the forefront of this blooming literature. Cohen [4] uses particle swarm optimization
and identifies that both Darvas Box and Linear Regression techniques can help traders
predict the bitcoin’s price trends. Besides, Li et al. [5] demonstrate that the Attentive
LSTM network and an Embedding Network achieve superior state-of-the-art performance
among all baselines for the Bitcoin price fluctuation prediction problem. Last but not
least, Livieris et al. [6] utilizes as inputs different cryptocurrency data and handles them
independently to exploit helpful information from each cryptocurrency separately, which
leads to better results than the traditional fully-connected deep neural networks.

At the crossroads between econometrics and machine learning, we find a paper by
Chen et al. [7], who assesses that “the machine learning approach could be a more suitable
methodology than traditional statistics for predicting the Bitcoin price”. In this spirit, we attempt
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to infer whether such computational methods designed to “learn” information directly
from data (and adaptively improve their performance as the number of samples increases)
will lead to successful Bitcoin price forecasts. While econometrics assesses potential future
scenarios using advanced statistical methods (such as time series), machine learning utilizes
artificial intelligence to predict behavior in new ways. Of particular interest to us is that
there is still a debate on why a given algorithm can outperform conventional methods in
predictive analytics.

Regarding the issue of the use of “black-boxes”, there may be fundamental reasons
for using them with the suspicion that goes beyond the warnings of Zhao and Hastie [8].
For products that would lend themselves to the use of IA/ML, in practice, these tools are
rarely applied for two reasons:

1. Readability: For important investment choices or setting up an investment process,
we cannot simply rely on a model. In most cases, it is necessary to have a specific
thesis, which must be explained based on simple econometric relations, whether for
investors or the CEO of a fund, rarely a specialist. From this point of view, an AR(1)
model which would link the BTC to two or three indices could be, from the point
of view of investment strategy, more important than a better, more complex model,
because it would allow us to better explain and then justify overtime to investors
what their money is used for.

2. Far out-of-sample robustness: In setting up complex strategies comparable to deriva-
tives, valuations and measurements of risks are generally based on the simulation of
the dynamics of an underlying process (an economic driver of the value of various
products). In this case, the input simulations (in addition, calibrated in neutral risk)
will generally go well beyond what has been observed in the past, and we have no
idea of the relevance of the “black-box” model that will come out. It is then preferable
to have a precisely specified model for which the behavior in these out-of-sample
areas has been consciously established.

In economics, recent developments of machine learning can be found, for instance,
in Farrell et al. [9] who developed semiparametric inference for deep neural networks.
In finance, algorithms for quants are already thoroughly documented and accessible,
for instance, in the book by de Prado [10].

This paper assesses the risks of machine learning processes as “black-box” (already
built) models by detailing precisely the parameters’ choices at each step, see also Zhao and
Hastie [8], Abadie and Kasy [11]. Adopting a prudent approach towards building sparse
models (see the survey on over-fitting and regularization methods by Athey and Imbens [12]),
we select six classes of machine learning algorithms: regularization (Ridge regression), neural
networks (Multilayer Perceptron with Back-Propagation), ensemble decision trees (Random
Forest, AdaBoost), instance-based (k-Nearest Neighbour), and classification (Support Vec-
tor Machine).

Using these six machine learning processes, we analyze their fitting and predictive
power through an empirical application based on Bitcoin spot and futures prices. Along
with the paper, we discuss some risks associated with this approach. The paper discusses
the potential prediction of the machine learning processes trying to answer the follow-
ing points:

1. Do drivers exist for Bitcoin forecasts (inside the variables we retain)?
2. Can we accurately produce forecasts (models in question, and how to compare them)?
3. Is it possible to propose robust trading strategies?

Bitcoin is an electronic currency based on a vast peer-to-peer network, totally decen-
tralized. New bitcoins are introduced to the market via a process called mining. The miners
receive rewards as soon as they validate recent transactions after solving an optimization
problem using a Proof of Work, which needs intensive computation. The first Bitcoin
was created in 2009 (Nakamoto [13]). A cryptocurrency can be defined as a digital asset
designed to work as a medium of exchange using cryptography to secure the transactions
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and to control the creation of additional units of the currency. Since the origin of this
cryptocurrency, we have observed high volatility of its price and specific features, which
could be an interesting feature to understand, in the context of investment objectives.
In February 2021, Bitcoin hit a market capitalization of $1 trillion (all digital coins com-
bined have a market cap of around $1.7 trillion, according to Reuters [14]). By hitting
the $1 trillion market cap, the Bitcoin market is gaining acceptance among mainstream
investors and companies, from Tesla and Mastercard to the bank BNY Mellon. (See Reuters
(2021) at https://www.cnbc.com/2021/02/19/bitcoin-hits-1-trillion-in-market-value-as-
cryptocurrency-surge-continues.html, accessed 19 February 2021).

Investment managers are doubtful with respect to the forecastability of Bitcoin, much
like currency forecasters. For instance, the Chief Investment Officer of Citi Private Bank,
David Bailin, reminds that “to get an exposure to Bitcoin, if you do not own the actual Bitcoin, any
such fund or structure can be a very, very inefficient way to do that”. (See Yahoo Finance (2021)
at https://autos.yahoo.com/unstoppable-trends-better-bitcoin-long-142808181.html, ac-
cessed on 17 March 2021). Bitcoin’s private key custody problem has essentially three
practical solutions: (i) kept on an exchange, it constitutes a “honey pot” for hackers (recall
the Magic The Gathering Online eXchange (Mt.Gox) where 650,000 BTC were lost); (ii) kept
in banks, it undermines the 21 million Bitcoins scarcity by paving the way for securitization
all over again (recall the 2008 sub-primes crisis); (iii) kept on a hardware wallet (such as
Trezor or Ledger), there is the risk of theft and physical harm (Ledger’s marketing database
was famously hacked, containing the clients’ private addresses). Therefore, no solution
appears satisfactory. That is why investment in cryptocurrencies will be a (small) part of
the “opportunistic side” of the client’s portfolio. According to Amundi’s asset managers
Vincent Mortier and Didier Borowski, Bitcoin and other cryptocurrencies do not possess
the intrinsic qualities of money, i.e., to be a metric unit, a store of value, and a medium
of exchange. They do not have any real economic underlying, and there exists no pricing
model. Both asset managers are wary of the speculative nature of cryptocurrencies. (See
Amundi (2021) at https://research-center.amundi.com/article/crypto-currencies-bubble-
or-emergence-new-paradigm-decentralised-finance, accessed on 24 March 2021).

If we investigate the literature on Bitcoin, we observe a considerable amount of papers
on this cryptocurrency recently to predict its price or the associated return or to determine
the trend of these two quantities. Much literature focuses on the prediction of the volatility
for this cryptocurrency. Nearly all the models existing in the linear and non-linear time
series have been applied to predict prices or volatility. We give, in the next section, a
summary of the more recent papers. Nevertheless, an interesting question remains: is
it possible to predict the price of this cryptocurrency, whatever the model used and the
period considered? This opens the question of the validity of the conclusions of all these
papers. If everything ‘works’ even if the methods are antinomic, what is the robustness of
these predictions?

Motivated by the growth of the Bitcoin market and the recent interest of market partici-
pants (for instance, in February 2021 alone, corporate adoption of BTC involved ARK Invest,
Blackrock, BNY Mellon, Mastercard, Microstrategy, Square. BlackRock, the world’s largest
asset manager “started to dabble” in BTC. Tesla invested $1.5B in BTC and announced
plans to accept crypto payments. North America’s first Bitcoin Exchange-Traded Fund
(ETF), the Canadian-based Purpose Bitcoin, amassed $421M in Asset Under Management
in its first two days of trading) and academics, this study focuses on machine learning
modeling. We illustrate some features that could explain the dynamic behavior of Bitcoin’s
price by taking into account the non-stationary behavior of the data in place of classical
parametric modelings (ARMA, related-GARCH, VAR modelings). For recent extensions
in econometrics, see for instance Abedifar et al. [15], Ahelegbey et al. [16] regarding cor-
relation networks, Billio et al. [17] for multivariate models such as Granger Causality,
or Baumöhl [18] for connectedness à la Diebold and Yilmaz approaches for crypto-assets
and exchanges (Dahir et al. [19], Le et al. [20], Mensi et al. [21] and further papers). For
recent literature on forecasting non-stationary time series based on machine learning, see,
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e.g., Cao and Gu [22], Kurbatsky et al. [23], Wang and Han [24]. The interest of machine
learning is that the notion of non-stationarity is not crucial as in econometric models for
which we need to have stationarity to be sure to have a solution (because this corresponds
to the assumptions imposed by econometric models), which is irrelevant in ML. In that
sense, machine learning could be a promising technology. We know that it has been used
and advanced for asset price/return prediction in recent years since the financial time
series are non-stationary and volatile. The development of machine learning and its interest
in finance is not new. A seminal paper on the introduction of this methodology was given
by Rosenblatt [25], and more recent developments can be found in Russell and Norvig [26]
with a lot of references therein. For applications using financial assets, the current paper of
Iworiso and Vrontos [27] provides evidence that machine learning techniques permit us to
get exciting results concerning the forecasts of the direction of the U.S. equity premium.

In the spirit of the previously-cited papers, in the present paper, we analyze the
behavior of the Bitcoin cryptocurrency and its futures with a class of machine learning
techniques. We investigate its behavior in the future. As soon as Bitcoin is used for
diversification in portfolios, we complete our analysis by looking at Bitcoin’s interaction
with stocks, commodities, bonds, and other cryptocurrencies. Our research based on these
data analytics techniques focuses on (i) their capability to fit a data set. We observe that the
Adaboost method and the random forest processes are the winners inside a competition
based on six competitors. (ii) Regarding their predictability power, we observe a high
variability of the results depending on the period on which we work and the input data
used for the training. Thus, the question that emerges from this work is the possibility
of predicting the spot or the future for this cryptocurrency against luck or uncertainty,
without obviously calling into question the methodology used.

Central banks convey this idea of Bitcoin being an extremely inefficient way to process
transactions, highly speculative, and used mainly for the financing of illicit activities. In the
view of the Treasury Secretary Ms. Janet Yellen, Central Banks Digital Currencies (CBDC)
should be the only solution for printing digital money (through its proprietary core ledger).
This view is largely echoed in finance journals. To cite a few, Foley et al. [28] estimate
that around $76 billion worth of illegal activity per year involve Bitcoin (46% of bitcoin
transactions), which is close to the scale of the U.S. and European markets for illegal drugs.
Among other “Silk Roads” dismantled by the FBI regarding drug trafficking, the risks of
“black e-commerce” are heightened by the anonymous file server Tor (The Onion Router),
and by secret cryptocurrencies’ operational design such as Zcash or Monero.

Spanning daily data from 13 January 2015, to 31 December 2020, our analysis is
based on several steps to analyze the main drivers of the Bitcoin currency. First, we
look at the realm of seventeen cryptocurrencies. Second, as representative of traditional
financial markets, we investigate the relationships of Bitcoin with eleven stocks, four
bonds, and four foreign exchange markets. Third, we examine the interactions with
four energy, seven metals, three grain commodities, five softs, and two cattles as an
alternative investment class. The analysis is robust to Bitcoin spot or futures prices as
the underlying asset. The novelty lies in (i) considering six machine learning models
and one parametric model (an AR) in a horse race to forecast the price of Bitcoin, (ii)
developing trading strategies issues to investigate the potential use of crypto assets in
portfolio management. As robustness checks, we identify several sub-sample forecasts for
results sensitivity purposes.

Regarding the central methodological and empirical contributions, our paper stresses
the key ingredients to make a ‘good’ machine learning model in quantitative economics,
a.k.a: (i) proceeding to an excellent data collection (our ‘financial markets’ approach as
opposed to a ‘blockchain approach’ feeding the models with technical and non-stationary
data) while controlling for low multi-collinearities; (ii) assessing using a wide array of
visualization tools (clusters, maps, diagrams) the main finding of segmentation of Bitcoin
concerning traditional financial and commodity markets (e.g., Bitcoin reacts mainly to the
information content of other cryptocurrencies); and (iii) favoring either the AdaBoost or
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Random forest algorithms as predictors of the Bitcoin spot and futures prices, which allows
us to implement trading strategies; and to open the debate on the forecasting accuracy
of Bitcoin.

What is the accurate information set {I} to predict Bitcoin prices? Our reply is largely
that Bitcoin appears segmented to crypto-assets only, and not much connected to financial
markets. Therefore, we do not deploy standard econometrics tests (with Granger causality
or reverse causality). We follow a purely data-driven machine learning approach. In
a nutshell, this paper contains the results of a set of prediction exercises. The critical
emphasis is placed on the proper use of machine learning techniques (Artificial Neural
Network, Support Vector Machine, Random Forest, k-Nearest Neighbours, AdaBoost,
Ridge regression) to forecast daily movements of the price of Bitcoin. We demonstrate
that the performance of such machine learning methods is highly dependent on several
design choices (hyperparameters, optimizers, network topology). The forecast statistics
retained are the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), and the
Mean Absolute Percent, Error (MAPE). The paper concludes that, in this particular exercise,
AdaBoost stands out as the best machine learning. The Random Forest algorithm also
performs well among the six considered.

The remainder of the paper is organized as follows. Section 2 summarizes some
of the papers interested in predicting Bitcoin with different modelings, classifying these
modelings concerning the models. Section 3 describes, in a uniform way, all the machine
learning models used. Section 4 introduces the data. Section 5 contains the results for the
whole sample, distinguishing the results obtained with all the risk factors we have listed to
explain the spot’s behavior and Bitcoin futures. This section proposes an in-depth analysis
of the inter-relationships between Bitcoin, other cryptocurrencies, and the stable coin Tether,
traditional asset markets, and alternative commodities. Section 6 provides robustness
checks along four sub-samples corresponding to different periods characterizing Bitcoin’s
price behavior: a restricted sample to the newest cryptocurrencies, Tether’s introduction in
2017, the 2016–2018 Bitcoin economic cycle, the recent 2019 trend, and the 2020 “bull run”.
Section 7 provides some discussions and conclusions.

2. Background

The literature on Bitcoin pricing is developing in finance. Among various topics
tackled, Easley et al. [29] document the level of transaction fees on this particular market
and assess that a high volume of transactions is required. Bitcoin mining is computationally
intensive on the network, and a model calibration was achieved by Prat and Walter [30] (in-
cluding the electricity cost). Mining rewards are the main incentives for miners to invest in
expensive mining pieces of equipment (e.g., dedicated GPU cards or ASIC miners). Hence,
the motto “Get Rich or Die Mining” is often found on crypto forums). Another concern on
this market is the ability of traders to benefit from price deviations that occur due to multi-
ple trading places: this is called arbitrage between exchanges (Makarov and Schoar [31]).
In management, the focus is more on the “cryptocurrency mania” that risks leading to
speculative bubbles, as in Cheng et al. [32], Wei and Dukes [33]. Financial practitioners are
also concerned about the security of the blockchain (Pagnotta [34]). Quantum computers
are posing a serious challenge to the security of the Bitcoin blockchain indeed. (See De-
loitte (2021) at https://www2.deloitte.com/nl/nl/pages/innovatie/artikelen/quantum-
computers-and-the-bitcoin-blockchain.html, accessed on 14 March 2021).

Several studies have been conducted in the literature concerning predicting Bitcoin
spot price or the evolution of its volatility trend. We provide some references without
being exhaustive.

Some are based on classical econometric modeling, including: (i) time-series tech-
niques (e.g., vector autoregressive (VAR), vector error correction (VEC), quantile regression),
for instance, see Fantazzini et al. [35] and references therein. (ii) GARCH and DCC mod-
eling: for example, Briere et al. [36] investigate the volatility behavior of Bitcoin. Using
the same models, Aslanidis et al. [37] compare the volatility of different cryptocurren-
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cies, including Monero. Caporale and Zekokh [38] use Markov switching modelings to
investigate the volatility of Bitcoin and other cryptocurrencies. (iii) Long memory and
jump modeling: in several papers, authors try to detect a possible long memory behavior
using different techniques, see, for instance, Bariviera et al. [39], Alvarez-Ramirez et al. [40],
Begušić et al. [41]. Some authors try to use this long memory behavior for trading strategies;
see, for instance, Khuntia and Pattanayak [42], Al-Yahyaee et al. [43]. With the possible long
memory behavior, models with jumps have been used to investigate both the returns’ behavior
and the volatility. Some references are Phillip et al. [44], Mensi et al. [45]. There exists a large
literature on the bubble behavior of Bitcoin, which has been observed since 2014. We can
cite, among others, Su et al. [46], Guegan and Frunza [47], Geuder et al. [48]. At the same
time, looking at the evolution of the price on specific periods, authors try to show that
Bitcoin can be considered a commodity (the idea is that this cryptocurrency corresponds to
a limited resource), e.g., Guesmi et al. [49], or as gold (Dyhrberg [50]). In many cases, the au-
thors are interested in discussing the potential (or not) of Bitcoin for diversification, (e.g.,
Polasik et al. [51], Bouri et al. [52], Selmi et al. [53]).

Some papers use high-frequency data and are interested in shock transmission: using
realized volatility of the cryptocurrencies, some authors detect asymmetries in shock trans-
missions between the cryptocurrencies and traditional assets, see, for instance, Kurka [54]
and references therein. The informational efficiency of Bitcoin has also been investigated us-
ing high-frequency in Zargar and Kumar [55], extending some previous works on different
papers whose references can be found in this last paper.

Some papers have investigated the cross-correlation between cryptocurrencies and
different stocks and bonds using related GARCH and DCC modelings to use Bitcoin
for diversification. For instance, in a recent paper, Aslanidis et al. [37] detect that the
correlation of traditional assets against Monero is even closer to zero than against other
cryptocurrencies. Other papers investigate the correlation with different stocks, such as
Fang et al. [56], Gillaizeau et al. [57], among others.

Sentiment analysis using Twitter and Google Trends forms another new tool to forecast
Bitcoin prices. For instance, Wołk [58] recently mobilized this computational tool to predict
the prices of Bitcoin and other cryptocurrencies for different time intervals. The author
highlights that people’s psychological and behavioral attitudes significantly impact the
highly speculative cryptocurrency prices. Further, on informative signals derived from
Twitter and Google Trends, Shen et al. [59] find that the number of tweets is a significant
driver of next-day trading Bitcoin volume. Philippas et al. [60] identify that Bitcoin prices
are partially driven by momentum on media attention in social networks, justifying a senti-
mental appetite for information demand. Guégan and Renault [61] explore the relationship
between investor sentiment on social media and intraday Bitcoin returns. The authors
document a statistically significant relationship between investor sentiment and Bitcoin
returns for frequencies of up to 15 min. The impact of news is further documented by
Dey et al. [62] regarding the use of chainlets to evaluate the role of the local topological
structure of the blockchain on the joint Bitcoin and Litecoin price formation and dynamics,
or by Nicola et al. [63] regarding information theory measures extracted from a Gaussian
Graphical Model constructed from daily stock time series of listed US banks.

Finally, machine learning modeling has recently been used to understand the behavior
of cryptocurrencies. Atsalakis et al. [64], Jang and Lee [65], Mallqui and Fernandes [66]
investigate the direction prices for daily cryptocurrencies. Atsalakis et al. [64] uses a hybrid
Neuro-Fuzzy controller based on artificial neural networks for Bitcoin prices. Jang and
Lee [65], for the same data set, use a Bayesian neural network. Mallqui and Fernandes [66]
focus on Artificial Neural Networks (ANN), Support Vector Machines (SVM), and k-Means
clustering method for Bitcoin predictions introducing other stocks in their study. On an-
other side, Nakano et al. [67] explore Bitcoin intraday technical trading strategies based
on deep learning for the price direction return prediction (up and down) on the period of
December 2017 January 2018. They provide interesting results on the role of the layers, out-
puts, and inputs for their trading strategies. Sun et al. [68] adopt a novel Gradient Boosting
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Decision Tree (GBDT) algorithm, Light Gradient Boosting Machine (LightGBM), to forecast
the price trend. Further on this, [69] hierarchically cluster Bitcoin prices from different
exchanges and classic assets by enriching the correlation-based minimum spanning tree
method with a primary filtering method based on the random matrix approach. Using a
stochastic neural network model, Jay et al. [70] trained the Multi-Layer Perceptron (MLP)
and Long Short-Term Memory (LSTM) models for Bitcoin, Ethereum, and Litecoin. The re-
sults show that the proposed model is superior in comparison to the deterministic models.

Our paper is close to this last class of articles, with new and different findings.

3. Methodology

This section explains the learning algorithms we used. We aimed to build models that
make predictions based on a known set of input data. We trained the models to generate
accurate predictions when including new data.

In what follows, we describe training the different models using data. We introduce a
general formalism permitting applying the models without going into details and provid-
ing specific references for more details. Indeed all these models are well-documented in
the literature. As soon as we compare several non-parametric modelings, we uniformly
present them to compare the training on the data set more accessible. In the next section, we
will specify the values of the parameters that have been chosen to provide better forecasts
for each model. In what follows, we deploy six “off-the-shelf” ML algorithms that vary de-
pending on the speed of training, memory usage, predictive accuracy, and interpretability.

‘Horse Race’ of Machine Learning Models

Against the benchmark AR(1) parametric model (a.k.a, the standard workhorse of time
series econometrics), we retained six non-parametric models: the Ridge/Lasso regression,
which can be used as a benchmark, an artificial neural network, a random forest modeling,
a support vector machine, the k-nearest neighbors approach and the Ada-boost modeling.
All these modelings can be associated with a regression based on input factors X, providing
an output Ŷ, which is the forecast we expect. Thus formally, we have the following
representation: Ŷ = f (X), and Y is the unknown true objective to attain. The regression
function f will be more or less complicated, depending on the model we consider.

We provide in Figure 1, a general representation of the framework we used. In the
following, we specify the target function f for each modeling and the fitting parameters.

Figure 1. Representation of the non parametric modelling used in this paper.

Linear regression is an example of a parametric approach assuming a linear functional
form for f (.). Parametric methods have several advantages. They are often easy to fit
because one needs to estimate only a small number of coefficients. In linear regression,
the coefficients have simple interpretations, and statistical significance tests can be easily
performed. However, parametric methods have a disadvantage: by construction, they
make strong assumptions about the form of f (.). If the specified functional form is far from
the truth, and prediction accuracy is our goal, then the parametric method will perform
poorly. In contrast, non-parametric methods do not explicitly assume a parametric form
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for f (.) and thereby provide an alternative and more flexible approach for performing
regression. We propose various non-parametric methods in this paper.

1. Linear regression. Denoting Y the output and X the centered and standardized inputs,
and considering a data set (yi, xi), i = 1, · · · , n, the elastic net regression approach
solves the following problem

minβ0,β

[
1

2N

n

∑
i=1

(yi − f (xi))
2 + λPα(β)

]
, (1)

where f (xi) = β0 − xT
i β (here T is used for transpose), and the elastic net penalty is

determined by the value of α:

Pα(β) = (1− α)
1
2
‖β‖2

l2 + α‖β‖l1 . (2)

This elastic-net penalty term is a compromise between the Ridge regression (α = 0)
and the Lasso penalty (α = 1): the constraint for minimization is that Pα(β) < t for
some t. Historically, this method has been developed when the number of variables p
is vast comparing to n, the sample size. The Ridge method is known to shrink the
correlated predictors’ coefficients towards each other, borrowing strength from each
other. Ridge regression typically fits a model that can predict the probability of a
binary response to one class or the other. Lasso is indifferent to correlated predictors.
Thus, the role of α is determinant: in presence of correlation, we expect α close to 1
(α = 1− ε, for small ε). It also exists some link between λ and α. Generally, a grid is
considered for λ as soon as α is fixed. A lq (1 < q < 2) penalty term could be also
considered for prediction. The regularization done with this penalty term permits to
avoid over-fitting.
The algorithm also proposes a way to update the computation, optimizing the number
of operations needed. It is possible to associate a weight βi, i = 1, . . . , n, to each
observation, which does not increase the computational cost of the algorithm as long
as the weights remain fixed. In the following, we use linear regression. Thus the
response belongs to R. The parameter of interest is α, other parameters to estimate
are λ, βi, i = 1, . . . , n. The existence of correlation must be taken into account to
verify whether the values used for those parameters are efficient. For estimation,
the parameter α has to be chosen first. Simple least-squares estimates are used for
linear regression, but a soft threshold is introduced to consider the penalty term
through the decrementation of the parameter λ using loops.
The Lasso representation is described in Tibshirani [71], and the elastic net approach
is developed in Zou and Hastie [72]. Other recent and interesting references are
Fan and Li [73], Zou [74], Zhao and Yu [75], Hastie et al. [76], Tibshirani [77] and
Epprecht et al. [78].

2. Artificial Neural Network (ANN). Inspired by the human brain, a neural network
consists of highly interconnected neurons that relate the inputs to the desired outputs.
The network is trained by iteratively modifying the connections’ strengths to map
the given inputs to the correct response. ANNs are best-used for modeling highly
nonlinear systems, when the data is available incrementally, and when there could
be expected changes in the input data. Supervised ANNs were essentially variants
of linear regression methods. A standard neural network consists of many simple,
connected processors called neurons, producing a sequence of real-valued activations.
Input neurons get activated through sensors perceiving the environment. Other
neurons get activated through weighted connections from previously active neurons.
An efficient gradient descent method for teacher-based supervised learning in discrete,
differentiable networks of arbitrary depth called back-propagation is used to attain
the algorithm’s convergence. This paper uses stochastic gradient descent, a stochastic
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approximation of the gradient descent optimization, and an iterative method for
minimizing the objective function f written as a sum of differentiable functions.
The classical neural network layer performs a convolution on a given sequence X,
outputting another sequence Y whose value at time t is:

Ŷ =
p

∑
j=1

f (β j, xj(t)) + ε(t), (3)

where β j are the parameters of the layer trained by back-propagation. The parameters
to choose are the number of layers and the stopping criteria for convergence purposes.
In this paper, we consider an Artificial Neural Network. The ANN is an algorithm
that allows for drawing more complex patterns and relationships. Training an ANN
to make predictions using back-propagation requires iterating over a two-step process
described as follows. (i) We computed the predictions using the previous weights,
also known as a forward process; for the first iteration, the weights are often initialized
randomly to prevent symmetry issues. (ii) We calculated the gradients to amend
the weights for the next iteration, using the same weights as in step one and the
freshly computed prediction. The stochastic gradient descent uses a penalty term
(for regularization) based on the derivatives making computational the method for
finding the approximate optimum and convergence slow. This process generally leads
to a local optimum (instead of a global optimum), which would minimize the mean
squared errors between the estimated and valid values only locally.
Thus, in more detail, an ANN is a structure of multiple layers, themselves composed
of several units, known as neurons of the form, at a step j figures:

Ŷ = f (β j +
n

∑
i=1

βijxi), (4)

where f (.) is a non-linear activation function, basically the sigmoid function. As-
suming the same function is used for the whole structure, it is then used recursively
throughout the neural network, inputting each previously computed function f (.)
into the next layer’s neurons. A description step by step yields clarity to this black-box
structure: (i) a first layer gathers the raw data, thus representing the model’s inputs
X = (x1, x2, . . . , xn). It is composed of as many neurons as there are samples, each
containing Xi = (xi1, xi2, . . . , xim)

T . These are forwarded to the next (hidden) layer’s
neurons via the synapses; (ii) a second layer follows, called the hidden layer (since
no true visibility is gained on the meaning of its calculations). Each of its neurons
computes a weighted average of all the previous layers’ output and incorporates it as
Xi in its activation function. Then, it, in turn, forwards the computed value to the next
layer; (iii) the last layer, called the output layer, finally computes a weighted average
of the hidden layer’s neurons outputs and produces a prediction Ŷ.
Details on neural networks can be found in Maclin et al. [79], Vapnik [80] and
Scholkopf [81]. Recent references are Windisch [82] and Hinton and Salakhutdi-
nov [83]. A review paper is the one by Schmidhuber [84]. Note that in the present
paper, we do not use deep learning modelings as soon as the set of data we consider
is not sufficiently large to justify the expectation of having good results with this
sophisticated method, which is appropriate for a huge amount of data and specific
data sets.
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3. Random forests. Random forest is an ensemble learning method used for classifi-
cation. Ho [85] first proposed it. Breiman [86] further developed it. Random forest
builds a set of decision trees. Each tree is developed from a bootstrap sample from
the training data. When developing individual trees, an arbitrary subset of attributes
is drawn (hence the term ‘random’), from which the best attribute for the split is
selected. The number of branches and the values of weights are determined in the
training process. The final model is based on the majority vote from individually
developed trees in the forest.
An additive tree model (ATM) is an ensemble of p decision trees. Let X be the vector
of individual features. Each decision tree outputs a real value. Let fp(x) be the
output from tree p. For both classification and regression purpose, the output f of the
additive tree model is a weighted sum of all the tree outputs as follows:

f (x) =
p

∑
j=1

ωj f j(x), (5)

where ωj ∈ R is the weight associated to tree j.
The previous formulation is very general and includes some popular models as
special cases, like random forests. This additive tree model is widely used in real-
world applications and appears to be the most popular and influential off-the-shelf
classifier. It can cope with regression and multi-class classification on both categorical
and numerical datasets with superior accuracy. In these ensemble methods, several
weaker decision trees are combined into a more robust ensemble. A bagged decision
tree consists of trees trained independently on data that is bootstrapped from the
input data. In essence, the random forest is a bagging model ([87]) of trees where
each tree is trained independently on a group of randomly sampled instances with
randomly selected features.
The random forest consists in combining the p regression-type predictors rj to build
another predictor

rω(x) =
p

∑
j=1

β jrj(x),

for every x ∈ X. The vector of weights β = (β1, . . . , βM) has to be chosen carefully.
Even if the weights could depend on x, we keep them constant for simplicity. In the
usual case, they are all equal to 1/p, even if some attempts have been made to add
another degree of flexibility with different weights.
If X have uniform distribution on [0, 1]d, then the response of the modeling is

Ŷ = ∑
j∈S

β jxj + ε, (6)

where S is a non-empty subset of d features. We chose the following parameters with
this modeling: the number of trees and the stopping criteria used to choose among
the most significant variables. Depending on the context and the selection procedure,
the informative probability pj ∈ (0, 1) may obey certain constraints positiveness and
∑j∈S pj = 1. It is well-known that for randomized methods, the behavior of prediction
error is a monotonically decreasing function of p, so in principle, the higher the value
of M, the better from the accuracy point of view.
Thus, the question is how to introduce flexibility in the regression functions used in
regression trees and their extension to random forests. One splits the sample into
sub-samples and estimates the regression function within the sub-samples simply
as the average outcome. The splits are sequential and based on a single co-variate
Xik, {i = 1, . . . , n}, {k = 1, . . . , p} at a time exceeding a threshold c. The outcomes
are provided minimizing the average squared error over all co-variates k and all
thresholds c, then repeating this over the sub-samples and leaves: At each split,
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the average squared error is further reduced (or stays the same). Therefore, we need
regularization to avoid the over-fitting that would result from splitting the sample too
often. One approach is to add a penalty term to the sum of squared residuals linear in
the number of sub-samples (the leaves). The coefficient on this penalty term is then
chosen through cross-validation.
Random forests has been proposed by Breiman [86] for building a predictor ensemble
with a set of decision trees that grow in randomly selected sub-spaces of data, see
also Geurts et al. [88] or Biau [89], and for a review, Genuer et al. [90]. The bagging
approach is due to Breiman [87]. The discussion on the choice of the weights was
done by Maudes et al. [91].

4. Support Vector Machines (SVM). SVM map inputs to higher-dimensional feature
spaces. It has been introduced within the context of statistical learning theory and
structural risk minimization. The SVM classifies data by finding the linear decision
boundary (e.g., hyperplane) that separates all data points of one class from those of
the other class. This machine-learning algorithm separates the attribute space with a
hyperplane, maximizing the margin between the instances of different classes or class
values. It can be used when the researcher needs a classifier that is simple, easy to
interpret, and accurate.
If we consider SVM from a regression approach, it performs linear regression in a
high-dimension feature using a ε- insensitive loss. Its estimation accuracy depends
on a suitable setting of the different parameters. The SVM map inputs X to higher-
dimensional feature spaces. The support vector machine accommodates nonlinear
class boundaries. It is intended for the binary classification setting in which there are
two classes. The basic idea is to divide a p-dimensional space (called hyperplane) into
two halves. In dimension two, a hyperplane is a line.
Considering a data set (yi, xi), i = 1, . . . , n, The linear support vector classifier can be
represented as

f (x) = β0 +
n

∑
i=1

βi

p

∑
j=1

xijyij. (7)

To estimate the parameters βi, all we need are the n(n−1)
2 products xiyi between all

pairs of training observations, where xi = ∑
p
j=1 xij and yi = ∑

p
j=1 yij. So, if S is the

collection of indices of these support points xi, yi, we can rewrite any solution function
of the previous form as

f (x) = β0 + ∑
i∈S

βixiyi. (8)

Note that a more general representation of the nonlinear function has the form

f (x) = β0 + ∑
i∈S

K(xi, yi), (9)

where K(., .) is some function that we will refer to as a kernel. A kernel is a function
that quantifies the similarity between two observations.
Some references for the details on support vector machines are Friedman et al. [92]
and James et al. [93].

5. k-Nearest-Neighbors (k-NN). k-NN categorizes objects based on the classes of their
nearest neighbors in the dataset. Distance metrics are used to find the nearest neighbor.
The k-NN algorithm searches for k closest training instances in the feature space and
uses their average prediction. k-NN predictions assume that objects near each other
are similar. When mobilizing k-NNs, memory usage and prediction speed of the
trained model are of lesser concern to the modeler.
The k-NN regression method is probably the simplest non-parametric method we can
propose. It works as follows: given a value for k and a prediction point of x0, k-NN
regression first identifies the k training observations closest to x0, represented by S0.
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Then it estimates f (x0) using the average of all the training responses in S0. In other
words, we get

f (x0) = ∑
xi∈S0

βixi. (10)

In general, the optimal value for k will depend on the bias–variance trade-off. A small
value for k provides the most flexible fit, which will have low bias but high variance
(because the prediction, in that case, can be entirely dependent on just one obser-
vation). In contrast, larger values of k provide a smoother and less variable fit; the
prediction in a region is an average of several points. Changing one observation has a
more negligible effect.
Using this method, we need to estimate the parameter k and decide the weights β
associated with each point. We often use uniform weight βk =

1
k : all points in each

neighborhood are weighted equally. It is also important to note that closer neighbors
of a query point have a more substantial influence than the neighbors further away.
Some references on nearest neighbors are Friedman et al. [94], Dasarathy and Belur [95],
and, more recently, Papadopoulos and Manolopoulos [96]. Carrying out of the method
can be found for instance in Sorjamaa et al. [97].

6. Ada-boosting. In these methods, several “weaker” decision trees are combined into a
“stronger” ensemble. Adaptive boosting is an approach to machine learning based
on creating a highly accurate prediction rule by combining many relatively weak
and inaccurate rules. Further on this, boosting involves creating a strong learner
by iteratively adding weak learners and adjusting each weak learner’s weight to
focus on misclassified examples. It adapts to the hardness of each training sample.
The AdaBoost algorithm of Schapire [98] was the first practical boosting algorithm and
remained one of the most widely used and studied applications in numerous fields.
Given a training set (yi, xi), i = 1, . . . , n, xi ∈ S and yi ∈ {−1, 1}, for each learning
round (t = 1, . . . , T) using m training examples, a distribution Di is computed (corre-
sponding to the P[Y|X]) and a learning algorithm is applied to find a target function
h : S → {−1, 1}, where the aim of the weak learner is to find h with low weighted
error εi relative to Di. The final result computes the sign of a weighted combination
of weak classifiers:

f (x) =
n

∑
t=1

βiht(xi). (11)

Adaboost can be used to perform classification or regression. It can be understood
as a procedure for greedily minimizing what has come to be called the exponential
loss, namely:

1
m

m

∑
i=1

exp(−yi f (xi)), (12)

with f introduced in the previous equation. In other words, it can be shown that the
choices of βi and hi on each training round appear to be chosen so as to cause the
most significant decrease in this loss.
In this paper, we use this approach to improve the classifier introduced in the random
forest approach. In that case, the boosting method improves the convergence of
the estimated regression function, using the new residuals of the proceeding leaf at
each step. This being done many times. This algorithm uses an iterative process of
convergence with residuals computed at each stage.
An introduction on this methodology is given by Ridgeway et al. [99]. Some recent
prospects are described by Busa-Fekete et al. [100] and Ying et al. [101].
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The AR(1) process is too simple for sophisticated data sets and cannot capture any
nonlinear feature. Ridge regression allows us to improve the choice of the variables due to
regularization. k-NN is interesting because its principle lies in using the variables whose
properties are closer to the objective to attain. The algorithm for classification, like the
random forest (can be used for discrete or continuous data) due to the splitting, permits
scarcity and avoids overfitting. The boosting algorithm is iterative: at each step, it compares
the re-estimation of the basic model with the previous error, and, if the base learner is easy
to apply, the convergence to the objective is fast.

4. Data

To attain our objective, we need to seek the price discovery of Bitcoin. In this paper, we
consider forecasts of both Bitcoin spot and futures systematically. Indeed, in a fundamental
contribution, Baur and Dimpfl [102] indicates that the Bitcoin price discovery is led by
the spot market and not by the futures markets, due to higher trading volume, 24/7
opening hours, and worldwide availability. Examining the interconnections between
Bitcoin exchanges, Ji et al. [103] document that Coinbase is a strong leader in the market
due to its popularity in the community, its US residence, and trading in US$. Our paper
would contribute to the use of the adequate Bitcoin underlying for traders.

The Coinbase Bitcoin (CBBTCUSD) spot price in U.S. Dollars, in daily frequency,
is pictured in Figure 2 from 13 January 2015 to 31 December 2020. The Bitcoin CME
Futures contract of maturity December 2020 (BTZ20) is displayed since its creation in
December 2017 on the Chicago Mercantile Exchange and the Chicago Board Options
Exchange. During this period, six cryptocurrencies are available that we use to predict
Bitcoin). We observe a specific economic cycle for Bitcoin: during the year 2018, we have a
positive trend, and since the peak on December 20, 2018, we observe a decreasing trend.
Thus, globally speaking this means that the Bitcoin prices evolve like a naive model such
that if Yt represents the price at time t, then Yt = mt + εt, with mt = at+ b and εt a sequence
of i.i.d. random variables. The trend characterized by the parameter a is positive during
2017 and negative during 2018. Then, a new economic cycle began in 2019, culminating in
new “all-time highs” for Bitcoin by year’s end of 2020. Notice, in this paper, we are not
interested in modeling a possible bubble in 2018. We only focus on evolving the prices
associated with an economic cycle (i.e., the classic phases of expansion, crisis, depression,
and recovery). This exercise provides us a way to verify the accuracy of the forecasts done
by different algorithms.
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Figure 2. Coinbase Bitcoin spot price (red) and CME Bitcoin futures of maturity, December 2020
(blue) in US Dollars.
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4.1. Dataset Quality: A ‘Financial Markets’ Approach

As opposed to a ‘Blockchain’ approach that would add, as an input to the machine
learning models, non-standard econometric variables (e.g., hash rates, mining difficulty,
block size, block version, number of transactions, the time between blocks, block size votes)
about which we have neither theoretical grounding nor economic meaning virtually, we
favor, in this paper, a ‘Financial Markets’ approach based on price relationships between
various asset classes (e.g., stocks, bonds, foreign exchange, commodities, as well as other
cryptocurrencies). Indeed, Koutmos [104] argues that Bitcoin prices, despite their seemingly
attractive independent behavior relative to economic variables, may still be exposed to
the same types of market risks which afflict the performance of conventional financial
assets. According to Goldman Sachs, Bitcoin’s 2021 returns even “destroy” everything on
Wall Street, leading over assets from stocks to bonds, oil, banks, gold, and tech stocks (see
Yahoo Finance (2021) at https://finance.yahoo.com/news/bitcoin-2021-returns-destroy-
everything-223544895.html, accessed on 8 March 2021).

Table 1 details the daily data sourced from Coinbase and Datastream from 13 January
2015, to 31 December 2020. The 57 series cover cryptocurrencies, and traditional asset
markets (stocks, bonds, foreign exchange), and commodities (e.g., energy, metals, grains,
softs, cattle). The number of daily observations in this period is equal to 2070. Timestamps
are converted to the European time zone to avoid look-ahead biases.

We also provide descriptive statistics for all the raw variables we consider in this
exercise. They are listed in Table 2. They provide us some information regarding volatility,
clustering, and extreme behavior. For instance, notice that the maximum Bitcoin spot price
recorded is equal to 29,026$ by the year-end of 2020.

We introduce a cluster analysis to find groupings between all these variables as a
classic unsupervised learning technique. In cluster analysis, data are partitioned into
groups based on some measure of similarities or shared characteristics. Clusters are formed
so that objects in the same cluster are very similar, and objects in different clusters are
very distinct.

Louvain clustering detects communities in a network of nearest neighbors. More
precisely, the Louvain clustering algorithm converts the dataset into a graph, where it finds
highly interconnected nodes (Blondel et al. [105], Lambiotte et al. [106]). When applied to
this dataset, this method confirms the existence of at least 11 different clusters.

The clustering of the dataset is represented graphically in Figure 3. This data projection
by color regions reveals that cryptocurrencies (highlighted in yellow) tend to share common
data attributes, especially Bitcoin with Monero, Tether, and Stellar. It also features several
relatively segmented financial securities: international stocks, bonds, exchange rates,
and commodities. This preliminary data analysis helps us detecting patterns depending on
the asset class under consideration (e.g., stocks, bonds, commodities, or cryptocurrencies)
that will be further assessed by the machine learning models.

https://finance.yahoo.com/news/bitcoin-2021-returns-destroy-everything-223544895.html
https://finance.yahoo.com/news/bitcoin-2021-returns-destroy-everything-223544895.html
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Table 1. Database of crypto-assets, stocks, bonds, fiat-currencies and commodities.

Asset Class Name Code

CRYPTO: 1. Bitcoin Spot CBBTCUSD
2. Bitcoin Futures XBTCME
3. Ethereum CBETHUSD
4. Ethereum Classic ETHCLASSIC
5. Litecoin CBLTCUSD
6. Bitcoin Cash CBBCHUSD
7. Ripple XRP
8. STELLAR STELLAR
9. TETHER TETHER
10. MONERO MONERO
11. DASH DASH
12. EOS EOS
13. ZCASH ZCASH
14. NEO NEO
15. NANO NANO
16. CARDANO CARDANO
17. IOTA IOTA

STOCKS: 18. SP500 STOCKSSP500
19. VIX VIXCLS
20. Dow Jones Industrial Average DJIA
21. NASDAQ NASDAQCOM
22. FTSE 100 FTSE100
23. Euro Stoxx 50 STOXX50E
24. NIKKEI225 NIKKEI225
25. Shanghai Composite SSEC
26. KOSPI KS11
27. Toronto Exchange TSX GSPTSE
28. Bovespa Brazil BVSP

BONDS: 29. BAA Corporate Bond Yield relative to 10-Year Treasury rate BONDSBAA10Y
30. 3-Month Treasury rate DGS3MO
31. EURO BUND Futures EUROBUND
32. 10-year Treasury Inflation-Indexed Security DFII10

FX: 33. Trade-Weighted US Dollar Index FXDTWEXM
34. US / Euro Foreign Exchange Rate DEXUSEU
35. US / UK Foreign Exchange Rate DEXUSUK
36. China / US Foreign Exchange Rate DEXCHUS

ENERGY: 37. Crude Oil WTI Futures ENERGYDCOILWTICO
38. Ethanol Futures ETHANOL
39. Gasoline Futures RBF9
40. Natural Gas Futures NGAS

METALS: 41. GOLD METALSGOLDAMGBD228NLBM
42. SILVER SILVER
43. ALUMINUM ALUMINUM
44. COPPER COPPER
45. LEAD LEAD
46. NICKEL NICKEL
47. ZINC ZINC

GRAINS: 48. US Corn Futures GRAINSZCH9
49. US Soybean Futures ZSF9
50. US Wheat Futures ZWH9

SOFTS: 51. Orange Juice Futures SOFTSOJF9
52. US Cocoa Futures CCH9
53. US Coffee C Futures KCH9
54. US Cotton \#2 Futures CTH9
55. US Sugar \#11 Futures SBH9

CATTLE: 56. Live Cattle Futures CATTLELEG9
57. Lean Hogs Futures HEG9
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Table 2. Descriptive statistics of the raw variables

Code Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis Observations

1 ALUMINUM 1821.02 1794.00 2539.50 175.25 200.24 0.04 5.00 1940
2 BONDS_BAA10Y 2.74 2.67 5.15 0.00 0.83 −0.52 4.26 1940
3 BVSP 73,588.92 68,253.30 125,076.60 37,497.48 22,374.22 0.36 1.76 1940
4 CARDANO 0.13 0.08 1.10 0.02 0.14 3.62 19.10 990
5 CATTLE_LEG9 488.12 295.11 3695.00 76.87 483.56 2.68 11.35 1115
6 CBBCHUSD 5240.90 5053.17 29,026.97 120.00 4949.29 0.94 4.06 2070
7 CBETHUSD 265.42 219.01 1386.02 0.00 235.91 1.43 5.48 1579
8 CBLTCUSD 65.14 52.26 359.40 0.00 55.18 1.81 7.42 1488
9 CCH9 2589.58 2534.50 3410.00 1780.00 403.87 0.03 1.90 1940
10 COPPER 2.74 2.72 3.63 1.94 0.35 −0.18 2.44 1940
11 CBBTCUSD 69.99 67.76 95.25 48.85 9.18 0.68 2.73 1940
12 CTH9 207.36 118.34 1432.50 36.02 214.77 2.51 9.83 1292
13 DASH 55.66 53.19 107.95 −36.98 20.17 0.43 4.52 1939
14 DEXCHUS 6.48 6.66 7.18 0.00 1.05 −5.45 33.94 1940
15 DEXUSEU 1.13 1.13 1.39 0.00 0.19 −4.52 27.88 1940
16 DEXUSUK 1.35 1.32 1.72 0.00 0.25 −3.33 19.71 1940
17 DFII10 0.55 0.45 2.82 −1.08 0.84 0.85 3.97 1940
18 DGS3MO 0.84 0.34 2.47 0.00 0.86 0.56 1.72 1940
19 DJIA 21,566.14 21,730.87 31,097.97 0.00 5469.05 −1.23 6.40 1940
20 ENERGY_DCOILWTICO 92.83 91.67 126.47 0.00 19.47 −2.38 13.67 1940
21 EOS 4.66 3.58 21.42 0.49 3.32 1.69 6.27 1172
22 ETHANOL 1.52 1.47 3.52 0.82 0.28 1.91 9.62 1940
23 ETHCLASSIC 9.45 6.57 43.23 0.74 7.80 1.48 5.22 1511
24 EUROBUND 162.57 162.72 179.44 138.96 9.44 −0.35 2.66 1940
25 FTSE100 6887.99 6914.96 7877.45 4993.90 540.51 −0.51 2.49 1940
26 FX_DTWEXM 1327.06 1289.38 2069.40 0.00 283.67 −1.47 11.61 1940
27 GRAINS_ZCH9 15,269.14 15,312.67 18,042.07 11,228.49 1189.11 −0.28 2.68 1940
28 GSPTSE 72.36 67.74 133.38 37.33 17.30 1.33 5.01 1940
29 HEG9 0.69 0.35 5.32 0.11 0.82 2.71 10.86 1190
30 IOTA 127.31 121.10 221.90 86.65 27.21 1.12 3.77 1940
31 KCH9 2126.93 2063.05 3152.18 1457.64 204.33 1.25 5.38 1940
32 KS11 2031.29 2030.88 2669.00 1563.50 234.66 0.36 2.57 1940
33 LEAD 123.56 119.71 171.00 83.83 18.65 0.63 2.59 1940
34 METALS_GOLDAMGBD228NLBM 67.14 49.60 475.00 0.10 78.35 1.84 6.94 2056
35 MONERO 2.35 1.10 20.46 0.35 3.23 3.04 12.63 963
36 NANO 6562.38 6365.63 13,201.98 0.00 2278.63 0.25 3.92 1940
37 NASDAQCOM 25.91 15.76 189.45 5.38 26.54 2.30 8.66 1104
38 NEO 2.85 2.76 6.15 1.48 0.74 1.03 4.27 1940
39 NGAS 13,039.22 12,930.00 21,174.00 7590.00 2774.20 0.31 2.46 1940
40 NICKEL 19,815.93 20,124.25 28,698.26 13,910.16 2929.49 −0.11 2.41 1940
41 NIKKEI225 135.73 136.00 232.85 91.25 27.22 0.61 3.29 1940
42 RBF9 1.61 1.61 2.78 0.41 0.36 0.11 3.85 1940
43 SBH9 14.32 13.73 23.81 9.21 2.79 0.96 3.53 1940
44 SILVER 17.16 16.66 29.26 11.81 2.64 2.14 8.14 1940
45 SOFTS_OJF9 2463.59 2463.02 3824.68 0.00 618.50 −1.13 6.92 1940
46 SSEC 2981.13 2999.48 5166.35 1991.25 506.87 0.45 4.99 1940
47 STELLAR 0.13 0.08 0.89 0.00 0.12 1.84 7.18 1302
48 STOCKS_SP500 3320.98 3333.71 3865.18 2385.82 247.03 −0.28 2.55 1940
49 STOXX50E 1.00 1.00 1.06 0.90 0.01 −2.54 20.59 1250
50 TETHER 16.59 14.47 82.69 0.00 7.96 2.69 16.77 1940
51 VIXCLS 8111.91 8100.00 29,385.00 888.00 4311.86 1.08 6.05 1143
52 XBTCME 0.24 0.20 2.78 0.00 0.31 3.17 19.44 2064
53 XRP 143.53 74.55 1900.00 24.56 146.46 3.66 30.31 1418
54 ZCASH 374.88 368.75 515.75 301.50 35.86 1.30 5.41 1940
55 ZINC 2383.54 2327.50 3579.50 1460.50 430.92 0.43 2.88 1940
56 ZSF9 942.31 920.62 1310.25 803.50 80.27 1.14 4.58 1580
57 ZWH9 505.81 504.44 738.88 384.12 63.07 0.74 3.82 1940

Source: Coinbase and Datastream.
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Figure 3. Louvain Clustering. Note: In Louvain clustering, principal components analysis processing is typically applied to
the original data to remove noise. Following modularity optimization, the detection algorithm then unfolds to retrieve
clusters and produce graphs of highly interconnected nodes. Modularity is a scale value between −1 and 1 that measures
the density of edges inside communities to edges outside communities. Optimizing this value theoretically results in the
best possible grouping of the nodes of a given network. However, going through all possible iterations of the nodes into
groups is impractical. Therefore, heuristic algorithms are used (see, e.g., Clauset et al. [107] for more details).

4.2. Sub-Samples Decomposition

We specify the different periods on which we analyze all the datasets.
• Different sets of data: To predict the Bitcoin price, described as a cryptocurrency

without clearly established fundamentals, we follow an approach based on financial
markets. That is to say, we include in the pool of predictors several underlying and
analyze their contribution in explaining Bitcoin. As shown in Table 1, we retain 56
variables (besides the Bitcoin price) that belong to the following categories: (i) cryp-
tocurrencies, (ii) stocks, (iii) bonds, (iv) foreign exchange rates, and (v) commodities.
To predict Bitcoin following the schemes proposed in Section 3, Ŷt = f (Xt), we pro-
ceed step-by-step for the choice of the variables using up to five different vectors
Xt: (1) Xt composed of sixteen cryptocurrencies, (2) Xt composed of eleven stocks,
(3) Xt composed of four bonds, (4) Xt composed of four foreign exchange rates, (5) Xt
composed of twenty-one commodities, and (6) Xt is composed of fifty-six variables.
For each step, we train and test the samples using seven modelings (one AR(1) and
six machine learning algorithms, see Section 5.1 for details). This approach permits us
to detect each subsample of variables Xt in the forecasts of Bitcoin.

• Training and testing set: for each period considered, we need to specify the length of
the training set (e.g., a known set of input data) and the testing set (e.g., new input
data) to test the models’ predictions.

• The choice of the period:
1. We consider the whole sample from 13 January 2015 to 31 December 2020. In this

sample, we use only six cryptocurrencies (Litecoin, Ethereum, Stellar, Ripple,
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Monero, Dash). We train the inputs Xt from 13 January 2015 to 31 December
2016 and then test our predictions from 1 January 2017 to 31 December 2020.

2. As robustness checks, we further assess the accuracy of our predictions on
four sub-samples.

(a) We favor the availability of cryptocurrency prices during 24 January
2018 to 31 December 2020 to include up to 17 (some newly created)
cryptocurrencies (Bitcoin Spot, Bitcoin Futures, Ethereum, Ethereum
Classic, Litecoin, Bitcoin Cash, Ripple, Stellar, Tether, Monero, Dash,
EOS, Zcash, Neo, NANO, Cardano, IOTA). Ttrain = 24 January 2018 to 31
December 2018. Ttest = 1 January 2019 to 31 December 2020.

(b) We introduce the stable coin (any crypto-currency pegged to either fiat
currency or government-backed security (like a bond) counts as a stable
coin. The idea is that this crypto-currency will be more stable or less
volatile. Asset-backed cryptocurrencies are not necessarily centralized
since there may be a decentralized vaults and commodity holders network
rather than a centralized controlling body. The advantages of asset-backed
cryptocurrencies are that coins are stabilized by assets that fluctuate
outside the cryptocurrency space reducing financial risk. The Tether
currency is backed by the dollar (1:1). For more details, we refer to
Abraham and Guegan [108]). Tether (rumored 1 US$ = 1 Tether) available
since 12 April 2017. Ttrain = 12 April 2017 to 30 November 2018. Ttest= 1
December 2018 to 31 December 2020.

(c) We consider a ‘classical economic cycle’ (e.g., expansion-crisis-depression-
recovery) for Bitcoin during the years 2016 to 2018. Ttrain = 01 January
2016 to 31 December 2016. Ttest= 01 January 2017 to 31 December 2018.

(d) Lastly, we use the last historical year of trading to make predictions.
Ttrain = 1 January 2019 to 30 June 2019. Ttest= 01 July 2019 to 31 Decem-
ber 2020.

4.3. Software

We detail the software used to perform this exercise. Pre-processing of the data and
ML algorithms are entirely conducted in Python 3.6 (or newer) with Anaconda Navigator,
relying on the following libraries:

• Timeseries.ARIMA (AR(1)),
• classification.neuralnetwork.MLPClassifierWCallback/NNClassificationLearner

(Artificial Neural Network with Multi-Layer Perceptron),
• sklearn.ensemble.forest.RandomForestClassifier/Learner (Random forest),
• sklearn.svm.classes.SVC (Support Vector Machines) based on libsvm,
• sklearn.neighbors.classification.KNeighborsClassifier/KNNLearner (K-Nearest

Neighbors),
• SAMME.R (AdaBoosting method),
• regression.linear.LinearRegressionLearner/ridgelambda with lambda the pa-

rameter controlling the regularization (Ridge regression).

Several other functions are used (such as functions.rmse(true,pred) (Root mean
squared error), functions.mape(true,pred) (Mean absolute percentage error)
functions.mae (true,pred) (Median absolute error)), but they are not displayed here for
space constraints.

5. Main Results

This section contains the Bitcoin price predictions (spot and futures) based on machine
learning techniques, i.e., the forecasts occurring during the testing period for each of the
seven algorithms. For each algorithm, we specify the parameters we used.
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5.1. Parameterization

Estimation accuracy depends on an appropriate set of parameters. When the choices
of parameters are not precisely documented, that is, precisely where the ‘risks’ of machine
learning arise according to Abadie and Kasy [11]. We predict the Bitcoin price (spot and
futures) based on seven competing algorithms for which we provide the parameterization
details thoroughly:

1. AR(1): the autoregressive regression of order one is estimated and tested to predict
the Bitcoin spot or futures price.

2. Artificial Neural Network: to predict Bitcoin, we choose the perceptron algorithm
with backpropagation. We compute 200 iterations with 10 neurons in the hidden layer.
The ReLu activation is used. The optimizer is the Adam solver, and the regularization
parameter is set to 0.0001.

3. Random Forest: we predict Bitcoin using an ensemble of 10 decision trees, with a
depth of 3 trees. The stopping parameter is 10−3.

4. SVM: the support vector machine inputs to higher-dimensional feature spaces. To pre-
dict Bitcoin, we resort to the RBF kernel, with 100 iterations, the cost set to c = 1,
and the parameter ε set to 0.1. The cost is a penalty term for loss and applies to classi-
fication and regression tasks. In SVM, ε applies to the regression tasks. It defines the
distance from true values within which no penalty is associated with predicted values.

5. kNN: we predict Bitcoin according to the nearest training distances using three
neighbors with uniform weight, as measured by the Euclidean metric. Figure 4
contains the Density-based spatial clustering from which the number of neighbors
has been detected.

6. AdaBoost: this ensemble meta-algorithm combines weak learners and adapts to the
‘hardness’ of each training sample. The boosting is performed thanks to the SAMME.R
classification algorithm, which exhibits a linear regression loss function.

7. Ridge regression: this latter method minimizes an objective function using a stochas-
tic approximation of gradient descent. In the classification (Hinge) and regression
(Squared) loss functions, ε is set to 0.10. The Ridge L2 regularization is used (Lasso
and elastic net) with strength 0.00001, mixing 0.15, constant learning rate, 0.01 initial
learning rate, 1000 iterations, and a stopping criterion set at 0.001. To predict Bitcoin,
we shuffle data after each iteration.

Forecasting is based on 10-fold stratified cross-validation, with the training set size is
set at 66%, and the repeated sequence between training and test samples is set at 10.

Forecast Statistics

To discriminate between competing forecasts, we compare the accuracy of the pre-
dictions using the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE),
and the Mean Absolute Percent Error (MAPE). Suppose the forecast sample is j = T +
1, T + 2, . . . , T + h, h ∈ N, and denote the actual and forecast value in period t as Yt and
Ŷt, respectively:

RMSE =

√√√√√√
T+h

∑
t=T+1

(Ŷt −Yt)
2

h
(13)

MAE =
T+h

∑
t=T+1

|Ŷt −Yt|
h

(14)

MAPE = 100×
T+h

∑
t=T+1

∣∣∣∣∣ Ŷt −Yt

yt

∣∣∣∣∣
h

. (15)

The best forecasts are obtained by minimizing these forecast evaluation statistics.
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Figure 4. DBSCAN clustering algorithm for Bitcoin k-NN distance setting. Note: The density-based spatial clustering
algorithm gives the idea of an ideal selection for the neighborhood distance setting. Here, 2.876 has been rounded up to 3 in
the empirical application.

5.2. Forecasting Results for the Coinbase Bitcoin Spot Price

To discriminate between the variables which increase the accuracy of the predictions
and those which pollute them, we consider the different sets of forecasting results provided
in Table 3. (1) In column AR(1), we provide the predictions obtained using only the past of
Bitcoin. (2) The first row, ‘crypto’, provides the results using six cryptocurrencies (Litecoin,
Ethereum, Stellar, Ripple, Monero, Dash). (3) The second row, ‘stocks’, provides the results
using the traditional financial assets. (4) The third row, ‘commo’, provides the results
obtained with the commodities. (5) The fourth row, ‘all’, provides the results using the
whole data set. We always give the results for the three previous criteria.

Main Results

In Table 3, we provide in each column the errors computed by Equations (13)–(15).
The smallest result of these three criteria provides the best forecast for different approaches
and a given set of variables. The best spot price predictions are achieved, respectively,
by the algorithms Adaboost, Random forest, and kNN. The MAPE is inferior both to
RMSE and MAE. Apart from this group, SVM and ANN provide worse forecasting results.
The AR(1) suggests that only considering the past of Bitcoin historical prices is not relevant.

If we compare the forecasts across categories, we conclude that using the information
embedded in cryptocurrencies is enough to predict Bitcoin. Indeed, adding other financial
securities does not improve the forecasting error. For instance, the MAPE for cryptocurren-
cies is equal to 0.15, which is inferior to that of Stocks (0.36) and Commodities (0.39).
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Table 3. Full sample forecasting results for the Coinbase Bitcoin spot price.

CRYPTO→ SPOT BTC AR(1) ann random svm knn boost ridge
RMSE 1207.51 1607.31 137.65 1043.32 395.29 23.42 304.77
MAE 990.45 1185.68 88.54 772.18 280.84 9.94 238.1

MAPE 14.29 19.97 1.22 12.96 3.45 0.15 3.54

STOCKS-BONDS-FX AR(1) ann random svm knn boost ridge
RMSE 1207.51 1652.17 221.95 1065.93 589.97 46.21 915.98
MAE 990.45 1215.37 139.48 829.05 399.96 21.39 751.81

MAPE 14.29 19.52 1.93 12.59 6.082 0.36 10.58

COMMO AR(1) ann random svm knn boost ridge
RMSE 1207.51 1112.14 207.4 848.86 532.17 54.86 793.8
MAE 990.45 817.07 141.96 684.43 352.37 24.94 639.16

MAPE 14.29 12.95 1.96 10.36 4.61 0.39 8.86

ALL AR(1) ann random svm knn boost ridge
RMSE 1207.51 1484.09 131.27 938.52 463.32 19.18 230.12
MAE 990.45 1117.8 85.32 704.11 285.23 7.23 180.67

MAPE 14.29 18.84 1.13 11.65 4.08 0.11 2.6
Note: AR(1) stands for the autoregressive model of order one; ann for the Artificial Neural Network model;
random for the Random forest model; svm for the Support Vector Machine model; knn for the k-Nearest neighbor
model; boost for the Adaboost model; and ridge for the Ridge regression. In terms of forecast statistics, we
resort to the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), and the Mean Absolute Percent
Error (MAPE).

From this first round of results dedicated to Bitcoin spot prices, we obtain a similar
conclusion as Klein et al. [109]: “Bitcoin as an asset does not resemble any other conventional asset
from an econometric perspective.” Thanks to this result, we begin to specify the characteristics
of this asset.

Next, if we use the whole database of 56 series, we acknowledge that the smallest
forecast errors are reached in this setting: MAPE all = 0.11 < MAPE cryptocurrencies = 0.15;
RMSE all = 19.18 < RMSE cryptocurrencies = 23.42. Thus, we note that over this period,
using an extensive set of information improves the forecast of the Bitcoin, with the Adaboost
algorithm, in the sense of the forecast error. The regression with a Ridge regularization
giving a very indirect result.

When identifying the relevant variables behind the Bitcoin spot price variations, it
appears that the MAPE of cryptocurrencies only is, therefore, very satisfactory (0.15).
Adding many of the 50 other financial series improves the forecast error marginally (e.g.,
MAPE = 0.11).

5.3. Forecasting Results for the CME Bitcoin Futures Price

Next, we investigate the forecasts of the Bitcoin futures contract of maturity December
2019 in Table 4. The results are close to spot forecasting since the algorithm providing the
smallest prediction errors is still Adaboost, then Random forest. In that run, the AR(1)
ends in third position (surprisingly for predicting the future) when inspecting, for instance,
the MAPE. Nevertheless, when comparing Tables 3 and 4, we observe that the forecasting
errors are much larger for futures using all algorithms (except AR(1)).

Looking at the two Tables 3 and 4, we observe that: (i) It seems to exist a clear seg-
mentation between Cryptocurrencies, Financial and Alternative assets. Forecasting is only
slightly improved by adding step-by-step further variables. (ii) Contrary to literature
(Kapar and Olmo [110], Entrop et al. [111]), we do not identify clear price fundamentals for
Bitcoin. (iii) Bitcoin does not seem to be integrated into commodities. (iv) Bitcoin does not
seem integrated into financial asset markets. (v) Our paper underlines the need for the re-
searcher to implement sparse models and not falling into the trap of overfitting (Athey and
Imbens [12] already discuss the sparsity in machine learning versus econometric models).
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Table 4. Full sample forecasting results for the CME Bitcoin December 2019 Futures price.

CRYPTO→ FUT BTC AR(1) ann random svm knn boost ridge
RMSE 1050.27 3186.26 546.17 2943.21 1616.74 122.45 1568.51
MAE 402.17 2300.306 272.66 2093.4 771.56 64.88 1147.17

MAPE 5.72 35.98 4.15 35.23 12.53 0.99 17.54

STOCKS-BONDS-FX AR(1) ann random svm knn boost ridge
RMSE 1050.27 2742.52 558.81 2619.05 1102.24 88.31 2228.131
MAE 402.17 1921.73 304.33 1807.49 566.96 37.41 1576.706

MAPE 5.72 28.1 4.7 26.94 8.36 0.61 25.59

COMMO AR(1) ann random svm knn boost ridge
RMSE 1050.27 2598.26 590.71 2693.82 1403.53 79.09 2341.55
MAE 402.17 1784.42 301.08 1877.07 722.64 40.45 1660.21

MAPE 5.72 29.61 4.26 32.11 11.79 0.7 28.33

ALL AR(1) ann random svm knn boost ridge
RMSE 1050.27 2795.35 369.63 2625.96 938.52 86.15 1317.23
MAE 402.17 1984.95 187.86 1850.06 426.76 44.53 915.82

MAPE 5.72 34.6 2.62 32.62 6.075 0.73 15.56

Note: AR(1) stands for the autoregressive model of order one; ann for the Artificial Neural Network model;
random for the Random forest model; svm for the Support Vector Machine model; knn for the k-Nearest neighbor
model; boost for the Adaboost model; and ridge for the Ridge regression. In terms of forecast statistics, we
resort to the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), and the Mean Absolute Percent
Error (MAPE).

5.4. Visualization

In this section, we resort to unsupervised learning to find hidden patterns in the input
data. As advocated by Zhao and Hastie [8], visualization allows us to check whether there
are differences in interpretation between several kinds of data inspection tools and the
actual results from the machine learning models.

We confirm these results by inspecting Sieve diagrams (Riedwyl and Schüpbach [112])—
which allow visualizing the observed and expected frequencies between pairs—in Figure 5.
Bitcoin and Litecoin (which are based on the same protocol) display similar characteristics
(highlighted in dark blue and red colors), whereas Bitcoin is found merely different from
other assets (say S&P 500, US 10-Year rate, US Dollar or Oil price) as judged by the light
(blue and red) colors.

Figure 6 displays a self-organizing map (Kohonen [113]), i.e., a neural-network-based
clustering that transforms a dataset into a topology-preserving two-dimensional map. We
use a neighborhood function to preserve the topological properties of the input space.
When applied to the Bitcoin spot, it confirms its shared characteristics with most of the
other cryptocurrencies (in dark yellow, arranged at the beginning of the database, according
to Table 1). On the contrary, virtually no connection is visible with traditional asset markets
(in grey at the database center). The map picks up some interest between Bitcoin and
commodities at the end of the database (in light yellow color).
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(a) Bitcoin and Litecoin (b) Bitcoin and S&P 500

(c) Bitcoin and US 10-year Rate (d) Bitcoin and US Dollar Index

(e) Bitcoin and Oil

Figure 5. Sieve diagrams between Bitcoin spot and other assets. Note: In Sieve or ‘parquet’ diagrams, the area of each
rectangle is proportional to the expected frequency, while the observed frequency is shown by the number of squares in
each rectangle. The difference between observed and expected frequency (proportional to the standard Pearson residual)
appears as the density of shading, using color to indicate whether the deviation from independence is positive (blue) or
negative (red).
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Figure 6. Self-organizing Map of Bitcoin spot with the rest of the database. Note: A self-organizing
map is an unsupervised learning algorithm that infers low, typically a two-dimensional discretized
representation of the input space called a map. The map preserves the topological properties of the
input space. The data are ranked according to Table 1. In yellow color, the variables share similar
characteristics with the Bitcoin spot (mostly cryptos). In grey color, the variables appear to share
lower characteristics with Bitcoin. Against the white background, the variables appear to exhibit no
relationship with Bitcoin.

The same information is mainly conveyed by the Multi-Dimensional Scaling map
(Wickelmaier [114]) pictured in Figure 7, where each series’ position at each time interval
corresponds to the sum of forces acting on it (pushing the series apart or together concerning
Bitcoin). The center of the map captures strong interrelations between cryptocurrencies (in
yellow). The edges of the map (in blue) delimit other areas of strong interrelations between
traditional assets (crossed dots on the left-hand side) and commodities (blue stars on the
right-hand side). Notice that commodities are somewhat located closer to Bitcoin than
traditional assets in that latter example.

As robustness check, a t-distributed Stochastic Neighbor Embedding (Maaten and
Hinton [115], Van Der Maaten [116]) map reveals the same kind of information in Figure 8:
cryptocurrencies (in yellow) are represented in the center of the map with respect to the
high interconnection level with Bitcoin, whereas other assets (financial and commodities)
form two other distinct regions (in blue) on the edges.

Taken together, these various visualization plots have reinforced the impression of
segmentation of Bitcoin and cryptocurrencies altogether versus traditional financial assets
and commodities.
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Figure 7. Multi-Dimensional Scaling map concerning Bitcoin spot. Note: multi-dimensional scaling is a technique that finds a low-dimensional (e.g., two-) projection of points, where it
tries to fit distances between points as well as possible. The algorithm iteratively moves the points around in a kind of a simulation of a physical model. If two points are too close to each
other (or too far away), there is a force pushing them apart (or together). The change of the point’s position at each time interval corresponds to the sum of forces acting on it.
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Figure 8. t-distributed stochastic neighbor-embedding projection with respect to the Bitcoin spot price. Note: t-distributed stochastic neighbor embedding is a dimensionality reduction
technique, similar to multi-dimensional scaling, where points are mapped to 2D space by their probability distribution.
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6. Robustness Checks

Full sample results convey the idea that using cryptocurrencies only is enough to
predict Bitcoin. Adding other variables from the financial markets deteriorates the forecast-
ing accuracy.

In Section 5, we have established that the Bitcoin spot’s predictive strategies and
futures are not the same. On the one hand, for the Bitcoin spot during the whole sample (13
January 2015 to 31 December 2020), we have identified that cryptocurrencies are segmented
from traditional financial and commodity markets. On the other hand, from the creation of
Bitcoin futures in December 2017 until the end of our database in December 2020, it appears
that CME’s Bitcoin derivatives instrument is better explained by stocks and commodities.
Maybe because the CME also heavily trades futures for stocks and commodities (see the
discussion on the birth of the Bitcoin futures market in Baur and Dimpfl [102]).

In what follows, we introduce several subsample forecasts for sensitivity purposes
of our main previous results. In Section 6.1, we forecast Bitcoin spot and futures by using
only cryptocurrencies (newest to date) starting on 24 January 2018. In Section 6.2, we
study the influence of Tether on the market as a means to print US$ and convert them
to cryptocurrencies. Section 6.3 follows a classic business cycle (expansion/contraction)
in the Bitcoin price in the year 2016–2018. In Sections 6.4 and 6.5, we harness our results
against the last two years of historical prices available for trading. Section 6.6 develops
trading strategies.

6.1. ‘Crypto Select’

Since the overarching result of our paper is that the price of Bitcoin appears somewhat
disconnected from commodities and traditional asset markets (in terms of additional fore-
casting power), we resort to subsample estimates across the maximum of data available for
other cryptocurrencies. The retained sample is 24 January 2018 to 11 December 2019 to in-
clude the six newest cryptocurrencies (effectively collecting the seventeen cryptocurrencies
listed in Table 1 for this sensitivity analysis).

Regarding Table 5, we confirm the excellent performance of AdaBoost in terms of
most minor errors, followed closely by Random forest and K-nearest neighbors, even if we
change the underlying set of cryptocurrencies. Concerning the futures contract, the forecast
errors are negligible when we use seventeen cryptocurrencies instead of six (0.51 < 0.99).
The forecast errors for the Bitcoin spot are smaller when we use only six cryptocurrencies
rather than seventeen (0.24 > 0.15). However, these spreads are not large, and they are
inferior for a spot than for futures (which have been created recently and for which we
have fewer information). From a trading perspective, it seems that it could be interesting
to use the maximum of variables (to have various pairs of cryptocurrencies to trade).

Table 5. Bitcoin Coinbase Spot and CME Futures Forecasts based on the most recent 17 cryptocurren-
cies only from 24 January, 2018, to 11 December, 2019.

CRYPTO→ SPOT BTC AR(1) ann random svm knn boost ridge
RMSE 2099.45 1882.68 215.45 1909.24 364.80 39.24 1249.79
MAE 1714.52 1399.44 131.41 1548.98 231.11 16.04 955.87

MAPE 26.61 21.34 1.64 22.34 2.86 0.24 13.20

CRYPTO→ FUT BTC AR(1) ann random svm knn boost ridge
RMSE 2880.50 2759.37 417.65 2685.02 825.13 76.98 1835.26
MAE 2146.53 2065.76 239.82 2002.00 415.26 32.37 1389.52

MAPE 32.29 33.84 3.25 32.88 6.65 0.51 20.02
Note: AR(1) stands for the autoregressive model of order one; ann for the Artificial Neural Network model;
random for the Random forest model; svm for the Support Vector Machine model; knn for the k-Nearest neighbor
model; boost for the Adaboost model; and ridge for the Ridge regression. In terms of forecast statistics, we
resort to the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), and the Mean Absolute Percent
Error (MAPE).
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6.2. 2017 Tether’s Introduction

We now consider a smaller period of training to predict the Bitcoin prices to introduce
inside the set of variables the stable coin Tether (1 USDT = 1 US$). Indeed, this cryptocur-
rency is valuable on derivatives exchanges such as Bitrex and Bitfinex, when the investors
exchange their cryptocurrency into fiat currency.

In a seminal paper on BitMEX bitcoin derivatives (off-shore, unregulated) exchanges,
Alexander et al. [117] recalls the speculative role played by Tether in the trading community
as a means of exchanging 1 US$ against 1 USD Tether (USDT, supposedly backed one-to-one
in BitMEX). Chief concerns among market players is the possibility of “front-running” by
printing large amounts of USD into Bitcoin to provoke a price jump, and then once the mar-
ket is shocked, revert back the transaction from Bitcoin to USD to effectively cash in your
benefit. This illegal procedure through Tether is documented by Griffin and Shams [118].
Besides, Tether is supposed to maintain a 1-to-1 ratio to be pegged against the USD. Bitfinex
is accused of unlawfully covering up the true levels of its currency reserves. The exchange,
owner of Tether, was prosecuted in the USA. On 23 February 2021, the New York attorney
general’s office settled a nearly two-year investigation into the finances and corporate prac-
tices of the companies that operate the Bitfinex cryptocurrency exchange and the stablecoin
Tether The Hong Kong-based iFinex Inc., which operates the Bitfinex exchange, and Tether
Ltd. agreed to pay $18.5 million to the attorney general’s office. See the Wall Street Journal
(2021) at https://www.wsj.com/articles/cryptocurrency-firms-bitfinex-tether-settle-new-
york-attorney-generals-probe-11614093709, accessed on 23 February 2021).

Tether has begun to be exchanged on 12 April 2017. Thus, we constitute a subsample
from 12 April 2017 to 31 December 2020. Compared to full-sample results, this subperiod
allows us to increase the set of cryptocurrencies, introducing the cryptocurrencies Dash
and Stellar. Then, we perform the same analysis as in Section 5 using the machine learning
models on 12 April 2017–30 November 2018 as a training period and until the end of
December 2020 to test the models’ accuracy. As before, we introduce the input variables
step by step : (1) the Bitcoin (spot and futures), (2) nine available cryptocurrencies (i.e.,
Litecoin, Ethereum, Ethereum Classic, Ripple, Stellar, Tether, Monero, Dash, Zcash), (3) all
the traditional financial assets, (4) all the commodities, (5) all the sets.

Sub-Sample Results

Looking at Tables 6 and 7, we find that the best machine learning forecasting model is
AdaBoost, followed by Random Forest, and K-nearest neighbors. The value of the errors
looking at these three machine algorithms is very far from the errors we obtain with the
other modelings. Looking at the errors when we compare the results using cryptocurrencies
on the one hand, or adding stocks or commodities on the other side, for spot, we have
a slight enhancement of the errors (when we add stocks or commodities). Looking at
the MAPE statistic, Bitcoin is better explained by ‘all’ (0.31), followed by stocks (0.46),
commodities (0.48), and finally cryptocurrencies (0.53).

Nevertheless, when we look at the futures price, the errors are higher for stocks
and lower when adding commodities. The set of results is slightly different for futures:
commodities return the lowest MAPE (0.34), followed by ‘all’ (0.41), cryptocurrencies
(0.53), and finally stocks. The analysis shows a limited interest in adding commodities and
financial assets to improve Bitcoin’s forecasting power beyond that already captured by
other cryptocurrencies.

If we compare with the results obtained in Table 3, for instance, MAPE = 0.11 to
MAPE = 0.31 (Table 7), Tether does not improve the forecasting accuracy of the Bitcoin
spot price. For the futures, we compare MAPE = 0.41 (Table 8) with 0.73 (Table 4): in that
case, the conclusion is reverse. The question remains open whether this specific set of
results is an artifact attributable to the stable coin Tether. Although Tether has a stable coin
status, it is owned by the opaque (primarily unregulated) marketplace by BitMEX. It is
not easy to assess the impact of that cryptocurrency on others. As Alexander et al. [117]

https://www.wsj.com/articles/cryptocurrency-firms-bitfinex-tether-settle-new-york-attorney-generals-probe-11614093709
https://www.wsj.com/articles/cryptocurrency-firms-bitfinex-tether-settle-new-york-attorney-generals-probe-11614093709
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put it, regulators (need to) prioritize the investigation of the legitimacy of BitMEX and its
contracts based on concerns of lack of transparency and potential market manipulation.

Table 6. Sub-sample with the Introduction of Tether (USDT): forecasting of the Coinbase Bitcoin Spot
Price from 12 April, 2017, to 31 December, 2020.

CRYPTO→ SPOT BTC AR(1) ann random svm knn boost ridge
RMSE 3358.14 2582.10 296.02 2655.41 451.34 45.54 1529.02
MAE 2536.31 2025.75 157.97 2103.93 261.27 21.22 1130.54

MAPE 50.10 47.97 2.26 45.31 3.60 0.53 19.38

STOCKS / BONDS / FX AR(1) ann random svm knn boost ridge
RMSE 3358.14 2867.13 319.45 2225.41 774.69 49.49 1801.17
MAE 2536.31 2035.10 192.76 1633.83 481.59 20.01 1286.77

MAPE 50.10 42.21 2.91 26.09 6.99 0.48 21.47

COMMO AR(1) ann random svm knn boost ridge
RMSE 3358.14 2745.22 262.66 1734.43 1002.35 50.90 1339.07
MAE 2536.31 1928.04 148.56 1240.58 540.81 19.64 1011.37

MAPE 50.10 36.58 2.22 21.29 8.13 0.46 18.56

ALL AR(1) ann random svm knn boost ridge
RMSE 3358.14 1776.32 228.64 1674.18 641.75 31.83 770.54
MAE 2536.31 1284.93 132.58 1297.20 367.47 12.04 617.04

MAPE 50.10 23.04 1.85 24.04 5.41 0.31 12.36

Note: AR(1) stands for the autoregressive model of order one; ann for the Artificial Neural Network model;
random for the Random forest model; svm for the Support Vector Machine model; knn for the k-Nearest neighbor
model; boost for the Adaboost model; and ridge for the Ridge regression. In terms of forecast statistics, we
resort to the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), and the Mean Absolute Percent
Error (MAPE).

Table 7. Sub-sample with the Introduction of Tether (USDT): Forecasting of the CME Bitcoin Fu-
tures price.

CRYPTO→ FUT BTC AR(1) ann random svm knn boost ridge
RMSE 3512.26 3008.13 472.54 3330.54 830.46 57.91 2022.13
MAE 2787.25 2533.75 207.79 2772.72 314.74 23.50 1567.53

MAPE 86.68 78.49 3.79 93.93 5.71 0.53 36.73

STOCKS / BONDS / FX AR(1) ann random svm knn boost ridge
RMSE 3512.26 3235.90 439.44 2959.64 976.71 59.26 2295.76
MAE 2787.25 2466.18 217.48 2041.73 527.01 26.70 1586.74

MAPE 86.68 74.46 4.79 55.09 10.32 0.70 34.53

COMMO AR(1) ann random svm knn boost ridge
RMSE 3512.26 2922.43 354.82 3121.00 1239.65 46.20 1613.32
MAE 2787.25 2018.50 169.06 2299.30 556.34 16.29 1140.27

MAPE 86.68 71.33 3.43 89.71 14.79 0.34 26.40

ALL AR(1) ann random svm knn boost ridge
RMSE 3512.26 2495.86 424.99 2382.42 762.66 54.96 1440.18
MAE 2787.25 1984.92 182.68 1785.06 349.76 21.40 960.85

MAPE 86.68 55.38 5.36 55.33 6.35 0.41 22.73
Note: AR(1) stands for the autoregressive model of order one; ann for the Artificial Neural Network model;
random for the Random forest model; svm for the Support Vector Machine model; knn for the k-Nearest neighbor
model; boost for the Adaboost model; and ridge for the Ridge regression. In terms of forecast statistics, we
resort to the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), and the Mean Absolute Percent
Error (MAPE).

6.3. 2016–18 Bitcoin’s Economic Cycle

The Bitcoin spot price was equal to 367 US$ in January 2016, skyrocketing to 19,891$
in December 2017, crashing to 3763$ in December 2018, for finally maintaining an apparent
trend around 8000$ since 2019. This canonical decomposition into an economic cycle’s
phases of expansion and recession leads us to gauge the sensitivity of our results during
the subperiod 1 January 2016–31 December 2018.
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Regarding the Tables 8 and 9, results are similar—from the algorithm’s race—to the
full-sample predictions done previously, as AdaBoost is still the winner of horse race
among competing machine learning models in all cases (followed by Random forest and
kNN algorithms). Using only the information from other cryptocurrencies returns, we
obtain the lowest forecast errors, both for spot (MAPE = 0.82) and futures (MAPE = 0.98)
Bitcoin. By looking at the Adaboost spot results, for instance, we cannot assimilate Bitcoin
to either financial securities (MAPE = 1.42 > 0.82) or commodities (MAPE = 1.07 > 0.82)
because forecast errors are increasing. We notice that the errors are nearly the same when
we look at the results for the futures. In conclusion, forecast errors are higher than during
the whole sample. It can be linked to the explosiveness behavior of the Bitcoin price in
December 2017.

Table 8. Sub-sample forecasting results of Coinbase Bitcoin Spot price during the 2016–18 eco-
nomic cycle.

CRYPTO→ SPOT BTC AR(1) ann random svm knn boost ridge
RMSE 3347.17 2247.75 198.81 2182.41 331.18 22.50 701.02
MAE 2525.98 1888.10 79.46 1586.54 136.24 9.38 474.80

MAPE 165.32 141.22 2.32 85.90 3.31 0.82 29.41

STOCKS / BONDS / FX AR(1) ann random svm knn boost ridge
RMSE 3347.17 2331.98 226.00 2161.75 556.07 31.85 1544.24
MAE 2525.98 1474.18 103.14 1515.32 252.90 14.69 1108.46

MAPE 165.32 79.01 3.53 107.53 5.83 1.42 75.59

COMMO AR(1) ann random svm knn boost ridge
RMSE 3347.17 2456.96 239.60 1996.15 744.25 29.21 1350.50
MAE 2525.98 1391.29 101.55 1417.36 304.57 12.55 1000.99

MAPE 165.32 77.35 3.47 122.91 8.60 1.07 77.55

ALL AR(1) ann random svm knn boost ridge
RMSE 3347.17 1592.95 185.40 2086.46 472.07 17.61 524.18
MAE 2525.98 1016.83 69.02 1567.12 207.21 7.78 360.27

MAPE 165.32 57.03 1.90 137.19 5.02 0.89 21.66
Note: AR(1) stands for the autoregressive model of order one; ann for the Artificial Neural Network model;
random for the Random forest model; svm for the Support Vector Machine model; knn for the k-Nearest neighbor
model; boost for the Adaboost model; and ridge for the Ridge regression. In terms of forecast statistics, we
resort to the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), and the Mean Absolute Percent
Error (MAPE).

Table 9. Sub-sample forecasting results of CME Bitcoin Futures price during the 2016–18 economic cycle.

CRYPTO→ FUT BTC AR(1) ann random svm knn boost ridge
RMSE 4363.09 3614.50 631.89 3802.03 1255.64 116.83 2006.04
MAE 3239.82 2960.70 298.57 3329.58 528.87 52.08 1408.66

MAPE 121.15 101.87 8.03 121.45 12.20 0.98 39.79

STOCKS / BONDS / FX AR(1) ann random svm knn boost ridge
RMSE 4363.09 3900.97 711.14 3518.95 1208.71 98.46 3284.64
MAE 3239.82 2781.09 319.38 2384.01 550.15 45.42 2252.96

MAPE 121.15 81.72 6.93 53.42 10.85 1.05 49.91

COMMO AR(1) ann random svm knn boost ridge
RMSE 4363.09 3749.76 650.19 3523.16 1763.10 89.78 2379.86
MAE 3239.82 2713.36 294.69 2806.55 855.68 38.94 1577.59

MAPE 121.15 72.63 6.43 106.25 21.38 0.98 43.29

ALL AR(1) ann random svm knn boost ridge
RMSE 4363.09 2864.04 564.27 2954.87 1027.13 96.35 1612.76
MAE 3239.82 1911.06 188.29 2309.58 439.60 44.54 1123.03

MAPE 121.15 46.05 3.30 77.10 8.25 1.02 31.65
Note: AR(1) stands for the autoregressive model of order one; ann for the Artificial Neural Network model;
random for the Random forest model; svm for the Support Vector Machine model; knn for the k-Nearest neighbor
model; boost for the Adaboost model; and ridge for the Ridge regression. In terms of forecast statistics, we
resort to the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), and the Mean Absolute Percent
Error (MAPE).
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6.4. Year 2019

We narrow down our analysis to the latest trading year in our dataset, a.k.a the year
2019, which did not bring bulls run or rallies in the price path of Bitcoin, which stayed at
around 8000$. It is also far away from the next halving period, which should occur in May
2020 at current hash rates. The mining premium is halved for every 210,000 transaction
blocks. About 50 bitcoins were generated every 10 min or so during the first four years,
this value increased to 25 Bitcoin on 28 November 2012, and to 12.5 Bitcoin on 9 July 2016.

Sub-Sample Results

According to Tables 10 and 11, the prediction of Bitcoin is best based on Adaboost and
Random Forest. SVM performs poorly. Robustness checks validate the main forecasting
results and the hypothesis of Bitcoin segmentation within cryptocurrencies. The lowest
MAPE for spot forecasts is achieved for all series (=0.18). The lowest MAPE for futures
forecasts is achieved for commodities (=0.18). The results are globally similar to the full-
period results (2015–2020). Thus, it appears some stability during 2019 for forecasting the
Bitcoin spot price, whose errors are close to the errors obtained during the whole period
(2015–2020).

For the futures price, it is worth noting that the evolution of the futures market during
2019 yields increased maturity and liquidity compared to the year 2018 (which can be seen
as a trial period). During the 2019 subsample, we have a better view of the futures trading
activity, given its overall stability and being free of the explosiveness behavior compared to
the full period estimates. During the initial 2018 year, shocks revealed the Bitcoin futures
market’s youth market in search of price support trends.

Table 10. Sub-sample forecasting results of Coinbase Bitcoin Spot price during the year 2019.

CRYPTO→ SPOT BTC AR(1) ann random svm knn boost ridge
RMSE 2004.38 1839.90 269.78 1242.31 482.95 56.39 948.21
MAE 1621.48 1480.75 188.88 944.23 334.25 22.33 753.79

MAPE 19.15 19.03 2.20 11.47 3.77 0.31 8.99

STOCKS / BONDS / FX AR(1) ann random svm knn boost ridge
RMSE 2004.38 1161.05 207.41 789.85 658.27 52.20 796.62
MAE 1621.48 960.84 146.26 658.62 494.73 23.82 641.54

MAPE 19.15 12.09 1.66 7.71 5.58 0.32 7.65

COMMO AR(1) ann random svm knn boost ridge
RMSE 2004.38 1842.40 301.12 951.06 565.41 48.58 572.25
MAE 1621.48 1501.78 154.87 778.14 415.79 22.93 449.21

MAPE 19.15 19.21 1.72 9.65 4.80 0.30 5.51

ALL AR(1) ann random svm knn boost ridge
RMSE 2004.38 1680.12 207.25 893.35 458.88 32.68 427.80
MAE 1621.48 1320.86 140.69 707.09 317.84 13.14 328.80

MAPE 19.15 17.21 1.59 8.52 3.60 0.18 3.86
Note: AR(1) stands for the autoregressive model of order one; ann for the Artificial Neural Network model;
random for the Random forest model; svm for the Support Vector Machine model; knn for the k-Nearest neighbor
model; boost for the Adaboost model; and ridge for the Ridge regression. In terms of forecast statistics, we
resort to the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), and the Mean Absolute Percent
Error (MAPE).
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Table 11. Sub-sample forecasting results of CME Bitcoin Futures price during the year 2019.

CRYPTO→ FUT BTC AR(1) ann random svm knn boost ridge
RMSE 2526.17 2274.59 336.84 2274.13 774.28 51.70 859.54
MAE 2161.69 1844.83 216.16 1843.04 400.58 19.00 665.93

MAPE 28.19 27.87 2.85 27.79 4.76 0.28 8.54

STOCKS / BONDS / FX AR(1) ann random svm knn boost ridge
RMSE 2526.17 2261.82 262.58 1486.93 870.11 39.54 1141.02
MAE 2161.69 1812.25 156.25 1133.90 627.91 12.06 889.87

MAPE 28.19 27.70 1.93 14.25 7.89 0.20 10.98

COMMO AR(1) ann random svm knn boost ridge
RMSE 2526.17 2246.32 240.88 1699.47 784.03 34.63 837.17
MAE 2161.69 1847.42 142.97 1360.78 426.04 11.74 663.65

MAPE 28.19 28.10 1.63 19.23 5.25 0.18 8.62

ALL AR(1) ann random svm knn boost ridge
RMSE 2526.17 2112.05 232.87 1844.38 507.67 38.29 598.87
MAE 2161.69 1753.21 150.59 1428.00 338.29 16.17 463.48

MAPE 28.19 26.91 1.82 20.40 4.16 0.23 6.07
Note: AR(1) stands for the autoregressive model of order one; ann for the Artificial Neural Network model;
random for the Random forest model; svm for the Support Vector Machine model; knn for the k-Nearest neighbor
model; boost for the Adaboost model; and ridge for the Ridge regression. In terms of forecast statistics, we
resort to the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), and the Mean Absolute Percent
Error (MAPE).

6.5. 2020: The Next “Bull Run”?

Market observers have suggested that the year 2020 would be bound to new “all-time
highs”, partly due to the halving of Bitcoin mining rewards, partly because of investors’
behavior (FOMO, or fear-of-missing-out). Bill Gates advised against such investment,
by stating merely that “Bitcoin will randomly go up or down, so you should probably watch out”.
(See MSN Money (2021) at https://www.msn.com/en-us/money/companies/bill-gates-
vs-elon-musk-over-bitcoin/ar-BB1e1p7v, accessed on 2 February 2021). Many shrewd
investors in the vein of Bill Gates have similarly noticed the “Tulip Mania” around Bitcoin
in 2020, which led in the 1600s to the first recorded story of a financial bubble. Or maybe the
blockchain revolution is inevitable, much like the internet revolution for its contemporary
back in 1994 (when modem connection to the world wide web was in its infancy)? Only
History will tell.

In parallel, Bitcoin has been advanced as a refuge for money during the Covid-19
sanitary crisis, challenging the role of Gold for several years to come. With the arrival
of new institutional investors (who pledged, for instance, 5% of their portfolio allocation
to Bitcoin futures (Kraken [119] documents BTC investments coming from several insti-
tutional investors, such as JP Morgan, Massachusetts Mutual Life Insurance, One River
Asset Management, Guggenheim Global, Jefferies Investment Bank in the US, or BBVA in
Switzerland)), a new economic cycle seems to have begun breaking all previous lines of
resistance (that of $30,000 significantly) for BTC traders with increased market liquidity
($126 billion worth of trading in Bitcoin in December 2020, with a record-high of $16 billion
traded on December 30 alone). The interest in Bitcoin as a financial store of value is further
confirmed by the recent interest of hedge funds, such as Black Rock, who has begun enter-
ing the Bitcoin space (without revealing precisely the percentage of exposure to Bitcoin in
its portfolio). (See CNBC (2021) at https://www.cnbc.com/2021/02/17/blackrock-has-
started-to-dabble-in-bitcoin-says-rick-rieder.html, accessed on 17 February 2021).

The main findings from Tables 12 and 13 can be summarized as follows. In 2020,
the quality of forecasts was overall the same as in 2019, with the Adaboost model standing
out as the best machine learning model. The kNN, random forest, or Stochastic Gradi-
ent Descent algorithms rank closely as second best models depending on the statistic
used. Nonetheless, we remark a higher dispersion across the statistics used for prediction,
especially for the spot. This may be linked to the parabolic rise near the end of 2020.

https://www.msn.com/en-us/money/companies/bill-gates-vs-elon-musk-over-bitcoin/ar-BB1e1p7v
https://www.msn.com/en-us/money/companies/bill-gates-vs-elon-musk-over-bitcoin/ar-BB1e1p7v
https://www.cnbc.com/2021/02/17/blackrock-has-started-to-dabble-in-bitcoin-says-rick-rieder.html
https://www.cnbc.com/2021/02/17/blackrock-has-started-to-dabble-in-bitcoin-says-rick-rieder.html
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Table 12. Sub-sample forecasting results of Coinbase Bitcoin Spot price during the year 2020.

CRYPTO→ SPOT BTC AR(1) ann random svm knn boost ridge
RMSE 1414.49 3307.80 197.38 2900.38 349.39 33.70 338.91
MAE 1070.73 2459.54 103.34 2052.99 234.06 17.80 241.83

MAPE 11.22 24.93 0.84 17.58 2.25 0.20 2.39

STOCKS / BONDS / FX AR(1) ann random svm knn boost ridge
RMSE 1414.49 2512.15 311.51 2529.41 740.23 78.17 1471.50
MAE 1070.73 1975.08 180.96 1894.31 459.15 38.99 1163.68

MAPE 11.22 18.58 1.71 16.96 4.23 0.41 11.20

COMMO AR(1) ann random svm knn boost ridge
RMSE 1414.49 2883.19 357.88 2420.39 676.30 96.19 1304.25
MAE 1070.73 2249.76 184.10 1728.99 417.52 46.36 996.39

MAPE 11.22 22.40 1.76 14.71 4.09 0.47 9.49

ALL AR(1) ann random svm knn boost ridge
RMSE 1414.49 1644.56 196.82 2632.90 358.02 44.44 262.89
MAE 1070.73 1382.10 101.25 1860.75 249.53 22.85 187.06

MAPE 11.22 13.66 0.85 15.90 2.41 0.25 1.80
Note: AR(1) stands for the autoregressive model of order one; ann for the Artificial Neural Network model;
random for the Random forest model; svm for the Support Vector Machine model; knn for the k-Nearest neighbor
model; boost for the Adaboost model; and ridge for the Ridge regression. In terms of forecast statistics, we
resort to the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), and the Mean Absolute Percent
Error (MAPE).

Table 13. Sub-sample forecasting results of CME Bitcoin Futures price during the year 2020.

CRYPTO→ FUT BTC AR(1) ann random svm knn boost ridge
RMSE 1410.81 3312.17 215.78 3393.32 707.28 58.42 534.98
MAE 1067.87 2445.28 134.71 2490.83 306.53 26.25 385.49

MAPE 11.01 24.57 1.28 24.85 2.89 0.27 3.77

STOCKS / BONDS / FX AR(1) ann random svm knn boost ridge
RMSE 1410.81 1962.39 324.59 2734.47 771.51 46.64 2074.45
MAE 1067.87 1486.87 167.88 1937.63 465.15 17.82 1598.52

MAPE 11.01 14.34 1.46 17.68 4.25 0.18 15.33

COMMO AR(1) ann random svm knn boost ridge
RMSE 1410.81 2888.13 455.97 2350.38 709.81 60.48 1396.80
MAE 1067.87 2251.41 223.21 1670.00 429.37 22.26 1105.12

MAPE 11.01 22.37 2.14 15.51 4.04 0.22 10.72

ALL AR(1) ann random svm knn boost ridge
RMSE 1410.81 1520.44 401.66 1910.55 352.58 53.12 659.22
MAE 1067.87 1217.22 148.97 1268.20 248.24 20.27 515.52

MAPE 11.01 11.96 1.44 12.25 2.32 0.20 5.43
Note: AR(1) stands for the autoregressive model of order one; ann for the Artificial Neural Network model;
random for the Random forest model; svm for the Support Vector Machine model; knn for the k-Nearest neighbor
model; boost for the Adaboost model; and ridge for the Ridge regression. In terms of forecast statistics, we
resort to the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), and the Mean Absolute Percent
Error (MAPE).

Despite the soaring prices near the end of the year 2020, ultimately breaching the
barrier of $30k at the beginning of 2021, it is reassuring to observe that the machine learning
models implemented keep delivering approximately the same forecasting accuracy metric
as when the prices were in the low $3k or $8k average. We are confident that, for instance,
the Adaboost or Random forest algorithms could be implemented as a decision-making
tool in a banking environment, either for spot or futures forecasts, given their stability.

6.6. Trading Strategies

Most of the crypto traders continue to use chartist methods to decide to sell or buy
(Shynkevich [120]). They also use the notion of profit and loss. With our exercise, we can
provide interesting information to these investors who are interested in short positions.
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Indeed, with the trends we observe in our predictions, we can provide new alternative
trading strategies.

6.6.1. Hit Rates

To achieve this objective, we follow the methodology by [64]. We assess the accuracy
of the Bitcoin price predictions based on the following formula:

Hit rate =
h
n

, (16)

with h the number of out-of-sample correct forecasts of the Bitcoin underlying price (e.g.,
spot or futures), and n the number of tests (a.k.a, sessions of tests of different sizes depend-
ing on full- or sub-samples).

The key idea behind computing hit rates is to assess whether the ML algorithms can
help the trader in his daily routine (by giving him consistent up/down price directions),
or whether the trader is better off counting on his luck, a.k.a, flipping a coin every morning
with 50% of success whatsoever (independent trials).

Regarding Table 14, we report a superior forecasting accuracy superior to 50% chance
of flipping a coin. Ada Boost performs best above 70% in all cases in the full sample.
Performance is consistent across the various subsamples. Variations exist, as the lowest
hit rate is recorded at 61.89% for Bitcoin spot during the year 2019, whereas the highest
hit rate is equal to 93.90% for Bitcoin spot during the 2016–18 economic cycle for all series.
Random forest ranks second, oscillating around 60% for the full sample. The hit rate of
Random forest is even higher for futures Bitcoin, where it can beat in one case the Ada
Boost model (for cryptocurrencies only; random = 73.17% whereas boosting = 70.43%).
For the subsamples, the Random forest model’s predictive power remains around the hit
rate of 60%. Its performance is slightly better when the underlying asset is the futures (see
especially the case of the Bitcoin 2016–18 economic cycle sub-sample, where the Random
forest ranks first in three cases). kNN and ridge regression hit consistently above than
50% threshold. AR(1), ANN, and SVM perform poorly (below 50% chance of flipping a
coin). In 2020, the best hit rates ranged around 62%, down from 65% during the year 2019
(maybe attributable to the intramonth volatility push during December 2020?). Besides, we
identify two instances (for spot forecasts) during which the random forest algorithm beats
the Adaboost one.

In the literature, other authors have also studied the interest of using machine learning
to predict asset prices. In Atsalakis et al. [64], the PATSOS (neuro-fuzzy algorithm) hit
rate to predict Bitcoin is equal to 63.22%. In our approach, we perform slightly better for
Bitcoin spot and futures, on specific periods. In 2019, our performance was in the range of
literature by Atsalakis et al. [64]. In Fischer and Krauss [121], the average accuracy of the
random forest algorithm to predict the S&P 500 oscillates between 52% and 57%. Based
on Random Forest and Gradient Descent, Saad et al. [122] evaluate that a state-of-the-art
machine learning model can achieve more than 90% forecast accuracy of the Bitcoin price
(based on MAE and RMSE statistics).

Regarding the prediction of cryptocurrency returns, [123] document that machine
learning classification algorithms reach about 55-65% predictive accuracy on average at the
daily or minute level frequencies. However, our results depart from the latter authors. They
attributed the best and consistent results in terms of predictive accuracy to the support
vector machines compared to the logistic regression, artificial neural networks, and random
forest classification algorithms.
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Table 14. Hit rate performance comparison.

Full sample/Spot AR(1) ann random svm knn boost ridge
Hit rate (%) CRYPTO→ SPOT BTC <50% <50% 61.59% <50% 52.74% 83.84% 51.83%

Hit rate (%) STOCKS / BONDS / FX <50% <50% 63.72% 50.30% 51.83% 83.54% 50.61%

Hit rate (%) COMMO <50% <50% 60.06% <50% 53.35% 85.37% 51.22%

Hit rate (%) ALL <50% <50% 57.93% <50% 51.83% 88.41% 51.83%
Full sample/Futures AR(1) ann random svm knn boost ridge

Hit rate (%) CRYPTO→ FUT BTC <50% <50% 73.17% 50.91% 57.32% 70.43% 50.91%

Hit rate (%) STOCKS / BONDS / FX <50% <50% 66.16% <50% 56.40% 82.32% 51.22%

Hit rate (%) COMMO <50% <50% 67.07% 50.30% 52.74% 80.79% 50.91%

Hit rate (%) ALL <50% <50% 70.12% 50.30% 57.93% 77.74% 50.30%
Sub sample/Crypto-select/Spot AR(1) ann random svm knn boost ridge

Hit rate (%) CRYPTO→ SPOT BTC <50% <50% 58.84% 50.30% 55.18% 85.37% 50.30%
Sub sample/Crypto-select/Futures AR(1) ann random svm knn boost ridge

Hit rate (%) CRYPTO→ FUT BTC <50% 50.00% 62.50% 50.91% 52.74% 83.23% 50.61%
Sub sample/Tether/Spot AR(1) ann random svm knn boost ridge

Hit rate (%) CRYPTO→ SPOT BTC <50% <50% 60.98% 50.30% 54.27% 84.15% 50.30%

Hit rate (%) STOCKS / BONDS / FX <50% <50% 58.54% 50.30% 53.35% 86.89% 50.91%

Hit rate (%) COMMO <50% <50% 61.59% 50.61% 52.74% 84.15% 50.91%

Hit rate (%) ALL <50% <50% 58.23% <50% 53.05% 87.80% 50.91%
Sub sample/Tether/Futures AR(1) ann random svm knn boost ridge

Hit rate (%) CRYPTO→ FUT BTC <50% <50% 66.46% <50% 54.88% 78.05% 50.61%

Hit rate (%) STOCKS / BONDS / FX <50% <50% 64.33% 51.22% 57.32% 76.52% 50.91%

Hit rate (%) COMMO <50% <50% 63.41% 50.30% 54.88% 81.10% 50.30%

Hit rate (%) ALL <50% <50% 64.02% 50.30% 55.18% 79.88% 51.22%
Sub sample/BTC cycle/Spot AR(1) ann random svm knn boost ridge

Hit rate (%) CRYPTO→ SPOT BTC <50% <50% 58.54% 50.30% 52.74% 87.50% 50.91%

Hit rate (%) STOCKS / BONDS / FX <50% <50% 56.40% <50% 52.13% 91.16% 50.30%

Hit rate (%) COMMO <50% <50% 58.84% <50% 51.83% 89.33% <50%

Hit rate (%) ALL <50% <50% 54.88% <50% 50.91% 93.90% 50.30%
Sub sample/BTC cycle/Futures AR(1) ann random svm knn boost ridge

Hit rate (%) CRYPTO→ FUT BTC <50% <50% 70.73% 50.30% 57.01% 70.73% 51.22%

Hit rate (%) STOCKS / BONDS / FX <50% <50% 72.87% <50% 54.27% 72.26% 51.22%

Hit rate (%) COMMO <50% <50% 66.46% <50% 54.57% 77.74% 51.22%

Hit rate (%) ALL <50% <50% 74.09% <50% 56.10% 69.51% 51.52%
Sub sample/2019/Spot AR(1) ann random svm knn boost ridge

Hit rate (%) CRYPTO→ SPOT BTC <50% <50% 58.54% 50.30% 53.66% 61.89% 50.91%

Hit rate (%) STOCKS / BONDS / FX <50% <50% 55.49% 50.91% 52.13% 65.55% 51.22%

Hit rate (%) COMMO <50% <50% 58.54% <50% 52.13% 64.02% 50.61%

Hit rate (%) ALL <50% <50% 57.01% 50.30% 52.44% 64.63% 50.91%
Sub sample/2019/Futures AR(1) ann random svm knn boost ridge

Hit rate (%) CRYPTO→ FUT BTC <50% <50% 56.40% <50% 51.83% 66.77% 50.30%

Hit rate (%) STOCKS / BONDS / FX <50% <50% 54.57% <50% 52.44% 68.60% 50.30%

Hit rate (%) COMMO <50% <50% 54.88% <50% 51.83% 68.60% <50%

Hit rate (%) ALL <50% <50% 57.01% <50% 52.13% 66.77% <50%
Sub sample/2020/Spot AR(1) ann random svm knn boost sgd

Hit rate (%) CRYPTO→ SPOT BTC <50% <50% 60.06% 50.30% 53.05% 62.50% 50.00%

Hit rate (%) STOCKS / BONDS / FX <50% <50% 61.28% 50.91% 54.57% 57.93% 50.61%

Hit rate (%) COMMO <50% <50% 66.46% 50.91% 53.05% 53.66% 51.22%

Hit rate (%) ALL <50% <50% 59.76% 50.30% 51.83% 60.67% 52.74%
Sub sample/2020/Futures AR(1) ann random svm knn boost sgd

Hit rate (%) CRYPTO→ FUT BTC <50% <50% 61.28% <50% 52.13% 61.89% <50%

Hit rate (%) STOCKS / BONDS / FX <50% <50% 59.15% <50% 53.66% 62.50% 50.30%

Hit rate (%) COMMO <50% <50% 58.54% <50% 52.13% 64.94% <50%

Hit rate (%) ALL <50% <50% 60.06% <50% 51.83% 61.59% 51.83%

Note: AR(1) stands for the autoregressive model of order one; ann for the Artificial Neural Network model; random for the Random forest
model; svm for the Support Vector Machine model; knn for the k-Nearest neighbor model; boost for the Adaboost model; and ridge for the
Ridge regression.
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6.6.2. ML Trading Results Contrasted with HODL Strategy

HODL is a term derived from a misspelling of ‘hold’ that refers to buy-and-hold
strategies in the context of Bitcoin and other cryptocurrencies. (It originated from a famous
post on the internet forum ‘bitcointalk’: https://bitcointalk.org/index.php?topic=375643.0,
accessed on 27 May 2021). In the Markowitz world, it is equivalent to the ‘buy-and-hold’
strategy, which will be used as our benchmark against which ML algorithms compete.

Over the five years (13 January 2015 to 31 December 2020), we set the training period
Ttrain = 4− year and the trading period Ttrade = 1− year. The investor buys 100,000$
worth of Bitcoin at the beginning of the trading session and sells it in the end. His gains are
evaluated thanks to the following Rate of Return (RoR) formulation:

RoR =
net gain from Bitcoin

initial investment
. (17)

The ML algorithms function as automated trading bots, with the following instructions:
(i) if the price forecast is equal to the current price, do not take any action; (ii) if the price
forecast is below the current price, trigger a sell signal; (iii) if the price forecast is above
the current price, initiate a buy signal. By following these instructions, the trader can
initiate automated trading (of course, by implementing additional stop-loss rules for his
P&L). Transaction fees are ignored, as they are documented to be virtually non-existent.
For instance, on 26 October 2020, two back-to-back transactions of 45,671 Bitcoin ($602
million) and 43,185 Bitcoin ($570 million), minutes apart, were sent from a Xapo wallet to
two addresses. That corresponds to over $1.1 billion in Bitcoin. The total transaction fee of
$3.54 spent was about the price of a Starbucks coffee. (See, e.g., https://decrypt.co/46346/
someone-just-sent-1-billion-in-bitcoin-paid-only-3-in-fees, accessed on 26 October 2020.
For real-time mean transaction fees for BTC, see Coinmetrics website: https://network-
charts.coinmetrics.io/, accessed on 27 May 2021).

Table 15 compares the profit and loss account (P&L) from the HODL strategy with
that of each machine learning algorithm (in the case where the trader follows their price
signals) we use all along in this paper. As a trader, we expect a positive RoR and as high
as possible.

We observe that the best RoR is achieved by the HODL strategy (26.88%). Looking at
our results, depending on the data set used, the best RoR is not always given by the same
algorithm. Depending on the dataset we use, the best RoR is provided by (i) an AR(1) for
cryptocurrencies (25.55%), (ii) an AR(1) for stocks and bonds (25.55%), (iii) an ANN using
commodities (26%), (iv) by Ridge using all the variables (30.47%). There is no segmentation
since the best results are obtained as we add financial variables. The cryptocurrency world
is not the best trading strategy. ANN using commodities, we have the same result as all
(26–26.88%).

Our results stand in sharp contrast with Atsalakis et al. [64] (PATSOS neuro-fuzzy =
37.34%): although the ML algorithms deliver high forecast accuracy, they do not necessarily
convert into money (candlestick patterns can be tricky to non-experienced investors). For
sensitivity analysis, we run again the trading strategy with coins bought in January 2019
and sold at the end of our study period (aka, December 2020). The results are displayed in
Table 16. The latest timeframe chosen tends to exacerbate the forecast statistics due to a
heightened speculative situation on cryptocurrency markets, but it does not change the
core finding of this section (in favor of the HODL strategy for Bitcoin versus market gains
issued from machine learning models).

https://bitcointalk.org/index.php?topic=375643.0
https://decrypt.co/46346/someone-just-sent-1-billion-in-bitcoin-paid-only-3-in-fees
https://decrypt.co/46346/someone-just-sent-1-billion-in-bitcoin-paid-only-3-in-fees
https://network-charts.coinmetrics.io/
https://network-charts.coinmetrics.io/


Forecasting 2021, 3 413

Table 15. Bitcoin Rate of Return (RoR) of ML algorithms against the HODL strategy.

Strategy Bitcoin RoR
HODL 26.88%

Cryptos only
AR(1) 25.55%
ann 12.26%

random 18.93%
svm 0.05%
knn 19.00%

boost 22.47%
ridge 21.53%

Stocks/bonds/fx only
AR(1) 25.55%
ann 5.13%

random 21.50%
svm 0.04%
knn 17.48%

boost 22.48%
ridge 21.48%

Commodities only
AR(1) 25.55%
ann 26.00%

random 18.04%
svm 0.07%
knn 16.77%

boost 22.48%
ridge 13.00%
All

AR(1) 25.55%
ann 15.20%

random 22.75%
svm 0.05%
knn 24.23%

boost 22.37%
ridge 30.47%

Note: The RoR is computed for an initial investment of 100,000$ during 13 January 2015–31 December 2020,
with three-year initial training period for the ML algorithms, and two-years of paper trading before cashing out.
AR(1) stands for the autoregressive model of order one; ann for the Artificial Neural Network model; random for
the Random forest model; svm for the Support Vector Machine model; knn for the k-Nearest neighbor model;
boost for the Adaboost model; and ridge for the Ridge regression.

Considering the different algorithms, the traditional econometrics AR(1) strategy fares
surprisingly well in this context (best results for cryptocurrencies only, stocks/bonds/FX
only). We note the stability of the AdaBoost and Random forest strictly after AR(1). ANN
comes first (commodities only) due to finding better entry/exit prices in that particular case.
Ridge regression performs best for all, being able to find as well an excellent combination
of buying/selling points. Unlike other parts of our paper, we cannot say that one machine
learning algorithm outperforms the others.

The philosophy of this last small exercise is that: (i) It is challenging to grab daily
gains. Many investors report losses to the IRS for tax rebates (‘Get rich or die tryin’). (ii)
‘REKT’: many investors are ‘wrecked’ by margin trading and leverage on BitMEX (reserved
for shrewd FX traders). (iii) Machine Learning algorithms only give trading signals and
do not teach how to trade. Traders resort to support and resistance lines, filters, technical
indicators in TradingView (a list of trading rules such as Relative Strength Index (RSI),
MACD curves, Exponential Moving Averages, Momentum, and their specifications can be



Forecasting 2021, 3 414

found in Shynkevich [120]). For a comprehensive examination of technical trading rules in
cryptocurrency markets, see also [124].

Table 16. Sensitivity Analysis for Bitcoin Rate of Return (RoR) of ML algorithms against the
HODL strategy.

Strategy Bitcoin RoR
HODL 27.46%

Cryptos only
AR(1) 26.13%
ann 12.79%

random 19.55%
svm 0.06%
knn 19.61%

boost 23.06%
ridge 22.09%

Stocks/bonds/fx only
AR(1) 26.13%
ann 5.68%

random 21.98%
svm 0.05%
knn 18.06%

boost 23.05%
ridge 22.06%

Commodities only
AR(1) 26.13%
ann 26.58%

random 18.56%
svm 0.65%
knn 17.36%

boost 23.05%
ridge 13.61%
All

AR(1) 26.13%
ann 15.81%

random 23.32%
svm 0.07%
knn 24.81%

boost 23%
ridge 31.05%

Note: The RoR is computed for an initial investment of 100,000 $ during 01 January 2019–31 December 2020,
with three-year initial training period for the ML algorithms, and two-years of paper trading before cashing out.
AR(1) stands for the autoregressive model of order one; ann for the Artificial Neural Network model; random for
the Random forest model; svm for the Support Vector Machine model; knn for the k-Nearest neighbor model;
boost for the Adaboost model; and ridge for the Ridge regression.

Bitcoin currently being in a bear market since the 19k$ price spike, our paper trading
P&L challenges the thirst to be a millionaire (‘When Lambo?’) often found in the trading
forums of the crypto-sphere, such as Reddit, where beginner day-traders dream of driving
the most expensive sportscars—Lamborghinis.

7. Conclusions

Machine learning algorithms attempt to find natural patterns in data to enhance
decision-making. Machine learning typically prescribes a vast collection of high-dimensional
models attempting to predict quantities of interest to solve problems in computational
finance while imposing regularization methods.



Forecasting 2021, 3 415

In a seminal paper, Zhao and Hastie [8] warns us against the pitfalls of ‘black-box’
machine learning models and urge us to make proper use of (i) a good predictive model,
(ii) a sound selection of the dataset, and (iii) visualization tools to ensure the quality of the
research work.

This paper addresses the following central research questions: How far the is use of
machine learning techniques useful to forecast daily movements of the price of Bitcoin?
How strong is the relationship between cryptocurrencies and traditional financial assets?
How to perform a trading strategy based on cryptocurrencies? We overcome the risks of
machine learning in predicting Bitcoin spot and futures prices by documenting: (i) either
the AdaBoost or Random forest algorithms perform as the ‘best’ machine learning models
among the six considered and could be implemented in a banking institution’s internal
computing system for Bitcoin forecastability. (ii) A financial market approach favors price
relationships between asset classes (cryptocurrencies, stocks, bonds, foreign exchange,
and commodities) for the dataset’s quality. (iii) We implement a myriad of visualization
tools (e.g., Louvain clustering, self-organizing map, t-distributed SNE, Sieve diagrams,
and multidimensional scaling) to strengthen our findings.

During the period under study, the key takeaway is that Bitcoin appears as a prob-
lematic asset to forecast, subject to frequent price swings, as highlighted by the latest
end-of-year 2020 run-up. From our empirical results, Bitcoin appears segmented from
traditional financial and commodity markets. It seems to react more to the information
content stemming from other cryptocurrencies, enhancing the forecast accuracy of Bitcoin.
Whatever the period in which we work (full period, sub-sample periods), the best result is
achieved during the full period (lowest MAPE = 0.15).

Across the trading strategies, we have documented that (i) machine learning algo-
rithms (configured as bots following buy/sell signals) do not teach how to trade, (ii) the
buy-and-hold strategy appears the best, which incites owners of Bitcoin to ‘hodl’. Be-
cause of the variability of the forecasting results, it is necessary to let cool heads prevail
before investing in Bitcoin with private individuals’ money. Wealthy clients from invest-
ment banks can have access to Bitcoin funds in special entities such as Morgan Stanley,
for individuals with “an aggressive risk tolerance” and a net worth of $2 million held by the
firm. (See CNBC (2021) at https://www.cnbc.com/2021/03/17/bitcoin-morgan-stanley-
is-the-first-big-us-bank-to-offer-wealthy-clients-access-to-bitcoin-funds.html, accessed on
17 March 2021). Such clients are especially waiting for the approval of ETF funds by the U.S.
SEC led by the new appointment of Mr. Gary Gensler, a professor in the digital economy
from MIT. The SEC’s cryptocurrency commissioner, Ms. Hester Peirce (dubbed “crypto
mom”), has long advocated a Bitcoin ETF. The argument behind the use of cryptocurrencies
lies in the modernization of the financial system, whereby assets worth billion dollars
can be transferred securely and quasi-instantly (compared to the SWIFT/IBAN system)
between agents. Transaction fees are recorded to be minimal. It is possible to follow the
transactions in real-time on blockchair.com. For example, one timestamp 6 April 2021
13:22 (UTC) records $1,783,170,000 exchanged through Bitcoin for a transaction fee of
$45.45. At the time of writing, only Canada has approved the opening of ETFs on Bitcoin
(such as Purpose Investment, Evolve Funds Group, or CI Galaxy). (See Coindesk (2021)
at https://www.coindesk.com/third-bitcoin-etf-expected-to-launch-in-canada-this-week,
accessed on 8 March 2021).

Overall, we believe that Bitcoin remains a difficult beast to tame for a modeler, and
that the debate on its pricing and forecasting accuracy remains open. We wish to insist here
on the speculative nature of investing in Bitcoin, which remains an artificial mechanism
without an underlying (unless it can be considered that the proof-of-work algorithm is
a receivable underlying in financial derivatives markets?). It remains hard to gauge the
fundamental value of Bitcoin from an economist’s standpoint, hence the challenge attached
to any attempt at forecasting.

As avenues for future research, we would like to stress that our method can be ex-
tended to alt-coins, with a specific interest obviously for Ethereum, Litecoin, or Ripple. (i.e.,

https://www.cnbc.com/2021/03/17/bitcoin-morgan-stanley-is-the-first-big-us-bank-to-offer-wealthy-clients-access-to-bitcoin-funds.html
https://www.cnbc.com/2021/03/17/bitcoin-morgan-stanley-is-the-first-big-us-bank-to-offer-wealthy-clients-access-to-bitcoin-funds.html
https://www.coindesk.com/third-bitcoin-etf-expected-to-launch-in-canada-this-week
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the “main” alt-coins, as listed on https://coinmarketcap.com/, accessed on 27 May 2021).
Having forecast the spot and futures prices of Bitcoin in this article, it might be interesting
to look at the spreads between the two next. Indeed, with the “democratization” of ML
among institutional investors, we can imagine that there will be more significant volumes
of trading and arbitrage between the two markets, but the differences in performance
between the two were due for a certain time. reflect distinct populations of participants.
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